
The 5G-AKA Authentication Protocol Privacy
Adrien Koutsos

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay
Cachan, France

adrien.koutsos@lsv.fr

Abstract—We study the 5G-AKA authentication protocol de-
scribed in the 5G mobile communication standards. This version
of AKA tries to achieve a better privacy than the 3G and 4G
versions through the use of asymmetric randomized encryption.
Nonetheless, we show that except for the IMSI-catcher attack,
all known attacks against 5G-AKA privacy still apply.

Next, we modify the 5G-AKA protocol to prevent these
attacks, while satisfying 5G-AKA efficiency constraints as much
as possible. We then formally prove that our protocol is σ-
unlinkable. This is a new security notion, which allows for a
fine-grained quantification of a protocol privacy. Our security
proof is carried out in the Bana-Comon indistinguishability logic.
We also prove mutual authentication as a secondary result.

Index Terms—AKA, Unlinkability, Privacy, Formal Methods.

I. INTRODUCTION

Mobile communication technologies are widely used for
voice, text and Internet access. These technologies allow a
subscriber’s device, typically a mobile phone, to connect
wirelessly to an antenna, and from there to its service provider.
The two most recent generations of mobile communication
standards, the 3G and 4G standards, have been designed by
the 3GPP consortium. The fifth generation (5G) of mobile
communication standards is being finalized, and drafts are
now available [1]. These standards describe protocols that
aim at providing security guarantees to the subscribers and
service providers. One of the most important such protocol
is the Authentication and Key Agreement (AKA) protocol,
which allows a subscriber and its service provider to establish
a shared secret key in an authenticated fashion. There are
different variants of the AKA protocol, one for each generation.

In the 3G and 4G-AKA protocols, the subscriber and its
service provider share a long term secret key. The subscriber
stores this key in a cryptographic chip, the Universal Sub-
scriber Identity Module (USIM), which also performs all the
cryptographic computations. Because of the USIM limited
computational power, the protocols only use symmetric key
cryptography without any pseudo-random number generation
on the subscriber side. Therefore the subscriber does not use a
random challenge to prevent replay attacks, but instead relies
on a sequence number SQN. Since the sequence number has
to be tracked by the subscriber and its service provider, the
AKA protocols are stateful.

Because a user could be easily tracked through its mobile
phone, it is important that the AKA protocols provide privacy
guarantees. The 3G and 4G-AKA protocols try to do that using
temporary identities. While this provides some privacy against
a passive adversary, this is not enough against an active

adversary. Indeed, these protocols allow an antenna to ask for
a user permanent identity when it does not know its temporary
identity (this naturally happens in roaming situations). This
mechanism is abused by IMSI-catchers [2] to collect the
permanent identities of all mobile devices in range.

The IMSI-catcher attack is not the only known attack against
the privacy of the AKA protocols. In [3], the authors show how
an attacker can obtain the least significant bits of a subscriber’s
sequence number, which allows the attacker to monitor the
user’s activity. The authors of [4] describe a linkability attack
against the 3G-AKA protocol. This attack is similar to the
attack on the French e-passport [5], and relies on the fact
that 3G-AKA protocol uses different error messages if the
authentication failed because of a bad Mac or because a de-
synchronization occurred.

The 5G standards include changes to the AKA protocol to
improve its privacy guarantees. In 5G-AKA, a user never sends
its permanent identity in plain-text. Instead, it encrypts it using
a randomized asymmetric encryption with its service provider
public key. While this prevents the IMSI-catcher attack, this is
not sufficient to get unlinkability. Indeed, the attacks from [3],
[4] against the 3G and 4G-AKA protocols still apply. Moreover,
the authors of [6] proposed an attack against a variant of the
AKA protocol introduced in [4], which uses the fact that an
encrypted identity can be replayed. It turns out that their attack
also applies to 5G-AKA.

a) Objectives: Our goal is to improve the privacy of
5G-AKA while satisfying its design and efficiency constraints.
In particular, our protocol should be as efficient as the 5G-AKA
protocol, have a similar communication complexity and rely
on the same cryptographic primitives. Moreover, we want
formal guarantees on the privacy provided by our protocol.

b) Formal Methods: Formal methods are the best way to
get a strong confidence in the security provided by a protocol.
They have been successfully applied to prove the security of
crucial protocols, such as Signal [7] and TLS [8], [9]. There
exist several approaches to formally prove a protocol security.

In the symbolic or Dolev-Yao (DY) model, protocols are
modeled as members of a formal process algebra [10]. In
this model, the attacker controls the network: he reads all
messages and he can forge new messages using capabilities
granted to him through a fixed set of rules. While security in
this model can be automated (e.g. [11]–[14]), it offers limited
guarantees: we only prove security against an attacker that has
the designated capabilities.

The computational model is more realistic. The attacker



also controls the network, but is not limited by a fixed set
of rules. Instead, the attacker is any Probabilistic Polynomial-
time Turing Machine (PPTM for short). Security proofs in this
model are typically sequences of game transformations [15]
between a game stating the protocol security and crypto-
graphic hypotheses. This model offers strong security guar-
antees, but proof automation is much harder. For instance,
CRYPTOVERIF [16] cannot prove the security of stateful
cryptographic protocols (such as the AKA protocols).

There is a third model, the Bana-Comon (BC) model [17],
[18]. In this model, messages are terms and the security prop-
erty is a first-order formula. Instead of granting the attacker
capabilities through rules, as in the symbolic approach, we
state what the adversary cannot do. This model has several
advantages. First, since security in the BC model entails
computational security, it offers strong security guarantees.
Then, there is no ambiguity: the adversary can do anything
which is not explicitly forbidden. Finally, this approach is
well-suited to model stateful protocols.

c) Related Work: There are several formal analysis of
AKA protocols in the symbolic models. In [12], the authors
use the DEEPSEC tool to prove unlinkability of the protocol
for three sessions. In [4] and [19], the authors use PROVERIF
to prove unlinkability of AKA variants for, respectively, three
sessions and an unbounded number of sessions. In these three
works, the authors abstracted away several key features of the
protocol. Because DEEPSEC and PROVERIF do not support the
xor operator, they replaced it with a symmetric encryption.
Moreover, sequence numbers are modeled by nonces in [4]
and [12]. While [19] models the sequence number update, they
assume it is always incremented by one, which is incorrect.
Finally, none of these works modeled the re-synchronization
or the temporary identity mechanisms. Because of these inac-
curacies in their models, they all miss attacks.

In [20], the authors use the TAMARIN prover to analyse
multiple properties of 5G-AKA. For each property, they either
find a proof, or exhibit an attack. To our knowledge, this is the
most precise symbolic analysis of an AKA protocol. For exam-
ple, they correctly model the xor and the re-synchronization
mechanisms, and they represent sequence numbers as integers
(which makes their model stateful). Still, they decided not to
include the temporary identity mechanism. Using this model,
they successfully rediscover the linkability attack from [4].

We are aware of two analysis of AKA protocols in the
computational model. In [6], the authors present a significantly
modified version of AKA, called PRIV-AKA, and claim it is
unlinkable. However, we discovered a linkability attack against
the protocol, which falsifies the authors claim. In [21], the
authors study the 4G-AKA protocol without its first message.
They show that this reduced protocol satisfies a form of
anonymity (which is weaker than unlinkability). Because they
consider a weak privacy property for a reduced protocol, they
fail to capture the linkability attacks from the literature.

To summarize, there is currently no computational security
proof of a complete version of an AKA protocol.

d) Contributions: Our contributions are:

• We study the privacy of the 5G-AKA protocol described
in the 3GPP draft [1]. Thanks to the introduction of
asymmetric encryption, the 5G version of AKA is not
vulnerable to the IMSI-catcher attack. However, we show
that the linkability attacks from [3], [4], [6] against older
versions of AKA still apply to 5G-AKA.

• We present a new linkability attack against PRIV-AKA,
a significantly modified version of the AKA protocol
introduced and claimed unlinkable in [6]. This attack
exploits the fact that, in PRIV-AKA, a message can be
delayed to yield a state update later in the execution of
the protocol, where it can be detected.

• We propose the AKA+ protocol, which is a modified
version of 5G-AKA with better privacy guarantees and
satisfying the same design and efficiency constraints.

• We introduce a new privacy property, called σ-
unlinkability, inspired from [22] and Vaudenay’s Pri-
vacy [23]. Our property is parametric and allows us to
have a fine-grained quantification of a protocol privacy.

• We formally prove that AKA+ satisfies the σ-unlinkability
property in the computational model. Our proof is carried
out in the BC model, and holds for any number of agents
and sessions that are not related to the security parameter.
We also show that AKA+ provides mutual authentication.
e) Outline: In Section II and III we describe the 5G-AKA

protocol and the known linkability attacks against it. We
present the AKA+ protocol in Section IV, and we define
the σ-unlinkability property in Section V. Finally, we show
how we model the AKA+ protocol using the BC logic in
Section VI, and we state and sketch the proofs of the mutual
authentication and σ-unlinkability of AKA+ in Section VII.
This is an extended abstract without the full proofs, which
can be found in the technical report [24].

II. THE 5G-AKA PROTOCOL

We present the 5G-AKA protocol described in the 3GPP
standards [1]. This is a three-party authentication protocol
between:
• The User Equipment (UE). This is the subscriber’s physi-

cal device using the mobile communication network (e.g.
a mobile phone). Each UE contains a cryptographic chip,
the Universal Subscriber Identity Module (USIM), which
stores the user confidential material (such as secret keys).

• The Home Network (HN), which is the subscriber’s ser-
vice provider. It maintains a database with the necessary
data to authenticate its subscribers.

• The Serving Network (SN). It controls the base station
(the antenna) the UE is communicating with through a
wireless channel.

If the HN has a base station nearby the UE, then the HN and
the SN are the same entity. But this is not always the case (e.g.
in roaming situations). When no base station from the user’s
HN are in range, the UE uses another network’s base station.

The UE and its corresponding HN share some confidential
key material and the Subscription Permanent Identifier (SUPI),



which uniquely identifies the UE. The SN does not have access
to the secret key material. It follows that all cryptographic
computations are performed by the HN, and sent to the
SN through a secure channel. The SN also forwards all the
information it gets from the UE to the HN. But the UE
permanent identity is not kept hidden from the SN: after a
successful authentication, the HN sends the SUPI to the SN.
This is not technically needed, but is done for legal reasons.
Indeed, the SN needs to know whom it is serving to be able
to answer to Lawful Interception requests.

Therefore, privacy requires to trust both the HN and the
SN. Since, in addition, they communicate through a secure
channel, we decided to model them as a single entity and we
include the SN inside the HN. A description of the protocol
with three distinct parties can be found in [20].

A. Description of the Protocol

The 5G standard proposes two authentication protocols,
EAP-AKA′ and 5G-AKA. Since their differences are not rel-
evant for privacy, we only describe the 5G-AKA protocol.

a) Cryptographic Primitives: As in the 3G and 4G vari-
ants, the 5G-AKA protocol uses several keyed cryptographic
one-way functions: f1, f2, f5, f1,∗ and f5,∗. These functions are
used both for integrity and confidentiality, and take as input a
long term secret key k (which is different for each subscriber).

