
Process-Centric Views of Data-Driven Business

ArtifactsI

Adrien Koutsos

ENS Cachan, France

Victor Vianu

UC San Diego & INRIA-Saclay

Abstract

Declarative, data-aware workflow models are becoming increasingly pervasive.
While these have numerous benefits, classical process-centric specifications
retain certain advantages. Workflow designers are used to development tools
such as BPMN or UML diagrams, that focus on control flow. Views describing
valid sequences of tasks are also useful to provide stakeholders with high-level
descriptions of the workflow, stripped of the accompanying data. In this paper
we study the problem of recovering process-centric views from declarative,
data-aware workflow specifications in a variant of IBM’s business artifact
model. We focus on the simplest and most natural process-centric views,
specified by finite-state transition systems, and describing regular languages.
The results characterize when process-centric views of artifact systems are
regular, using both linear and branching-time semantics. We also study the
impact of data dependencies on regularity of the views. As a side effect, we
obtain several new results on verification of business artifacts, including a
decidability result for branching-time properties.

Keywords: Workflows, data-aware, process-centric, views

IA preliminary version of this article appeared in the Intl. Conf. on Database Theory
(ICDT) 2015 [28].

Email addresses: adrien.koutsos@ens-cachan.fr (Adrien Koutsos),
vianu@cs.ucsd.edu (Victor Vianu)

Preprint submitted to Elsevier January 12, 2017

1. Introduction

Data-driven workflows have become ubiquitous in a variety of application
domains, including business, government, science, health-care, social networks
[42], crowdsourcing [6, 7], etc. Such workflows resulted from an evolution
away from the traditional process-centric approach towards data-awareness.
A notable exponent of this class is the business artifact model pioneered in [36,
29], deployed by IBM in professional services. Business artifacts (or simply
“artifacts”) model key business-relevant entities, which are updated by a set
of services that implement business process tasks. This modeling approach
has been successfully deployed in practice [4, 3, 9, 15, 44]. In particular, the
Guard-Stage-Milestone (GSM) approach [13, 26] to artifact specification uses
declarative services with pre- and post-conditions, concurrency, and hierarchy.
The OMG standard for Case Management Model and Notation (CMMN) [11],
announced last year, draws key foundational elements from GSM[32].

Declarative, high-level specification tools such as GSM allow to generate
the application code from the high-level specification. This not only allows
fast prototyping and improves programmer productivity but, as a side effect,
provides new opportunities for automatic verification. Indeed, the high-level
specification is a natural target for verification, as it addresses the most
likely source of errors (the application’s specification, as opposed to the less
likely errors in the automatic generator’s implementation). This has spawned
an entire line of research seeking to trace the boundary of decidability of
properties of such systems, expressed in variants of temporal logic (see [19]).

While declarative specifications of workflows have many benefits, they
also come with some drawbacks. Workflow designers are used to traditional
process-centric development tools, such as BPMN (Business Process Model
and Notation), workflow nets, and UML activity diagrams, that focus on
control flow while under-specifying or ignoring the underlying data. Such
process-centric views of workflows are also useful to provide stakeholders with
customized descriptions of the workflow, tailored to their role in the organiza-
tion. For example, an executive may only require a high-level summary of the
business process. Descriptions of the workflows as sequences of tasks stripped
of data are intuitive and often sufficient for many users. Thus, recovering such
specifications for business artifacts in an intuitive, familiar process-centric
language is often desirable. However, although they differ in the specific
contructs, all common process-centric languages are finite-state, and can
only specify regular languages. We are therefore interested in understanding

2

when business artifacts can be faithfully represented by regular languages of
sequences of tasks.

Specifically, in this paper we study views of business artifact runs consisting
of the sequences of services applied in each run1. The views come in two
flavors, depending on whether we are interested in linear runs alone, or in the
more informative branching-time runs. We call these the linear-time, resp.
branching-time (service) views of the artifact system.