A major novelty in 5G-AKA is the introduction of an asym-
metric randomized encryption {·}ne

pk. Here pk is the public
key, and ne is the encryption randomness. Previous versions
of AKA did not use asymmetric encryption because the USIM,
which is a cryptographic micro-processor, had no randomness
generation capabilities. The asymmetric encryption is used to
conceal the identity of the UE, by sending {SUPI}ne

pk instead
of transmitting the SUPI in clear (as in 3G and 4G-AKA).

b) Temporary Identities: After a successful run of the
protocol, the HN may issue a temporary identity, a Globally
Unique Temporary Identity (GUTI), to the UE. Each GUTI can
be used in at most one session to replace the encrypted identity
{SUPI}ne

pk. It is renewed after each use. Using a GUTI allows
to avoid one asymmetric encryption. This saves a pseudo-
random number generation and the expensive computation of
an asymmetric encryption.

c) Sequence Numbers: The 5G-AKA protocol prevents
replay attacks using a sequence number SQN instead of a
random challenge. This sequence number is included in the
messages, incremented after each successful run of the pro-
tocol, and must be tracked and updated by the UE and the
HN. As it may get de-synchronized (e.g. because a message
is lost), there are two versions of it: the UE sequence number
SQNU, and the HN sequence number SQNN.

d) State: The UE and HN share the UE identity SUPI, a
long-term symmetric secret key k, a sequence number SQNU

and the HN public key pkN. The UE also stores in GUTI the
value of the last temporary identity assigned to it (if there is
one). Finally, the HN stores the secret key skN corresponding
to pkN, its version SQNN of every UE’s sequence number and
a mapping between the GUTIs and the SUPIs.

UE

SUPI, GUTI, k, pkN, SQNU

HN

SUPI, GUTI, k, skN, SQNN

GUTI or {SUPI}ne
pkN

if GUTI was used: GUTI ← UnSet〈
n , SQNN ⊕ f5k (n) , f1k (〈SQNN , n〉)

〉
Input x:
nR, SQNR ← π1(x), π2(x)⊕ f5k (nR)
bmac ← f1k (〈SQNR , nR〉) = π3(x)
bSQN ← range(SQNU, SQNR)

SQNN ← SQNN + 1

SQNU ← SQNR
f2k (nR)

bmac ∧ bSQN

“Auth-Failure”
¬bmac

〈
SQNU ⊕ f5,∗k (nR) , f1,∗k (〈SQNU , nR〉)

〉
Input y:
SQN∗R ← π1(y)⊕ f5,∗k (n)
if f1,∗k (〈SQN∗R , n〉) = π2(y) then SQNN ← SQN∗R + 1

bmac ∧ ¬bSQN

Conventions: ← is used for assignments, and has a lower
priority than the equality comparison operator =.

Fig. 1. The 5G-AKA Protocol

e) Authentication Protocol: The 5G-AKA protocol is
represented in Fig. 1. We now describe an honest execution
of the protocol. The UE initiates the protocol by identifying
itself to the HN, which it can do in two different ways:

• It can send a temporary identity GUTI, if one was assigned
to it. After sending the GUTI, the UE sets it to UnSet to
ensure that it will not be used more than once. Otherwise,
it would allow an adversary to link sessions together.

• It can send its concealed permanent identity {SUPI}ne
pkN

,
using the HN public key pkN and a fresh randomness ne.

Upon reception of an identifying message, the HN retrieves the
permanent identity SUPI: if it received a temporary identity
GUTI, this is done through a database look-up; and if a
concealed permanent identity was used, it uses skN to decrypt
it. It can then recover SQNN and the key k associated to
the identity SUPI from its memory. The HN then generates
a fresh nonce n. It masks the sequence number SQNN by
xoring it with f5k(n), and mac the message by computing
f1k(〈SQNN , n〉) (we use 〈. . . 〉 for tuples). It then sends the
message 〈n , SQNN ⊕ f5k(n) , f1k(〈SQNN , n〉)〉.

When receiving this message, the UE computes f5k(n).
With it, it unmasks SQNN and checks the authenticity of the



message by re-computing f1k(〈SQNN , n〉) and verifying that
it is equal to the third component of the message. It also
checks whether SQNN and SQNU are in range1. If both checks
succeed, the UE sets SQNU to SQNN, which prevents this
message from being accepted again. It then sends f2k(n) to
prove to HN the knowledge of k. If the authenticity check fails,
an “Auth-Failure” message is sent. Finally, if the authenticity
check succeeds but the range check fails, UE starts the re-
synchronization sub-protocol, which we describe below.

f) Re-synchronization: The re-synchronization protocol
allows the HN to obtain the current value of SQNU. First,
the UE masks SQNU by xoring it with f5,∗k (n), mac the
message using f1,∗k (〈SQNU , n〉) and sends the pair 〈SQNU ⊕
f5,∗k (n) , f1,∗k (〈SQNU , n〉)〉. When receiving this message, the
HN unmasks SQNU and checks the mac. If the authentication
test is successful, HN sets the value of SQNN to SQNU + 1.
This ensures that HN first message in the next session of the
protocol is in the correct range.

g) GUTI Assignment: There is a final component of the
protocol which is not described in Fig. 1 (as it is not used in
the privacy attacks we present later). After a successful run of
the protocol, the HN generates a new temporary identity GUTI
and links it to the UE’s permanent identity in its database.
Then, it sends the masked fresh GUTI to the UE.

III. UNLINKABILITY ATTACKS AGAINST 5G-AKA

We present in this section several attacks against AKA that
appeared in the literature. All these attacks but one (the IMSI-
catcher attack) carry over to 5G-AKA. Moreover, several fixes
of the 3G and 4G versions of AKA have been proposed. We
discuss the two most relevant fixes, the first by Arapinis et
al. [4], and the second by Fouque et al. [6].

None of these fixes are satisfactory. The modified AKA
protocol given in [4] has been shown flawed in [6]. The authors
of [6] then propose their own protocol, called PRIV-AKA, and
claim it is unlinkable (they only provide a proof sketch).
While analyzing the PRIV-AKA protocol, we discovered an
attack allowing to permanently de-synchronize the UE and the
HN. Since a de-synchronized UE can be easily tracked (after
being de-synchronized, the UE rejects all further messages),
our attack is also an unlinkability attack. This is in direct
contradiction with the security property claimed in [6]. This
is a novel attack that never appeared in the literature.

A. IMSI-Catcher Attack

All the older versions of AKA (4G and earlier) are vulnerable
to the IMSI-catcher attack [2]. This attack simply relies on
the fact that, in these versions of AKA, the permanent identity
(called the International Mobile Subscriber Identity or IMSI in
the 4G specifications) is not encrypted but sent in plain-text.
Moreover, even if a temporary identity is used (a Temporary
Mobile Subscriber Identity or TMSI), an attacker can simply
send a Permanent-ID-Request message to obtain the UE’s
permanent identity. The attack is depicted in Fig. 2.

1The specification is loose here: it only requires that SQNU < SQNN ≤
SQNU + C, where C is some constant chosen by the HN.

UE Attacker
TMSI or IMSI

“Permanent-ID-Request”
If TMSI received

IMSI

Fig. 2. An IMSI-Catcher Attack

UEIMSIt HN
tauth ≡

〈
n , SQNN ⊕ f5k (n) , f1k (〈SQNN , n〉)

〉
f2k (n)

UEIMSI′ Attacker
tauth

“Auth-Failure”
If IMSI′ 6= IMSIt

〈
SQNU ⊕ f5,∗k (nR) , f1,∗k (〈SQNU , nR〉)

〉If IMSI′ = IMSIt

Fig. 3. The Failure Message Attack by [4]

This necessitates an active attacker with its own base station.
At the time, this required specialized hardware, and was
believed to be too expensive. This is no longer the case, and
can be done for a few hundreds dollars (see [25]).

B. The Failure Message Attack

In [4], Arapinis et al. propose to use an asymmetric encryp-
tion to protect against the IMSI-catcher attack: each UE carries
the public-key of its corresponding HN, and uses it to encrypt
its permanent identity. This is basically the solution that was
adopted by 3GPP for the 5G version of AKA. Interestingly,
they show that this is not enough to ensure privacy, and give
a linkability attack that does not rely on the identification
message sent by UE. While their attack is against the 3G-AKA
protocol, it is applicable to the 5G-AKA protocol.

a) The Attack: The attack is depicted in Fig. 3, and works
in two phases. First, the adversary eavesdrops a successful run
of the protocol between the HN and the target UE with identity
IMSIt, and stores the authentication message tauth sent by HN.
In a second phase, the attacker A tries to determine whether a
UE with identity IMSI′ is the initial UE (i.e. whether IMSI′ =
IMSIt). To do this, A initiates a new session of the protocol and
replays the message tauth. If IMSI′ 6= IMSIt, then the mac test
fails, and UEIMSI′ answers “Auth-Failure”. If IMSI′ = IMSIt,
then the mac test succeeds but the range test fails, and UEIMSI′

sends a re-synchronization message.
The adversary can distinguish between the two messages,

and therefore knows if it is interacting with the original or a
different UE. Moreover, the second phase of the attack can



UEIMSIt HN{IMSIt}ne
pkN

UEIMSI′ HN{IMSI′}n′e
pkN

/
{IMSIt}ne

pkN

tauth ≡
〈
n , SQNN ⊕ f5k (n) , f1k (〈SQNN , n〉)

〉
Failure Message

If IMSI′ 6= IMSIt

f2k (nR)
If IMSI′ = IMSIt

Fig. 4. The Encrypted IMSI Replay Attack by [6]

be repeated every time the adversary wants to check for the
presence of the tracked user IMSIt in its vicinity.

b) Proposed Fix: To protect against the failure message
attack, the authors of [4] propose that the UE encrypts both er-
ror messages using the public key pkN of the HN, making them
indistinguishable. To the adversary, there is no distinctions
between an authentication and a de-synchronization failure.
The fixed AKA protocol, without the identifying message
{IMSI}ne

pkN
, was formally checked in the symbolic model using

the PROVERIF tool. Because this message was omitted in the
model, an attack was missed. We present this attack next.

C. The Encrypted IMSI Replay Attack

In [6], Fouque et al. give an attack against the fixed AKA
proposed by Arapinis et al. in [4]. Their attack, described in
Fig. 4, uses the fact the identifying message {IMSIt}ne

pkN
in the

proposed AKA protocol by Arapinis et al. can be replayed.
In a first phase, the attacker A eavesdrops and stores the

identifying message {IMSIt}ne
pkN

of an honest session between
the user UEIMSIt it wants to track and the HN. Then, every
time A wants to determine whether some user UEIMSI′ is
the tracked user UEIMSIt , it intercepts the identifying message
{IMSI′}n′e

pkN
sent by UEIMSI′ , and replaces it with the stored

message {IMSIt}ne
pkN

. Finally, A lets the protocol continue
without further tampering. We have two possible outcomes:
• If IMSI′ 6= IMSIt then the message tauth sent by HN is

mac-ed using the wrong key, and the UE rejects the
message. Hence the attacker observes a failure message.

• If IMSI′ = IMSIt then tauth is accepted by UEIMSI′ , and
the attacker observes a success message.

Therefore the attacker can deduce whether it is interacting with
UEIMSIt or not, which breaks unlinkability.

D. Attack Against The PRIV-AKA Protocol

The authors of [6] then propose the PRIV-AKA protocol,
which is a significantly modified version of AKA. The authors
claim that their protocol achieves authentication and client
unlinkability. But we discovered a de-synchronization attack:
it is possible to permanently de-synchronize the UE and the

HN. Our attack uses the fact that in PRIV-AKA, the HN
sequence number is incremented only upon reception of the
confirmation message from the UE. Therefore, by intercepting
the last message from the UE, we can prevent the HN from
incrementing its sequence number. We now describe the attack.

We run a session of the protocol, but we intercept the
last message and store it for later use. Note that the HN’s
session is not closed. At that point, the UE and the HN are
de-synchronized by one. We re-synchronize them by running
a full session of the protocol. We then re-iterate the steps
described above: we run a session of the protocol, prevent
the last message from arriving at the HN, and then run a
full session of the protocol to re-synchronize the HN and the
UE. Now the UE and the HN are synchronized, and we have
two stored messages, one for each uncompleted session. We
then send the two messages to the corresponding HN sessions,
which accept them and increment the sequence number. In the
end, it is incremented by two.

The problem is that the UE and the HN cannot recover
from a de-synchronization by two. We believe that this was
missed by the authors of [6]2. Remark that this attack is also
an unlinkability attack. To attack some user UEIMSI’s privacy,
we permanently de-synchronize it. Then each time UEIMSI tries
to run the PRIV-AKA protocol, it will abort, which allows the
adversary to track it.

Remark 1. Our attack requires that the HN does not close the
first session when we execute the second session. At the end
of the attack, before sending the two stored messages, there
are two HN sessions simultaneously opened for the same UE.
If the HN closes any un-finished sessions when starting a new
session with the same UE, our attack does not work.

But this make another unlinkability attack possible. Indeed,
closing a session because of some later session between the
HN and the same UE reveals a link between the two sessions.
We describe the attack. First, we start a session i between
a user UEA and the HN, but we intercept and store the last
message tA from the user. Then, we let the HN run a full
session with some user UEX. Finally, we complete the initial
session i by sending the stored message tA to the HN. Here,
we have two cases. If X = A, then the HN closed the first
session when it completed the second. Hence it rejects tA. If
X 6= A, then the first session is still opened, and it accepts tA.

Closing a session may leak information to the adversary.
Protocols which aim at providing unlinkability must explicit
when sessions can safely be closed. By default, we assume a
session stays open. In a real implementation, a timeout tied to
the session (and not the user identity) could be used to avoid
keeping sessions opened forever.

E. Sequence Numbers and Unlinkability

We conjecture that it is not possible to achieve functionality
(i.e. honest sessions eventually succeed), authentication and
unlinkability at the same time when using a sequence number

2“the two sequence numbers may become desynchronized by one step [...].
Further desynchronization is prevented [...]” (p. 266 [6])



based protocol with no random number generation capabilities
in the UE side. We briefly explain our intuition.

In any sequence number based protocol, the agents may
become de-synchronized because they cannot know if their
last message has been received. Furthermore, the attacker can
cause de-synchronization by blocking messages. The problem
is that we have contradictory requirements. On the one hand, to
ensure authentication, an agent must reject a replayed message.
On the other hand, in order to guarantee unlinkability, an
honest agent has to behave the same way when receiving a
message from a synchronized agent or from a de-synchronized
agent. Since functionality requires that a message from a
synchronized agent is accepted, it follows that a message
from a de-synchronized agent must be accepted. Intuitively,
it seems to us that an honest agent cannot distinguish between
a protocol message which is being replayed and an honest
protocol message from a de-synchronized agent. It follows
that a replayed message should be both rejected and accepted,
which is a contradiction.

This is only a conjecture. We do not have a formal state-
ment, or a proof. Actually, it is unclear how to formally
define the set of protocols that rely on sequence numbers to
achieve authentication. Note however that all requirements can
be satisfied simultaneously if we allow both parties to generate
random challenges in each session (in AKA, only HN uses a
random challenge). Examples of challenge based unlinkable
authentication protocols can be found in [26].

IV. THE AKA+ PROTOCOL

We now describe our principal contribution, which is the
design of the AKA+ protocol. This is a fixed version of the
5G-AKA protocol offering some form of privacy against an
active attacker. First, we explicit the efficiency and design
constraints. We then describe the AKA+ protocol, and explain
how we designed this protocol from 5G-AKA by fixing all
the previously described attacks. As we mentioned before, we
think unlinkability cannot be achieved under these constraints.
Nonetheless, our protocol satisfies some weaker notion of un-
linkability that we call σ-unlinkability. This is a new security
property that we introduce. Finally, we will show a subtle
attack, and explain how we fine-tuned AKA+ to prevent it.

A. Efficiency and Design Constraints

We now explicit the protocol design constraints. These
constraints are necessary for an efficient, in-expensive to
implement and backward compatible protocol. Observe that,
in a mobile setting, it is very important to avoid expensive
computations as they quickly drain the UE’s battery.

a) Communication Complexity: In 5G-AKA, authentica-
tion is achieved using only three messages: two messages are
sent by the UE, and one by the HN. We want our protocol
to have a similar communication complexity. While we did
not manage to use only three messages in all scenarios, our
protocol achieves authentication in less than four messages.

b) Cryptographic primitives: We recall that all crypto-
graphic primitives are computed in the USIM, where they
are implemented in hardware. It follows that using more
primitives in the UE would make the USIM more voluminous
and expensive. Hence we restrict AKA+ to the cryptographic
primitives used in 5G-AKA: we use only symmetric keyed
one-way functions and asymmetric encryption. Notice that
the USIM cannot do asymmetric decryption. As in 5G-AKA,
we use some in-expensive functions, e.g. xor, pairs, by-one
increments and boolean tests. We believe that relying on
the same cryptographic primitives helps ensuring backward
compatibility, and would simplify the protocol deployment.

c) Random Number Generation: In 5G-AKA, the UE
generates at most one nonce per session, which is used to
randomize the asymmetric encryption. Moreover, if the UE
was assigned a GUTI in the previous session then there is no
random number generation. Remark that when the UE and the
HN are de-synchronized, the authentication fails and the UE
sends a re-synchronization message. Since the session fails, no
fresh GUTI is assigned to the UE. Hence, the next session of
the protocol has to conceal the SUPI using {SUPI}ne

pkN
, which

requires a random number generation. Therefore, we constrain
our protocol to use at most one random number generation by
the UE per session, and only if no GUTI has been assigned or
if the UE and the HN have been de-synchronized.

d) Summary: We summarize the constraints for AKA+:
• It must use at most four messages per sessions.
• The UE may use only keyed one-way functions and

asymmetric encryption. The HN may use these functions,
plus asymmetric decryption.

• The UE may generate at most one random number per
session, and only if no GUTI is available, or if re-
synchronization with the HN is necessary.

B. Key Ideas

In this section, we present the two key ideas used in the
design of the AKA+ protocol.

a) Postponed Re-Synchronization Message: We recall
that whenever the UE and the HN are de-synchronized, the au-
thentication fails and the UE sends a re-synchronization mes-
sage. The problem is that this message can be distinguished
from a mac failure message, which allows the attack presented
in Section III-B. Since the session fails, no GUTI is assigned
to the UE, and the next session will use the asymmetric
encryption to conceal the SUPI. The first key idea is to piggy-
back on the randomized encryption of the next session to send
a concealed re-synchronization message. More precisely, we
replace the message {SUPI}ne

pkN
by {〈SUPI , SQNU〉}ne

pkN
. This

has several advantages:
• We can remove the re-synchronization message that lead

to the unlinkability attack presented in Section III-B. In
AKA+, whenever the mac check or the range check fails,
the same failure message is sent.

• This does not require more random number generation
by the UE, since a random number is already being
generated to conceal the SUPI in the next session.



SUPI Sub-Protocol GUTI Sub-Protocol

ASSIGN-GUTI Sub-Protocol

Fig. 5. General Architecture of the AKA+ Protocol

The 3GPP technical specification (see [1], Annex C) requires
that the asymmetric encryption used in the 5G-AKA protocol
is the ECIES encryption scheme, which is an hybrid encryp-
tion scheme. Hybrid encryption schemes use a randomized
asymmetric encryption to conceal a temporary key. This
key is then used to encrypt the message using a symmetric
encryption, which is in-expensive. Hence encrypting the pair
〈SUPI , SQNU〉 is almost as fast as encrypting only SUPI, and
requires the UE to generate the same amount of randomness.

b) HN Challenge Before Identification: To prevent the
Encrypted IMSI Replay Attack of Section III-C, we add a
random challenge n from the HN. The UE initiates the protocol
by requesting a challenge without identifying itself. When
requested, the HN generates and sends a fresh challenge n to
the UE, which includes it in its response by mac-ing it with
the SUPI using a symmetric one-way function Mac1 with key
kID

m . The UE response is now:〈
{〈SUPI , SQNU〉}ne

pkN
, Mac1kID

m
(〈{〈SUPI , SQNU〉}ne

pkN
, n〉)

〉
This challenge is only needed when the encrypted permanent
identity is used. If the UE uses a temporary identity GUTI, then
we do not need to use a random challenge. Indeed, temporary
identities can only be used once before being discarded, and
are therefore not subject to replay attacks. By consequence we
split the protocol in two sub-protocols:
• The SUPI sub-protocol uses a random challenge from the

HN, encrypts the permanent identity and allows to re-
synchronize the UE and the HN.

• The GUTI sub-protocol is initiated by the UE using a
temporary identity.

In the SUPI sub-protocol, the UE’s answer includes the chal-
lenge. We use this to save one message: the last confirmation
step from the UE is not needed, and is removed. The resulting
sub-protocol has four messages. Observe that the GUTI sub-
protocol is faster, since it uses only three messages.

C. Architecture and States

Instead of a monolithic protocol, we have three sub-
protocols: the SUPI and GUTI sub-protocols, which handle
authentication; and the ASSIGN-GUTI sub-protocol, which is
run after authentication has been achieved and assigns a
fresh temporary identity to the UE. A full session of the
AKA+ protocol comprises a session of the SUPI or GUTI sub-
protocols, followed by a session of the ASSIGN-GUTI sub-
protocol. This is graphically depicted in Fig. 5.

Since the GUTI sub-protocol uses only three messages and
does not require the UE to generate a random number or

compute an asymmetric encryption, it is faster than the SUPI
sub-protocol. By consequence, the UE should always use the
GUTI sub-protocol if it has a temporary identity available.

The HN runs concurrently an arbitrary number of sessions,
but a subscriber cannot run more than one session at the
same time. Of course, sessions from different subscribers may
be concurrently running. We associate a unique integer, the
session number, to every session, and we use HN(j) and
UEID(j) to refer to the j-th session of, respectively, the HN
and the UE with identity ID.

a) One-Way Functions: We separate functions that are
used only for confidentiality from functions that are also used
for integrity. We have two confidentiality functions f and f r,
which use the key k, and five integrity functions Mac1– Mac5,
which use the key km. We require that f and f r (resp. Mac1–
Mac5) satisfy jointly the PRF assumption.

This is a new assumption, which requires that these func-
tions are simultaneously computationally indistinguishable
from random functions.