Example 1. To illustrate linear-time service views of declarative workflows,
we consider a variant of the running example of [12], specified in Section 2.1.
In the example, the customer can choose a product, a shipment method and
apply a coupon to the order. The order is filled in a sequential manner as
is customary on e-commerce web-sites. After the order is filled, the system
awaits for the customer to submit a payment. If the payment matches the
amount owed, the system proceeds to shipping the product. At any time before
submitting a valid payment, the customer may edit the order (select a different
product) an unbounded number of times. The linear-time service view of
this workflow consists of the sequences of service names that occur in all
infinite runs of the system, and is specified by the finite-state transition system
shown in Figure 1 (we discuss the use of infinite runs in Section 2). A more
informative view, that captures the services applied in branching-time runs
of the system, is shown in Figure 2. Intuitively, the branching-time view
captures precisely which services may be applied at each point in a run. To
understand the difference with linear-time views, consider the states labeled
edit coupon in Figures 1 and 2. In the linear-time view specification, there
is only one such state, in which two actions can be taken: no coupon and
apply coupon. However, the two actions are not always applicable whenever
the state edit coupon is reached. If no product has an applicable coupon, the
only action possible is no coupon. If for all products and shipping method
there is some applicable coupon, then both no coupon and apply coupon
are applicable. Finally, if some products have applicable coupons and others
do not, then both of the above cases may occur depending on the choice of
product. The different cases are captured by distinct states in the branching-
time specification, while the information is lost in the linear-time specification.
Of course, the sequences of service names occurring in all runs of the system
are the same in both specifications.

1In various formalizations of business artifacts, tasks are called services.

3

edit prod

edit ship

edit coupon

processing

received payment

shipping

init

choose product

choose ship

no coupon

receive payment

payment ok

edit coupon apply coupon

edit prod

payment refused

ship

Figure 1: A linear-time process-centric view.

The main results of the paper establish under what circumstances the
linear-time or branching-time service views are regular (with effective specifi-
cations). We consider the tuple artifact model used in [18, 12], and several
natural restrictions derived from the GSM design methodology, some of which
have been considered in the context of verification [12]. We also consider the
impact of database dependencies on regularity of the views. We show that
linear-time service views of tuple artifacts are ω-regular, but branching-time
views are not regular. We then consider artifacts obeying a restriction pre-
viously used in the context of verification, called feedback freedom [12]. We
show that branching-time views of feedback-free artifacts are still not regular,
but become so under a slightly stronger restriction called global feedback
freedom. This restriction is obeyed by natural examples encountered in our
collaboration with IBM, such as those discussed in [12]. It is also satisfied by
a model abstracting core elements of GSM, studied in [20] (see Remark 20).

It turns out that there is a tight connection between the result on view
regularity and the verification of artifact systems. Properties to be verified are
specified using extensions of the classical temporal logics LTL, CTL and CTL*,
in which propositions are interpreted as quantifier-free FO formulas on the
tuple artifact and the underlying database. This yields the logics LTL(QFO),

4

root

edit prod

edit ship

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

edit prod

payment refused

ship

init

edit prod

edit ship

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

edit prod

edit coupon apply coupon

payment refused

ship

init

edit prod

edit ship

edit coupon

processing

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

choose ship

no coupon

receive payment

edit prod edit prod

edit coupon apply coupon

payment refused

ship

init

Figure 2: A branching-time process-centric view.

5

CTL(QFO) and CTL*(QFO) (denoted by LTL-FO, CTL-FO and CTL*-FO
in [18, 12, 21]). It can be shown that regularity of the linear or branching-time
service views for a class of artifact systems, with effectively constructible
specifications, implies decidability of LTL(QFO), resp. CTL*(QFO) properties
for that class. The converse is false: decidability of LTL(QFO) or CTL*(QFO)
properties may hold even though the corresponding service views may not be
regular. Thus, regularity is a stronger result than decidability of verification.
Indeed, our results imply that CTL*(QFO) properties are decidable for
globally feedback-free artifact systems. On the other hand, we show that
CTL(QFO) properties are undecidable for feedback-free artifact systems (also
implying non-regularity of their branching-time views).