Definition 1 (Jointly PRF Functions). Let H1(·, ·), . . . ,Hn(·, ·)
be a finite family of keyed hash functions from {0, 1}∗×{0, 1}η
to {0, 1}η . The functions H1, . . . ,Hn are Jointly Pseudo
Random Functions if, for any PPTM adversary A with access
to oracles Of1 , . . . ,Ofn :

|Pr(k : AOH1(·,k),...,OHn(·,k)(1η) = 1)−
Pr(g1, . . . , gn : AOg1(·),...,Ogn(·)(1η) = 1)|

is negligible, where:
• k is drawn uniformly in {0, 1}η .
• g1, . . . , gn are drawn uniformly in the set of all functions

from {0, 1}∗ to {0, 1}η .

Observe that if H1, . . . ,Hn are jointly PRF then, in partic-
ular, every individual Hi is a PRF.
Remark 2. While this is a non-usual assumption, it is simple
to build a set of functions H1, . . . ,Hn which are jointly PRF
from a single PRF H . For example, let tag1, . . . , tagn be non-
ambiguous tags, and let Hi(m, k) = H(tagi(m), k). Then,
H1, . . . ,Hn are jointly PRF whenever H is a PRF (see [24]).

b) UE Persistent State: Each UEID with identity ID has
a state stateID

U persistent across sessions. It contains the fol-
lowing immutable values: the permanent identity SUPI = ID,
the confidentiality key kID, the integrity key kID

m and the HN’s
public key pkN. The states also contain mutable values: the
sequence number SQNU, the temporary identity GUTIU and the
boolean valid-gutiU. We have valid-gutiU = false whenever no
valid temporary identity is assigned to the UE. Finally, there
are mutable values that are not persistent across sessions. E.g.
b-authU stores HN’s random challenge, and e-authU stores
HN’s random challenge when the authentication is successful.

c) HN Persistent State: The HN state stateN contains the
secret key skN corresponding to the public key pkN. Also, for
every subscriber with identity ID, it stores the keys kID and
kID

m , the permanent identity SUPI = ID, the HN version of the
sequence number SQNID

N and the temporary identity GUTIID
N . It



UE

stateID
U

HN(j)

stateN

Request_Challenge

nj

Input nR: b-authU ← nR〈
{〈SUPI , SQNU〉}

ne
pkN

, Mac1kID
m
(〈{〈SUPI , SQNU〉}

ne
pkN

, nR〉)
〉

SQNU ← SQNU + 1 Input y:
〈IDR , SQNR〉 ← dec(π1(y), skN)

bID
Mac ← π2(y) = Mac1kID

m
(〈π1(y) , nj〉)

∧ IDR = ID

bID
Inc ← bID

Mac ∧ SQNR ≥ SQNID
N

if bID
Mac then b-authjN, e-authjN ← ID

if bID
Inc then SQNID

N ← SQNR + 1

sessionID
N ← nj

GUTIID
N ← GUTIj

Mac2kID
m
(〈nj , SQNR + 1〉)

bMac

Input z:
bok ← z = Mac2kID

m
(〈b-authU , SQNU〉)

e-authU ← if bok then b-authU else fail

Fig. 6. The SUPI Sub-Protocol of the AKA+ Protocol

stores in sessionID
N the random challenge of the last session

that was either a successful SUPI session which modified
the sequence number, or a GUTI session which authenticated
ID. This is used to detect and prevent some subtle attacks,
which we present later. Finally, every session HN(j) stores in
b-authjN the identity claimed by the UE, and in e-authjN the
identity of the UE it authenticated.

D. The SUPI, GUTI and ASSIGN-GUTI Sub-Protocols

We describe honest executions of the three sub-protocols
of the AKA+ protocol. An honest execution is an execution
where the adversary dutifully forwards the messages without
tampering. Each execution is between a UE and HN(j).

a) The SUPI Sub-Protocol: This protocol uses the UE’s
permanent identity, re-synchronizes the UE and the HN and is
expensive to run. The protocol is sketched in Fig. 6.

The UE initiates the protocol by requesting a challenge
from the network. When asked, HN(j) sends a fresh random
challenge nj . After receiving nj , the UE stores it in b-authU,
and answers with the encryption of its permanent identity
together with the current value of its sequence number, using
the HN public key pkN. It also includes the mac of this
encryption and of the challenge, which yields the message:〈
{〈SUPI , SQNU〉}ne

pkN
, Mac1kID

m
(〈{〈SUPI , SQNU〉}ne

pkN
, nj〉)

〉

Then the UE increments its sequence number by one. When
it gets this message, the HN retrieves the pair 〈SUPI , SQNU〉
by decrypting the encryption using its secret key skN. For
every identity ID, it checks if SUPI = ID and if the mac is
correct. If this is the case, HN authenticated ID, and it stores
ID in b-authjN and e-authjN. After having authenticated ID,
HN checks whether the sequence number SQNU it received is
greater than or equal to SQNID

N . If this holds, it sets SQNID
N to

SQNU +1, stores nj in sessionID
N , generates a fresh temporary

identity GUTIj and stores it into GUTIID
N . This additional check

ensures that the HN sequence number is always increasing,
which is a crucial property of the protocol.

If the HN authenticated ID, it sends a confirmation message
Mac2kID

m
(〈nj , SQNU +1〉) to the UE. This message is sent even

if the received sequence number SQNU is smaller than SQNID
N .

When receiving the confirmation message, if the mac is valid
then the UE authenticated the HN, and it stores in e-authU

the initial random challenge (which it keeps in b-authU). If
the mac test fails, it stores in e-authU the special value fail.

b) The GUTI Sub-Protocol: This protocol uses the UE’s
temporary identity, requires synchronization to succeed and is
inexpensive. The protocol is sketched in Fig. 7.

When valid-gutiU is true, the UE can initiate the protocol
by sending its temporary identity GUTIU. The UE then sets
valid-gutiU to false to guarantee that this temporary identity
is not used again. When receiving a temporary identity x, HN
looks if there is an ID such that GUTIID

N is equal to x and is
not UnSet. If the temporary identity belongs to ID, it sets
GUTIID

N to UnSet and stores ID in b-authjN. Then it generates
a random challenge nj , stores it in sessionID

N , and sends it to
the UE, together with the xor of the sequence number SQNID

N

with fkID(nj), and a mac:〈
nj , SQNID

N ⊕ fkID(nj) , Mac3kID
m
(〈nj , SQNID

N , GUTIID
N 〉)
〉

When it receives this message, the UE retrieves the challenge
nj at the beginning of the message, computes fkID(nj) and uses
this value to unconceal the sequence number SQNID

N . It then
computes Mac3kID

m
(〈nj , SQNID

N , GUTIU〉) and compares it to the
mac received from the network. If the macs are not equal, or
if the range check range(SQNU, SQNID

N ) fails, it puts fail into
b-authU and e-authU to record that the authentication was
not successful. If both tests succeed, it stores in b-authU and
e-authU the random challenge, increments SQNU by one and
sends the confirmation message Mac4kID

m
(nj). When receiving

this message, the HN verifies that the mac is correct. If this is
the case then the HN authenticated the UE, and stores ID into
e-authID

N . Then, HN checks whether sessionID
N is still equal

to the challenge nj stored in it at the beginning of the session.
If this is true, the HN increments SQNID

N by one, generates a
fresh temporary identity GUTIj and stores it into GUTIID

N .
c) The ASSIGN-GUTI Sub-Protocol: The ASSIGN-GUTI

sub-protocol is run after a successful authentication, regardless
of the authentication sub-protocol used. It assigns a fresh
temporary identity to the UE to allow the next AKA+ session
to run the faster GUTI sub-protocol. It is depicted in Fig. 8.



UE

stateID
U

HN(j)

stateN

GUTIU

valid-gutiU

valid-gutiU ← false Input x:
bID ← GUTIID

N = x ∧ GUTIID
N 6= UnSet

if bID then GUTIID
N ← UnSet

b-authjN ← ID

sessionID
N ← nj

〈
nj , SQNID

N ⊕ fkID (nj) , Mac3kID
m
(〈nj , SQNID

N , GUTIID
N 〉)
〉 bID

Input y:
nR, SQNR ← π1(y), π2(y)⊕ fkID (nR)

bacc ← π3(y) = Mac3kID
m
(〈nR , SQNR , GUTIU〉))

∧ range(SQNU, SQNR)

if bacc then b-authU, e-authU ← nR
SQNU ← SQNU + 1

if ¬bacc then b-authU, e-authU ← fail

Mac4kID
m
(nR)

bacc

Input z:

bID
Mac ← (b-authjN = ID) ∧ (z = Mac4kID

m
(nj))

bID
Inc ← bID

Mac ∧ sessionID
N = nj

if bID
Mac then e-authjN ← ID

if bID
Inc then SQNID

N ← SQNID
N + 1

GUTIID
N ← GUTIj

Fig. 7. The GUTI Sub-Protocol of the AKA+ Protocol

The HN conceals the temporary identity GUTIj generated
by the authentication sub-protocol by xoring it with f r

kID(nj),
and macs it. When receiving this message, UE unconceals the
temporary identity GUTIID

N by xoring its first component with
f r
kID

m
(e-authU) (since e-authU contains the HN’s challenge after

authentication). Then UE checks that the mac is correct and
that the authentication was successful. If it is the case, it stores
GUTIID

N in GUTIU and sets valid-gutiU to true.

V. UNLINKABILITY

We now define the unlinkability property we use, which is
inspired from [22] and Vaudenay’s privacy [23].

a) Definition: The property is defined by a game in
which an adversary tries to link together some subscriber’s ses-
sions. The adversary is a PPTM which interacts, through ora-
cles, with N different subscribers with identities ID1, . . . , IDN ,
and with the HN. The adversary cannot use a subscriber’s
permanent identity to refer to it, as it may not know it. Instead,
we associate a virtual handler vh to any subscriber currently

UE

stateID
U

HN(j)

stateN

〈GUTIj ⊕ f r
kID (nj) , Mac5kID

m
(
〈

GUTIj , nj
〉
)〉

e-authID
N = ID

Input x:
GUTIR ← π1(x)⊕ f r

kID
m
(e-authU)

bacc ←
(
π2(x) = Mac5kID

m
(〈GUTIR , e-authU〉)

)
∧ (e-authU 6= fail)

GUTIU ← if bacc then GUTIR else UnSet
valid-gutiU ← bacc

Fig. 8. The ASSIGN-GUTI Sub-Protocol of the AKA+ Protocol

running a session of the protocol. We maintain a list lfree of all
subscribers that are ready to start a session. We now describe
the oracles Ob:
• StartSession(): starts a new HN session and returns

its session number j.
• SendHN(m, j) (resp. SendUE(m, vh)): sends the mes-

sage m to HN(j) (resp. the UE associated with vh), and
returns HN(j) (resp. vh) answer.

• ResultHN(j) (resp. ResultUE(vh)): returns true if
HN(j) (resp. the UE associated with vh) has made a
successful authentication.

• DrawUE(IDi0 , IDi1): checks that IDi0 and IDi1 are both
in lfree. If that is the case, returns a new virtual handler
pointing to IDib , depending on an internal secret bit b.
Then, it removes IDi0 and IDi1 from lfree.

• FreeUE(vh): makes the virtual handler vh no longer
valid, and adds back to lfree the two identities that were
removed when the virtual handler was created.