The proof techniques developed here have additional side-effects beneficial
to verification. In our previous approaches to automatic verification of
business artifacts [18, 12], given an artifact specification A and an LTL(QFO)
property ϕ, the verifier either certifies satisfaction of the property or produces
a counter-example run on some database D(A, ϕ) depending on both A and
ϕ. In contrast, the techniques of the present paper allow to show that, for
specifications and properties without constants, there exists a single database
D(A), depending only on A, which serves as a universal counter-example for
all LTL(QFO) properties violated by A. Pre-computing such a database may
allow more efficient generation of counter-examples for specific LTL(QFO)
properties.

Decidability results on verification of branching-time properties of infinite-
state artifact systems are scarce and require significant restrictions. In [23, 14],
decidability results are shown for properties expressed in an FO extension of
µ-calculus, under restrictions on the artifact system orthogonal to ours. In [2],
the artifact model is extended to a multi-agent setting, and decidability results
are shown for properties expressed in an FO extension of CTL that can also
refer to each agent’s knowledge using a Kripke-style semantics. Decidability of
similar FO extensions of CTL is shown in [31] for the case when the database
consists of a single unary relation.

The present article is the journal version of the preliminary conference
paper [28]. It contains the full technical development, including all proofs
and an extended example.

6

2. Background

After some basic definitions, we review the tuple artifact model, introduce
the temporal logics LTL(QFO) and CTL(∗)(QFO), and recall some previous
results on verification of temporal properties.

We assume an infinite data domain dom. A relational schema is a finite
set of relation symbols with associated arities. A database instance over a
relational schema DB is a mapping I associating to each R ∈ DB a finite
relation over dom with the same arity as R (denoted arity(R)). We assume
familiarity with first-order logic (FO) over relational schemas (e.g., see [1, 30]).
FO formulas may use equality and constants from dom.

2.1. Artifact systems

We use the tuple artifact model introduced in [12], capturing the core
elements of the artifact model. In the tuple artifact model, an artifact consists
of a finite set of variables whose values evolve during the workflow execution.
Transitions are specified declaratively, using pre-and-post conditions that may
query an underlying database.

Definition 1. An artifact schema is a tuple A = 〈x̄,DB〉 where x̄ is a finite
sequence x1, . . . , xk of artifact variables and DB is a relational schema.

For each x̄, we also define a set of variables x̄′ = {x′ | x ∈ x̄} where each
x′ is a distinct new variable. In a transition, a primed variable represents the
value of the variable in the new artifact.

Definition 2. An instance of an artifact schema A = 〈x̄,DB〉 is a tuple
A = 〈ν,D〉 where ν is a valuation of x̄ into dom and D is a finite instance of
DB.

Definition 3. A service over an artifact schema A is a pair σ = 〈π, ψ〉 where:

• π(x̄), called pre-condition, is a quantifier-free2 FO formula over DB with
variables x̄;
• ψ(x̄, x̄′), called post-condition, is a quantifier-free FO formula over DB

with variables x̄, x̄′.

2∃FO conditions can be easily simulated by additional artifact variables.

7

Definition 4. An artifact system is a triple Γ = 〈A,Σ,Π〉, where A is an
artifact schema, Σ is a non-empty set of services over A, and Π is a pre-
condition restricting the value of the initial artifact variables (as above, a
quantifier-free FO formula over DB, with variables x̄).

Definition 5. Let σ = 〈π, ψ〉 be a service over an artifact schema A =
〈x̄,DB〉, and let D be an instance over DB. Let ν, ν ′ be valuations of x̄. We
say that ν ′ is a possible successor of ν w.r.t. σ and D (denoted ν

σ−→ ν ′ when
D is understood) iff:

• D |= π(ν), and
• D |= ψ(ν, ν ′).

Note that ψ(x̄, x̄′) need not bind x̄′ to the database, so ν ′ may contain
values not in D.

Definition 6. Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉.
A run of Γ on database instance D over DB is an infinite sequence ρ =
{(ρi, σi)}i≥0, where for each i ≥ 0, ρi is a valuation of x̄, σi ∈ Σ, ρi

σi−→ ρi+1,
and D |= Π(ρ0).

As in previous work, we take runs to be infinite because many data-centric
processes run forever (e.g. supply chain management workflows, e-commerce,
e-government and e-health applications, etc). Also, as observed in the contex
of verification, infinite runs capture information lost by their finite prefixes.
The assumption that runs are infinite is not a restriction even for terminating
business processes, since finite runs can be artificially extended to infinite
runs by adding self-looping transitions.