We recall that a function is negligible if and only if it is
asymptotically smaller than the inverse of any polynomial. An
adversary A interacting with Ob is winning the q-unlinkability
game if: A makes less than q calls to the oracles; and it
can guess the value of the internal bit b with a probability
better than 1/2 by a non-negligible margin, i.e. if the following
quantity is non negligible in η:∣∣2×Pr

(
b : AOb(1η) = b

)
− 1
∣∣

Finally, a protocol is q-unlinkable if and only if there are no
winning adversaries against the q-unlinkability game.

b) Corruption: In [22], [23], the adversary is allowed to
corrupt some tags using a Corrupt oracle. Several classes of
adversary are defined by restricting its access to the corruption
oracle. A strong adversary has unrestricted access, a destruc-
tive adversary can no longer use a tag after corrupting it (it is
destroyed), a forward adversary can only follow a Corrupt
call by further Corrupt calls, and finally a weak adversary
cannot use Corrupt at all. A protocol is C unlinkable if no



UEIDA HN
GUTIA

. . .

. . .
/

UEIDX where IDX = IDA or IDB HN

NoGuti
IDX = IDA

GUTIB

IDX = IDB

Fig. 9. Consecutive GUTI Sessions of AKA+ Are Not Unlinkable.

adversary in C can win the unlinkability game. Clearly, we
have the following relations:

strong ⇒ destructive ⇒ forward ⇒ weak

The 5G-AKA protocol does not provide forward secrecy:
indeed, obtaining the long-term secret of a UE allows to
decrypt all its past messages. By consequence, the best we can
hope for is weak unlinkability. Since such adversaries cannot
call Corrupt, we removed the oracle from our definition.

c) Wide Adversary: Note that the adversary knows if
the protocol was successful or not using the ResultUE
and ResultHN oracles (such an adversary is called wide in
Vaudenay’s terminology [23]). Indeed, in an authenticated key
agreement protocol, this information is always available to the
adversary: if the key exchange succeeds then it is followed by
another protocol using the newly established key; while if it
fails then either a new key-exchange session is initiated, or
no message is sent. Hence the adversary knows if the key
exchange was successful by passive monitoring.

A. σ-Unlinkability

In accord with our conjecture in Section III-E, the AKA+

protocol is not unlinkable. Indeed, an adversary A can
easily win the linkability game. First, A ensures that IDA
and IDB have a valid temporary identity assigned: A calls
DrawUE(IDA, IDA) to obtain a virtual handler for IDA, and
runs a SUPI and ASSIGN-GUTI sessions between IDA and the
HN with no interruptions. This assigns a temporary identity to
IDA. We use the same procedure for IDB.

Then, A executes the attack described in Fig. 9. It starts
a GUTI session with IDA, and intercepts the last message. At
that point, IDA no longer has a temporary identity, while IDB
still does. Then, it calls DrawUE(IDA, IDB), which returns a
virtual handler vh to IDA or IDB. The attacker then start a
new GUTI session with vh. If vh is a handler for IDA, the
UE returns NoGuti. If vh aliases IDB, the UE returns the
temporary identity GUTIA. The adversary A can distinguish
between these two cases, and therefore wins the game.

A

A

B

B

A

A

B

C

B

C

B

C

∼

Fig. 10. Two indistinguishable executions. Square (resp. round) nodes are
executions of the SUPI (resp. GUTI) sub-protocol. Each time the SUPI sub-
protocol is used, we can change the subscriber’s identity.

a) σ-unlinkability: To prevent this, we want to forbid
DrawUE to be called on de-synchronized subscribers. We do
this by modifying the state of the user chosen by DrawUE.
We let σ be an update on the state of the subscribers. We
then define the oracle DrawUEσ(IDi0 , IDi1): it checks that
IDA and IDB are both free, then applies the update σ to
IDib ’s state, and returns a new virtual handler pointing to
IDib . The (q, σ)-unlinkability game is the q-unlinkability game
in which we replace DrawUE with DrawUEσ . A protocol is
(q, σ)-unlinkable if and only if there is no winning adversary
against the (q, σ)-unlinkability game. Finally, a protocol is σ-
unlinkable if it is (q, σ)-unlinkable for any q.

b) Application to AKA+: The privacy guarantees given
by the σ-unlinkability depend on the choice of σ. The idea is
to choose a σ that allows to establish privacy in some scenarios
of the standard unlinkability game3.

We illustrate this on the AKA+ protocol. Let σul =
valid-gutiU 7→ false be the function that makes the UE’s
temporary identity not valid. This simulates the fact that the
GUTI has been used and is no longer available. If the UE’s
temporary identity is not valid, then it can only run the SUPI
sub-protocol. Hence, if the AKA+ protocol is σul-unlinkable,
then no adversary can distinguish between a normal execution
and an execution where we change the identity of a subscriber
each time it runs the SUPI sub-protocol. We give in Fig. 10 an
example of such a scenario. We now state our main result:

Theorem 1. The AKA+ protocol is σul-unlinkable for an
arbitrary number of agents and sessions when the asymmetric
encryption {_}_

_ is IND-CCA1 secure and f and f r (resp. Mac1–
Mac5) satisfy jointly the PRF assumption.

This result is shown later in the paper. Still, the intuition
is that no adversary can distinguish between two sessions
of the SUPI protocol. Moreover, the SUPI protocol has two
important properties. First, it re-synchronizes the user with
the HN, which prevents the attacker from using any prior de-
synchronization. Second, the AKA+ protocol is designed in
such a way that no message sent by the UE before a successful
SUPI session can modify the HN’s state after the SUPI session.
Therefore, any time the SUPI protocol is run, we get a “clean
slate” and we can change the subscriber’s identity. Note that
we have a trade-off between efficiency and privacy: the SUPI
protocol is more expensive to run, but provides more privacy.

3Remark that when σ is the empty state update, the σ-unlinkability and
unlinkability properties coincide.



UEIDA HN
GUTI

. . .

tauth
/

UEIDA or UEIDB
HN

SUPI Session

/
tauth

GUTI Session

Fig. 11. A Subtle Attack Against The AKA+
no-inc Protocol

B. A Subtle Attack

We now explain what is the role of sessionID
N , and how it

prevents a subtle attack against the σul-unlinkability of AKA+.
We let AKA+

no-inc be the AKA+ protocol where we modify the
GUTI sub-protocol we described in Fig. 7: in the state update
of the HN’s last input, we remove the check sessionID

N = nj

(i.e. bID
Inc = bID

Mac). The attack is described in Fig. 11.
First, we run a session of the GUTI sub-protocol between

UEIDA and the HN, but we do not forward the last message tauth
to the HN. We then call DrawUEσul(IDA, IDB), which returns
a virtual handler vh to IDA or IDB. We run a full session using
the SUPI sub-protocol with vh, and then send the message
tauth to the HN. We can check that, because we removed the
condition sessionID

N = nj from bID
Inc, this message causes the

HN to increment SQNIDA
N by one. At that point, UEIDA is de-

synchronized but UEIDB is synchronized. Finally, we run a
session of the GUTI sub-protocol. The session has two possible
outcomes: if vh aliases to A then it fails, while if vh aliases
to B, it succeeds. This leads to an attack.

When we removed the condition sessionID
N = nj , we broke

the “clean slate” property of the SUPI sub-protocol: we can
use a message from a session that started before the SUPI
session to modify the state after the SUPI session. sessionID

N

allows to detect whether another session has been executed
since the current session started, and to prevent the update of
the sequence number when this is the case.

VI. MODELING IN THE BANA-COMON LOGIC

We prove Theorem 1 using the Bana-Comon model intro-
duced in [18]. This is a first order logic, in which protocol
messages are represented by terms using special function
symbols for the adversary’s inputs. It has only one predicate,
∼, which represents computational indistinguishability. To use
this model, we first build a set of axioms Ax specifying
what the adversary cannot do. This set of axiom comprises
computationally valid properties, cryptographic hypotheses
and implementation assumptions. Then, given a protocol and
a security property, we compute a formula φ expressing the
protocol security. Finally, we show that the security property

φ can be deduced from the axioms Ax. If this is the case, this
entails computational security.

A. Syntax and Semantics

We quickly recall the syntax and semantics of the logic.
a) Terms: Terms are built using function symbols in F ,

names in N (representing random samplings) and variables
in X . The set F of function symbols contains a countable
set of adversarial function symbols G, which represent the
adversary inputs, and protocol function symbols. The protocol
function symbols are the functions used in the protocol, e.g.
the pair 〈_ , _〉, the i-th projection πi, encryption {_}_

_, decryp-
tion dec(_, _), if_then_else_, true, false, equality eq(_, _),
integer greater or equal geq(_, _) and length len(_).

b) Formulas: For every integer n, we have one predicate
symbol ∼n of arity 2n, which represents equivalence between
two vectors of terms of length n. We use an infix notation for
∼n, and omit n when not relevant. Formulas are built using
the usual Boolean connectives and first-order quantifiers.

c) Semantics: We use the classical semantics of first-
order logic. Given an interpretation domain, we interpret
terms, function symbols and predicates as, respectively, ele-
ments, functions and relations of this domain.

We focus on a particular class of models, called the compu-
tational models (see [18] for a formal definition). In a compu-
tational modelMc, terms are interpreted in the set of PPTMs
equipped with a working tape and two random tapes ρ1, ρ2.
The tape ρ1 is used for the protocol random values, while ρ2
is for the adversary’s random samplings. The adversary cannot
access directly the random tape ρ1, although it may obtain part
of ρ1 through the protocol messages. A key feature is to let the
interpretation of an adversarial function g be any PPTM, which
soundly models an attacker arbitrary probabilistic polynomial
time computation. Moreover, the predicates ∼n are interpreted
using computational indistinguishability ≈. Two families of
distributions of bit-string sequences (mη)η and (m′η)η , in-
dexed by η, are indistinguishable iff for every PPTM A with
random tape ρ2, the following quantity is negligible in η:

∣∣Pr(ρ1, ρ2 : A(mη(ρ1, ρ2), ρ2) = 1) −
Pr(ρ1, ρ2 : A(m′η(ρ1, ρ2), ρ2) = 1)

∣∣
B. Modeling of the AKA+ Protocol States and Messages

We now use the Bana-Comon logic to model the σul-
unlinkability of the AKA+ protocol. We consider a setting with
N identities ID1, . . . , IDN , and we let Sid be the set of all
identities. To improve readability, protocol descriptions often
omit some details. For example, in Section IV we sometimes
omitted the description of the error messages. The failure
message attack of [4] demonstrates that such details may be
crucial for security. An advantage of the Bana-Comon model
is that it requires us to fully formalize the protocol, and to
make all assumptions explicit.



a) Symbolic State: For every identity ID ∈ Sid, we
use several variables to represent UEID’s state. E.g., SQNID

U

and GUTIID
U store, respectively, UEID’s sequence number and

temporary identity. Similarly, we have variables for HN’s state,
e.g. SQNID

N . We let Svar be the set of variables used in AKA+:⋃
j∈N,A∈{U,N}

ID∈Sid

{
SQNID

A , GUTIID
A , e-authID

U , b-authID
U , e-authjN

b-authjN, s-valid-gutiID
U , valid-gutiID

U , sessionID
N

}

A symbolic state σ is a mapping from Svar to terms. Intuitively,
σ(x) is a term representing (the distribution of) the value of x.
Example 1. To avoid confusion with the semantic equality =,
we use ≡ to denote syntactic equality. Then, we can express
the fact that GUTIID

U is unset in a symbolic state σ by having
σ(GUTIID

U ) ≡ UnSet. Also, given a state σ, we can state that σ′

is the state σ in which we incremented SQNID
U by having σ′(x)

be the term σ(SQNID
U ) + 1 if x is SQNID

U , and σ(x) otherwise.
b) Symbolic Traces: We explain how to express (q, σul)-

unlinkability in the BC model. In the (q, σul)-unlinkability
game, the adversary chooses dynamically which oracle it
wants to call. This is not convenient to use in proofs, as we do
not know statically the i-th action of the adversary. We prefer
an alternative point-of-view, in which the trace of oracle calls
is fixed (w.l.o.g., as shown later in Proposition 1). Then, there
are no winning adversaries against the σul-unlinkability game
with a fixed trace of oracle calls if the adversary’s interactions
with the oracles when b = 0 are indistinguishable from the
interactions with the oracles when b = 1.

We use the following action identifiers to represent symbolic
calls to the oracle of the (q, σul)-unlinkability game:
• NSID(j) represents a call to DrawUEσul(ID, _) when b = 0

or DrawUEσul(_, ID) when b = 1.
• PUID(j, i) (resp. TUID(j, i)) is the i-th user message in the

session UEID(j) of the SUPI (resp. GUTI) sub-protocol.
• FUID(j) is the only user message in the session UEID(j)

of the ASSIGN-GUTI sub-protocol.
• PN(j, i) (resp. TN(j, i)) is the i-th network message in

the session HN(j) of the SUPI (resp. GUTI) sub-protocol.
• FN(j) is the only network message in the session HN(j)

of the ASSIGN-GUTI sub-protocol.
The remaining oracle calls either have no outputs and do not
modify the state (e.g. StartSession), or can be simulated
using the oracles above. E.g., since the HN sends an error
message whenever the protocol is not successful, the output
of ResultHN can be deduced from the protocol messages.

A symbolic trace τ is a finite sequence of action identifiers.
We associate, to any execution of the (q, σul)-unlinkability
game with a fixed trace of oracle calls, a pair of symbolic
traces (τl, τr), which corresponds to the adversary’s interac-
tions with the oracles when b is, respectively, 0 and 1. We let
Rul be the set of such pairs of traces.
Example 2. We give the symbolic traces corresponding to the
honest execution of AKA+ between UEID(i) and HN(j). If the
SUPI protocol is used, we have the trace τ i,jSUPI(ID):

PUID(i, 0), PN(j, 0), PUID(i, 1), PN(j, 1), PUID(i, 2), FN(j), FUID(i)

And if the GUTI sub-protocol is used, the trace τ i,jGUTI(ID):

TUID(i, 0), TN(j, 0), TUID(i, 1), TN(j, 1), FN(j), FUID(i)

Which such notations, the left trace τl of the attack described
in Fig. 11, in which the adversary only interacts with A, is:

TUA(0, 0), TN(0, 0), TUA(0, 1), τ
1,1
SUPI(A), TN(0, 1), τ2,2GUTI(A)

Similarly, we can give the right trace τr in which the adversary
interacts with A and B:

TUA(0, 0), TN(0, 0), TUA(0, 1), τ
0,1
SUPI(B), TN(0, 1), τ1,2GUTI(B)

c) Symbolic Messages: We define, for every action iden-
tifier ai, the term representing the output observed by the
adversary when ai is executed. Since the protocol is stateful,
this term is a function of the prefix trace of actions executed
since the beginning. We define by mutual induction, for any
symbolic trace τ = τ0,ai whose last action is ai:
• The term tτ representing the last message observed

during the execution of τ .
• The symbolic state στ representing the state after the

execution of τ .
• The frame φτ representing the sequence of all messages

observed during the execution of τ .
Some syntactic sugar: we let σin

τ = στ0 be the symbolic state
before the execution of the last action; and φin

τ = φτ0 be the
sequence of all messages observed during the execution of τ ,
except for the last message.

The frame φτ is simply the frame φin
τ extended with tτ , i.e.

φτ ≡ φin
τ , tτ . Moreover the initial frame contains only pkN,

i.e. φε ≡ pkN. When executing an action ai, only a subset of
the symbolic state is modified. For example, if the adversary
interacts with UEID then the state of the HN and of all the
other users is unchanged. Therefore instead of defining στ ,
we define the symbolic state update σup

τ , which is a partial
function from Svar to terms. Then στ is the function:

στ (x) ≡

{
σin
τ (x) if x 6∈ dom(σup

τ )

σup
τ (x) if x ∈ dom(σup

τ )

where dom gives the domain of a function. Now, for every
action ai, we define tτ and σup

τ using φin
τ and σin

τ . As an
example, we describe the second message and state update
of the session UEID(j) for the SUPI sub-protocol, which
corresponds to the action PUID(j, 1). We recall the relevant
part of Fig. 6:

UE

Input nR: b-authU ← nR〈
{〈ID , SQNU〉}

ne
pkN

, Mac1km
(〈{〈ID , SQNU〉}

ne
pkN

, nR〉)
〉

SQNU ← SQNU + 1

First, we need a term representing the value inputted by UEID

from the network. As we have an active adversary, this value
can be anything that the adversary can compute using the



knowledge it accumulated since the beginning of the protocol.
The knowledge of the adversary, or the frame, is the sequence
of all messages observed during the execution of τ , except for
the last message. This is exactly φin

τ . Finally, we use a special
function symbol g ∈ G to represent the arbitrary polynomial
time computation done by the adversary. This yields the term
g(φin

τ ), which symbolically represents the input.
We now need to build a term representing the asymmetric

encryption of the pair containing the UE’s permanent identity
ID and its sequence number. The permanent identity ID is
simply represented using a constant function symbol ID (we
omit the parenthesis ()). UEID’s sequence number is stored in
the variable SQNID

U . To retrieve its value, we just do a look-up
in the symbolic state σin

τ , which yields σin
τ (SQNID

U ). Finally, we
use the asymmetric encryption function symbol to build the
term tenc

τ ≡ {〈ID , σin
τ (SQNID

U )〉}nj
e

pkN
. Notice that the encryption

is randomized using a nonce nje, and that the freshness of
the randomness is guaranteed by indexing the nonce with the
session number j. Finally, we can give tτ and σup

τ :

tτ ≡
〈
tenc
τ , Mac1

kID
m
(〈tenc

τ , g(φin
τ )〉)

〉
σup
τ ≡

 SQNID
U 7→ suc(σin

τ (SQNID
U )) e-authID

U 7→ fail
b-authID

U 7→ g(φin
τ ) GUTIID

U 7→ UnSet
valid-gutiID

U 7→ false

Remark that we omitted some state updates in the description
of the protocol in Fig. 6. For example, UEID temporary identity
GUTIID

U is reset when starting the SUPI sub-protocol. In the BC
model, these details are made explicit.

The description of tτ and σup
τ for the other actions can

be found in Fig. 12 and Fig. 13. Observe that we describe
one more message for the SUPI and GUTI protocols than in
Section IV . This is because we add one message (PUID(j, 2)
for SUPI and TN(j, 1) for GUTI) for proof purposes, to simulate
the ResultUE and ResultHN oracles. Also, notice that
in the GUTI protocol, when HN receives a GUTI that is not
assigned to anybody, it sends a decoy message to a special
dummy identity IDdum.

The following soundness theorem states that security in the
BC model implies computationally security:

Proposition 1. The AKA+ protocol is σul-unlinkable in any
computational model satisfying the axioms Ax if, for every
(τl, τr) ∈ Rul, we can derive φτl ∼ φτr using Ax.

The proof of this result is basically the proof that Fixed
Trace Privacy implies Bounded Session Privacy in [27]. We
omit the details.

C. Axioms

Using Proposition 1, we know that to prove Theorem 1 we
need to derive φτl ∼ φτr , for every (τl, τr) ∈ Rul, using a
set of inference rules Ax. Moreover, we need the axioms Ax
to be valid in any computational model where the asymmetric
encryption {_}_

_ is IND-CCA1 secure and f and f r (resp. Mac1–
Mac5) satisfy jointly the PRF assumption.

Remark that the AKA+ protocol described in Section IV
is under-specified. E.g., we never specified how the 〈_ , _〉
function should be implemented. Instead of giving a complex

Case ai = PUID(j, 0). tτ ≡ Request_Challenge

Case ai = PN(j, 0). tτ ≡ nj

Case ai = PUID(j, 1). Let tenc
τ ≡ {〈ID , σin

τ (SQNID
U )〉}nje

pkN
, then:

tτ ≡
〈
tenc
τ , Mac1kID

m
(〈tenc
τ , g(φin

τ )〉)
〉

σup
τ ≡

 SQNID
U 7→ suc(σin

τ (SQNID
U )) e-authID

U 7→ fail
b-authID

U 7→ g(φin
τ ) GUTIID

U 7→ UnSet
valid-gutiID

U 7→ false

Case ai = PN(j, 1). Let tdec ≡ dec(π1(g(φin
τ )), skN), and let:

acceptIDi
τ ≡ eq(π2(g(φin

τ )),Mac1
kIDi

m
(〈π1(g(φin

τ )) , nj〉))

∧ eq(π1(tdec), IDi)

inc-acceptIDi
τ ≡ acceptIDi

τ ∧ geq(π2(tdec), σ
in
τ (SQN

IDi
N ))

tτ ≡ if acceptID1
τ then Mac2

kID1
m

(〈nj , suc(π2(tdec))〉)

else if acceptID2
τ then Mac2

kID2
m

(〈nj , suc(π2(tdec))〉)
· · ·

else UnknownId

σup
τ ≡



sessionIDi
N 7→ if inc-acceptIDi

τ then nj else σin
τ (sessionIDi

N )

GUTI
IDi
N 7→ if inc-acceptID

τ then GUTIj else σin
τ (GUTI

IDi
N )

SQN
IDi
N 7→ if inc-acceptIDi

τ then suc(π2(tdec)) else σin
τ (SQN

IDi
N )

b-authjN, e-authjN 7→ if acceptID1
τ then ID1

else if acceptID2
τ then ID2

· · ·
else UnknownId

Case ai = PUID(j, 2).

acceptID
τ ≡ eq(g(φin

τ ),Mac2kID
m
(〈σin

τ (b-authID
U ) , σin

τ (SQNID
U )〉))

tτ ≡ if acceptID
τ then ok else error

σup
τ ≡ e-authID

U 7→ if acceptID
τ then σin

τ (b-authID
U ) else fail

Fig. 12. The Symbolic Terms and State Updates for the SUPI Sub-Protocol.

specification of the protocol, we are going to put requirements
on AKA+ implementations through the set of axioms Ax. Then,
if we can derive φτl ∼ φτr using Ax for every (τl, τr) ∈
Rul, we know that any implementation of AKA+ satisfying
the axioms Ax is secure.

Our axioms are of two kinds. First, we have structural ax-
ioms, which are properties that are valid in any computational
model. For example, we have axioms stating that ∼ is an
equivalence relation. Second, we have implementation axioms,
which reflect implementation assumptions on the protocol
functions. For example, we can declare that different identity
symbols are never equal by having an axiom eq(ID1, ID2) ∼
false for every ID1 6≡ ID2. For space reasons, we only describe
a few of them here (the full set of axioms Ax is given in [24]).

a) Equality Axioms: If eq(s, t) ∼ true holds in any
computational model then we know that the interpretations
of s and t are always equal except for a negligible number
of samplings. Let s .

= t be a shorthand for eq(s, t) ∼ true.
We use .

= to specify functional correctness properties of the
protocol function symbols. For example, the following rules
state that the i-th projection of a pair is the i-th element of
the pair, and that the decryption with the correct key of a



Case ai = NSID(j). σ
up
τ ≡ valid-gutiID

U 7→ false
Case ai = TUID(j, 0).

tτ ≡ if σin
τ (valid-gutiID

U ) then σin
τ (GUTIID

U ) else NoGuti

σup
τ ≡

{
valid-gutiID

U 7→ false e-authID
U 7→ fail

s-valid-gutiID
U 7→ σin

τ (valid-gutiID
U ) b-authID

U 7→ fail

Case ai = TN(j, 0). Let tIDi
⊕ ≡ σin

τ (SQN
IDi
N )⊕ fkIDi (nj), then:

msgIDi
τ ≡ 〈nj , tIDi

⊕ , Mac3
kIDi

m
(〈nj , σin

τ (SQN
IDi
N ) , σin

τ (GUTI
IDi
N )〉)〉

acceptIDi
τ ≡ eq(σin

τ (GUTI
IDi
N ), g(φin

τ )) ∧ ¬eq(σin
τ (GUTI

IDi
N ),UnSet)

tτ ≡ if acceptID1
τ then msgID1

τ

else if acceptID2
τ then msgID2

τ
· · ·

else msgIDdum
τ

σup
τ ≡



GUTI
IDi
N 7→ if acceptIDi

τ then UnSet else σin
τ (GUTI

IDi
N )

sessionIDi
N 7→ if acceptIDi

τ then nj else σin
τ (sessionIDi

N )

b-authjN 7→ if acceptID1
τ then ID1

else if acceptID2
τ then ID2

· · ·
else UnknownId

Case ai = TUID(j, 1). Let tSQN ≡ π2(g(φin
τ ))⊕ fkID (π1(g(φin

τ ))), then:

acceptID
τ ≡ eq(π3(g(φin

τ )),Mac3kID
m
(〈π1(g(φin

τ )) , tSQN , σ
in
τ (GUTIID

U )〉))

∧ σin
τ (s-valid-gutiID

U ) ∧ range(σin
τ (SQNID

U ), tSQN)

tτ ≡ if acceptID
τ then Mac4kID

m
(π1(g(φ

in
τ ))) else error

σup
τ ≡

{
b-authID

U , e-authID
U 7→ if acceptID

τ then π1(g(φin
τ )) else fail

SQNID
U 7→ if acceptID

τ then suc(σin
τ (SQNID

U )) else σin
τ (SQNID

U )

Case ai = TN(j, 1).

acceptIDi
τ ≡ eq(g(φin

τ ),Mac4
kIDi

m
(nj)) ∧ eq(σin

τ (b-authjN), IDi)

inc-acceptIDi
τ ≡ acceptIDi

τ ∧ eq(σin
τ (sessionIDi

N ), nj)

tτ ≡ if
∨
i acceptIDi

τ then ok else error

σup
τ ≡



SQN
IDi
N 7→ if inc-acceptIDi

τ then suc(σin
τ (SQN

IDi
N ))

else σin
τ (SQN

IDi
N )

GUTI
IDi
N 7→ if inc-acceptIDi

τ then GUTIj else σin
τ (GUTI

IDi
N )

e-authjN 7→ if acceptID1
τ then ID1

else if acceptID2
τ then ID2

· · ·
else UnknownId

Case ai = FN(j).

msgIDi
τ ≡ 〈GUTIj ⊕ f r

kIDi (n
j) , Mac5

kIDi
m

(〈GUTIj , nj〉)〉

tτ ≡ if eq(σin
τ (e-authjN), ID1) then msgID1

τ

else if eq(σin
τ (e-authjN), ID2) then msgID2

τ
· · ·

else UnknownId

Case ai = FUID(j). Let tGUTI ≡ π1(g(φin
τ ))⊕ f r

kID (σin
τ (e-authID

U )), then:

acceptID
τ ≡ eq(π2(g(φin

τ )),Mac5kID
m
(〈tGUTI , σ

in
τ (e-authID

U )〉))

∧ ¬eq(σin
τ (e-authID

U ), fail) ∧ ¬eq(σin
τ (e-authID

U ),⊥)
tτ ≡ if acceptID

τ then ok else error

σup
τ ≡

{
valid-gutiID

U 7→ acceptID
τ

GUTIID
U 7→ if acceptID

τ then tGUTI else UnSet

Fig. 13. The Symbolic Terms and State Updates for NSID(j) and the GUTI
and ASSIGN-GUTI Sub-Protocols.

cipher-text is equal to the message in plain-text:

πi(〈x1 , x2〉)
.
= xi for i ∈ {1, 2} dec({x}zpk(y), sk(y)) .= x

b) Structural Axioms: Structural axioms are axioms
which are valid in any computational model, e.g.:

~u1, ~v1 ∼ ~u2, ~v2
f(~u1), ~v1 ∼ f(~u2), ~v2

FA
~u, t ∼ ~v s

.
= t

~u, s ∼ ~v R

The axiom FA states that to show that two function applica-
tions are indistinguishable, it is sufficient to show that their
arguments are indistinguishable. The axiom R states that if
s
.
= t holds then we can safely replace s by t.

c) Cryptographic Assumptions: We now explain how
cryptographic assumptions are translated into axioms. We
illustrate this on the unforgeability property of the functions
Mac1– Mac5. Recall that UEID uses the same secret key kID

m
for these five functions. Therefore, instead of the standard
PRF assumption, we assume that these functions are jointly
PRF, i.e. Mac1– Mac5 are simultaneously computationally
indistinguishable from random functions.

It is well-known that if H is a PRF then H is unforgeable
against an adversary with oracle access to H(·, km). Similarly,
we can show that if H,H1, . . . ,Hl are jointly PRF, then no
adversary can forge a mac of H(·, km), even if it has oracle
access to H(·, km), H1(·, km), . . . ,Hl(·, km). We translate this
property as follows: let s,m be ground terms where km appears
only in subterms of the form Mac _

km
(_), then for every 1 ≤

j ≤ 5, if S is the set of subterms of s,m of the form Macjkm
(_)

then we have an instance of EUF-MACj :

s = Macjkm
(m)→

∨
u∈S s = Macjkm

(u) (EUF-MACj)

where u = v denotes the term eq(u, v). Basically, if s
is a valid Mac then s must have been honestly generated.
Similarly, we can build a set of axioms reflecting the fact
that some functions are jointly collision-resistant. Indeed, if
H,H1, . . . ,Hl are jointly PRF, then no adversary can build
a collision for H(·, km), even if it has oracle access to
H(·, km), H1(·, km), . . . ,Hl(·, km). This translates as follows:
let m1,m2 be ground terms, if km appears only in subterms
of the form Mac _

km
(_) then we have an instance of CRj :

Macjkm
(m1) = Macjkm

(m2)→ m1 = m2
(CRj)

These axioms are sound (the proof is given in [24]).

Proposition 2. For every 1 ≤ j ≤ 5, the EUF-MACj and
CRj axioms are valid in any computational model where the
(Maci)i functions are interpreted as jointly PRF functions.

VII. SECURITY PROOFS

We now state the authentication and σul-unlinkability lem-
mas. For space reasons, we only sketch the proofs (the full
proofs are given in the technical report [24]).

A. Mutual Authentication of the AKA+ Protocol
Authentication is modeled by a correspondence prop-

erty [28] of the form “in any execution, if event A occurs, then
event B occurred”. This can be translated in the BC logic.



a) Authentication of the User by the Network: AKA+

guarantees authentication of the user by the network if in any
execution, if HN(j) believes it authenticated UEID, then UEID

stated earlier that it had initiated the protocol with HN(j).
We recall that e-authjN stores the identity of the UE authen-

ticated by HN(j), and that UEID stores in b-authID
U the random

challenge it received. Moreover, the session HN(j) is uniquely
identified by its random challenge nj . Therefore, authentica-
tion of the user by the network is modeled by stating that, for
any symbolic trace τ ∈ dom(Rul), if σin

τ (e-authjN) = ID then
there exists some prefix τ ′ of τ such that σin

τ ′(b-authID
U ) = nj .

Let � be the prefix ordering on symbolic traces, then:

Lemma 1. For every τ ∈ dom(Rul), ID ∈ Sid and j ∈ N,
there is derivation using Ax of:

σin
τ (e-authjN) = ID →

∨
τ ′�τ σ

in
τ ′(b-authID

U ) = nj

The key ingredients to show this lemma are necessary
conditions for a message to be accepted by the network.
Basically, a message can be accepted only if it was honestly
generated by a subscriber. These necessary conditions rely on
the unforgeability and collision-resistance of (Macj)1≤j≤5.

b) Necessary Acceptance Conditions: Using the
EUF-MACj and CRj axioms, we can find necessary conditions
for a message to be accepted by a user. We illustrate this on
the HN’s second message in the SUPI sub-protocol. We depict
a part of the execution between session UEID(i) and session
HN(j) below:

UEID(i) HN(j)

PN(j, 0)
nj

PUID(i, 1)

〈
{〈ID , SQNU〉}

nie
pkN

, Mac1km
(〈{〈ID , SQNU〉}

nie
pkN

, nj〉)
〉

PN(j, 1)

We then prove that if a message is accepted by HN(j) as
coming from UEID, then the first component of this message
must have been honestly generated by a session of UEID.
Moreover, we know that this session received the challenge nj .

Lemma 2. Let ID ∈ Sid and τ ∈ dom(Rul) be a trace ending
with PN(j, 1). There is a derivation using Ax of:

acceptID
τ →

∨
τ1=_,PUID(_,1)�τ

(
π1(g(φ

in
τ )) = tenc

τ1 ∧ g(φ
in
τ1) = nj

)
Proof sktech. Let tdec be the term dec(π1(g(φin

τ )), skN). Then
HN(j) accepts the last message iff the following test succeeds:

π2(g(φ
in
τ )) = Mac1kID

m
(〈π1(g(φin

τ )) , nj〉) ∧ π1(tdec) = ID

By applying EUF-MAC1 to the underlined part above, we know
that if the test holds then π2(g(φ

in
τ )) is equal to one of the

honest Mac1kID
m

subterms of π2(g(φin(τ))), which are the terms:(
Mac1kID

m
(〈tenc

τ1 , g(φin
τ1)〉)

)
τ1=_,PUID(_,1)≺τ

(1)(
Mac1kID

m
(〈π1(g(φin

τ1)) , nj1〉)
)
τ1=_,PN(j1,1)≺τ

(2)

Where ≺ is the strict version of �. We know that PN(j, 1)
cannot appear twice in τ . Hence for every τ1 = _, PN(j1, 1) ≺
τ , we know that j1 6= j. Using the fact that two distinct nonces
are never equal except for a negligible number of samplings,
we can derive that eq(nj1 ,nj) = false. Using an axiom stating
that the pair is injective and the CR1 axiom, we can show that
π2(g(φ

in
τ )) cannot by equal to one of the terms in (2).

Finally, for every τ1 = _, PUID(_, 1) ≺ τ , using the CR1 and
the pair injectivity axioms we can derive that:

Mac1kID
m
(〈π1(g(φin

τ )) , nj〉) = Mac1kID
m
(〈tenc

τ1 , g(φin
τ1)〉)

→ π1(g(φ
in
τ )) = tenc

τ1 ∧ nj = g(φin
τ1)

We prove a similar lemma for TN(j, 1). The proof of
Lemma 1 is straightforward using these two properties.

c) Authentication of the Network by the User: The AKA+

protocol also provides authentication of the network by the
user. That is, in any execution, if UEID believes it authenticated
session HN(j) then HN(j) stated that it had initiated the
protocol with UEID. Formally:

Lemma 3. For every τ ∈ dom(Rul), ID ∈ Sid and j ∈ N,
there is derivation using Ax of:

σin
τ (e-authID

U ) = nj →
∨
τ ′�τ σ

in
τ ′(b-authjN) = ID

This is shown using the same techniques than for Lemma 1.

B. σ-Unlinkability of the AKA+ Protocol

Lemma 2 gives a necessary condition for a message to be
accepted by PN(j, 1) as coming from ID. We can actually go
further, and show that a message is accepted by PN(j, 1) as
coming from ID if and only if it was honestly generated by a
session of UEID which received the challenge nj .

Lemma 4. Let ID ∈ Sid and τ ∈ dom(Rul) be a trace ending
with PN(j, 1). There is a derivation using Ax of:

acceptID
τ ↔

∨
τ1=_,PUID(_,1)�τ

(
g(φin

τ ) = tτ1 ∧ g(φin
τ1) = nj

)
We prove similar lemmas for most actions of the AKA+

protocol. Basically, these lemmas state that a message is
accepted if and only if it is part of an honest execution of
the protocol between UEID and HN. This allow us to replace
each acceptance conditional acceptID

τ by a disjunction over all
possible honest partial transcripts of the protocol.

We now state the σul-unlinkability lemma:

Lemma 5. For every (τl, τr) ∈ Rul, there is a derivation using
Ax of the formula φτl ∼ φτr .

The full proof is long and technical. It is shown by induction
over τ . Let (τl, τr) ∈ Rul, we assume by induction that there
is a derivation of φin

τl
∼ φin

τr . We want to build a derivation of
φin
τl
, tτl ∼ φin

τr , tτr using the inference rules in Ax.
First, we rewrite tτl using the acceptance characterization

lemmas such as Lemma 4. This replaces each acceptID
τl

by a
case disjunction over all honest executions on the left side.
Similarly, we rewrite tτr as a case disjunction over honest



executions on the right side. Our goal is then to find a
matching between left and right transcripts such that matched
transcripts are indistinguishable. If a left and right transcript
correspond to the same trace of oracle calls, this is easy.
But since the left and right traces of oracle calls may differ,
this is not always possible. E.g., some left transcript may
not have a corresponding right transcript. When this happens,
we have two possibilities: instead of a one-to-one match we
build a many-to-one match, e.g. matching a left transcript
to several right transcripts; or we show that some transcripts
always result in a failure of the protocol. Showing the latter
is complicated, as it requires to precisely track the possible
values of SQNID

U and SQNID
N across multiple sessions of the

protocol to prove that some transcripts always yield a de-
synchronization between UEID and HN.

VIII. CONCLUSION

We studied the privacy provided by the 5G-AKA authenti-
cation protocol. While this protocol is not vulnerable to IMSI
catchers, we showed that several privacy attacks from the liter-
ature apply to it. We also discovered a novel desynchronization
attack against PRIV-AKA, a modified version of AKA, even
though it had been claimed secure.

We then proposed the AKA+ protocol. This is a fixed version
of 5G-AKA, which is both efficient and has improved privacy
guarantees. To study AKA+’s privacy, we defined the σ-
unlinkability property. This is a new parametric privacy prop-
erty, which requires the prover to establish privacy only for
a subset of the standard unlinkability game scenarios. Finally,
we formally proved that AKA+ provides mutual authentication
and σul-unlinkability for any number of agents and sessions.
Our proof is carried out in the Bana-Comon model, which is
well-suited to the formal analysis of stateful protocols.

ACKNOWLEDGMENT

This research has been partially funded by the French
National Research Agency (ANR) under the project TECAP
(ANR-17-CE39-0004-01).

REFERENCES

[1] TS 33.501: Security architecture and procedures for 5G system, 3GPP
Technical Specification, Rev. 15.2.0, September 2018.

[2] D. Strobel, “IMSI catcher,” Ruhr-Universität Bochum, Seminar Work,
2007.

[3] R. Borgaonkar, L. Hirshi, S. Park, A. Shaik, A. Martin, and
J.-P. Seifert, “New adventures in spying 3G & 4G users:
Locate, track, monitor,” 2017, briefing at BlackHat USA 2017.
[Online]. Available: https://www.blackhat.com/us-17/briefings.html#
new-adventures-in-spying-3g-and-4g-users-locate-track-and-monitor

[4] M. Arapinis, L. I. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon,
and R. Borgaonkar, “New privacy issues in mobile telephony: fix and
verification,” in the ACM Conference on Computer and Communications
Security, CCS’12. ACM, 2012, pp. 205–216.

[5] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan, “Analysing unlinka-
bility and anonymity using the applied pi calculus,” in Proceedings of
the 23rd IEEE Computer Security Foundations Symposium, CSF 2010.
IEEE Computer Society, 2010, pp. 107–121.

[6] P. Fouque, C. Onete, and B. Richard, “Achieving better privacy for the
3gpp AKA protocol,” PoPETs, vol. 2016, no. 4, pp. 255–275, 2016.

[7] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in 2017 IEEE European Symposium on
Security and Privacy, EuroS&P. IEEE, 2017, pp. 435–450.

[8] K. Bhargavan, C. Fournet, and M. Kohlweiss, “mitls: Verifying protocol
implementations against real-world attacks,” IEEE Security & Privacy,
vol. 14, no. 6, pp. 18–25, 2016.

[9] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in ACM Conference
on Computer and Communications Security, CCS’17. ACM, 2017, pp.
1773–1788.

[10] M. Abadi, B. Blanchet, and C. Fournet, “The applied pi calculus: Mobile
values, new names, and secure communication,” J. ACM, vol. 65, no. 1,
pp. 1:1–1:41, 2018.

[11] B. Blanchet, PROVERIF: Cryptographic protocols verifier in the formal
model, available at http://proseccco.gforge..inria.fr/personal/bblanchet/
proverif/.

[12] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: deciding equiv-
alence properties in security protocols theory and practice,” in 2018
IEEE Symposium on Security and Privacy, SP 2018. IEEE, 2018, pp.
529–546.

[13] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover
for the symbolic analysis of security protocols,” in 25th International
Conference on Computer Aided Verification, CAV’13. Springer-Verlag,
2013, pp. 696–701.

[14] V. Cortier, N. Grimm, J. Lallemand, and M. Maffei, “A type system for
privacy properties,” in ACM Conference on Computer and Communica-
tions Security, CCS’17. ACM, 2017, pp. 409–423.

[15] V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs,” IACR Cryptology ePrint Archive, vol. 2004, p. 332, 2004.

[16] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE Trans. Dependable Sec. Comput., vol. 5, no. 4, pp.
193–207, 2008.

[17] G. Bana and H. Comon-Lundh, “Towards unconditional soundness:
Computationally complete symbolic attacker,” in Principles of Security
and Trust, 2012, ser. LNCS, vol. 7215. Springer, 2012, pp. 189–208.

[18] G. Bana and H. Comon-Lundh, “A computationally complete symbolic
attacker for equivalence properties,” in 2014 ACM Conference on
Computer and Communications Security, CCS ’14. ACM, 2014, pp.
609–620.

[19] F. van den Broek, R. Verdult, and J. de Ruiter, “Defeating IMSI catch-
ers,” in ACM Conference on Computer and Communications Security,
CCS’15. ACM, 2015, pp. 340–351.

[20] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovi’c, R. Sasse, and
V. Stettler, “A formal analysis of 5G authentication,” in the ACM
Conference on Computer and Communications Security, CCS’18. ACM,
2018.

[21] M. Lee, N. P. Smart, B. Warinschi, and G. J. Watson, “Anonymity
guarantees of the UMTS/LTE authentication and connection protocol,”
Int. J. Inf. Sec., vol. 13, no. 6, pp. 513–527, 2014.

[22] J. Hermans, A. Pashalidis, F. Vercauteren, and B. Preneel, “A new RFID
privacy model,” in ESORICS, ser. Lecture Notes in Computer Science,
vol. 6879. Springer, 2011, pp. 568–587.

[23] S. Vaudenay, “On privacy models for RFID,” in ASIACRYPT 2007, 13th
International Conference on the Theory and Application of Cryptology
and Information Security, ser. LNCS. Springer, 2007, pp. 68–87.

[24] A. Koutsos, “The 5G-AKA authentication protocol privacy,” CoRR, vol.
abs/1811.06922, 2018.

[25] A. Shaik, J. Seifert, R. Borgaonkar, N. Asokan, and V. Niemi, “Practical
attacks against privacy and availability in 4g/lte mobile communication
systems,” in 23rd Annual Network and Distributed System Security
Symposium, NDSS. The Internet Society, 2016.

[26] L. Hirschi, D. Baelde, and S. Delaune, “A method for verifying privacy-
type properties: The unbounded case,” in IEEE Symposium on Security
and Privacy, SP 2016. IEEE Computer Society, 2016, pp. 564–581.

[27] H. Comon and A. Koutsos, “Formal computational unlinkability proofs
of RFID protocols,” in 30th Computer Security Foundations Symposium,
2017. IEEE Computer Society, 2017, pp. 100–114.

[28] T. Y. C. Woo and S. S. Lam, “A semantic model for authentication
protocols,” in Proceedings 1993 IEEE Computer Society Symposium on
Research in Security and Privacy, May 1993, pp. 178–194.

https://www.blackhat.com/us-17/briefings.html#new-adventures-in-spying-3g-and-4g-users-locate-track-and-monitor
https://www.blackhat.com/us-17/briefings.html#new-adventures-in-spying-3g-and-4g-users-locate-track-and-monitor
http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/
http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/

	Introduction
	The 5g-aka Protocol
	Description of the Protocol

	Unlinkability Attacks Against 5g-aka
	imsi-Catcher Attack
	The Failure Message Attack
	The Encrypted imsi Replay Attack
	Attack Against The priv-aka Protocol
	Sequence Numbers and Unlinkability

	The aka+ Protocol
	Efficiency and Design Constraints
	Key Ideas
	Architecture and States
	The supi, guti and assign-guti Sub-Protocols

	Unlinkability
	sigma-Unlinkability
	A Subtle Attack

	Modeling in The Bana-Comon Logic
	Syntax and Semantics
	Modeling of the aka+ Protocol States and Messages
	Axioms

	Security Proofs
	Mutual Authentication of the aka+ Protocol
	Sigma-Unlinkability of the aka+ Protocol

	Conclusion
	References