The linear-time semantics of an artifact system Γ is provided by the set
of all runs. Specifically, we denote by RunsD(Γ) the set of all runs of Γ on
database instance D, and by Runs(Γ) the union of RunsD(Γ) for all databases
D. The more informative branching-time semantics is provided by its tree of
runs, additionally capturing all choices of transitions available at each point
in the run. More precisely, TRunsD(Γ) is a labeled tree whose nodes are all
finite prefixes of runs of Γ on D, such that the children of a prefix are all
prefixes extending it by one transition. Each node ρ is labeled by the value
of the last artifact tuple in ρ, and each edge from ρ to ρ.(ν, σ) is labeled
by σ. The global tree of runs TRuns∗(Γ) is the tree obtained by placing all
trees TRunsD(Γ) (for every database D) under a common root, connected by

8

edges with a special label init. The tree of runs allows to define properties in
branching-time temporal logic, such as “any client has the option of canceling
a purchase at any time”. Note that such a property is not captured by the
linear runs in Runs(Γ).

Example 2. We provide our running example of an artifact system. This
is a simplified version of the example in [12], modeling a basic e-commerce
business process. The customer can choose a product, a shipment method and
apply a coupon to the order. The order is filled in a sequential manner as
is customary on e-commerce web-sites. After the order is filled, the system
awaits for the customer to submit a payment. If the payment matches the
amount owed, the system proceeds to shipping the product. At any time before
submitting a valid payment, the customer may edit the order (select a different
product) an unbounded number of times.

The artifact system has the following variables:

status, prod id, ship type, coupon, amount owed, amount paid.

The status variable tracks the status of the order and can take the following
values:

“edit prod”, “edit ship”, “edit coupon”, “processing”, “received payment”,
“shipping”.

The database schema has the following tables:

PRODUCTS(id),
COUPON-DISCOUNTS(code, prod id, ship type, price),
SHIPPING(ship type, prod id, price),

In the example, we allow as syntactic sugar existentially quantified variables
in conditions, which can be simulated using additional artifact variables.

The starting configuration has status initialized to “edit prod”, and all
other variables to “undefined”, modeled by the reserved constant λ. This is
easily expressed by the artifact system’s pre-condition Π:

9

Π : status = “edit prod” ∧ prod id = λ ∧ ship type = λ

∧ coupon = λ ∧ amount owed = λ ∧ amount paid = λ

∧ amount refunded = λ

The services. The following services model a few of the business process
tasks.

choose product The customer chooses a product among the available ones.

π : status = “edit prod”
ψ : PRODUCTS(prod id′) ∧ status′ = ”edit ship”

choose ship The customer chooses a compatible shipping option.

π : status = “edit ship”
ψ : ∃x(SHIPPING(ship type′, prod id, x) ∧ status′ = “edit coupon”
∧prod id′ = prod id)

no coupon The customer does not use a coupon number.

π : status = “edit coupon”
ψ : coupon′ = λ ∧ SHIPPING(ship type, prod id, amount owed′)∧
status′ = “processing” ∧ prod id′ = prod id ∧
ship type′ = ship type

apply coupon The customer inputs a coupon code.

π : status = “edit coupon”
ψ : COUPON-DISCOUNTS(coupon′, prod id, ship type, amount owed′)
∧ status′ = “processing” ∧ prod id′ = prod id ∧ ship type′ = ship type)

edit product The customer returns to the product choice stage.

10

π :status = “edit shiptype” ∨ status = “edit coupon” ∨
status = “processing”

ψ : status′ = “edit prod”

edit coupon The customer returns to the coupon choice stage. The pre-
condition checks that there is a coupon applicable for this product and
shipment type.

π : status = “processing”
∃x, y(COUPON-DISCOUNTS(x, prod id, ship type, y)∧
ψ :status′ = “edit coupon” ∧ prod id′ = prod id∧

ship type′ = ship type

receive payment The customer sends a payment.

π : status = “processing”
ψ :amount paid′ 6= λ ∧ status′ = “received payment”∧

prod id′ = prod id ∧ ship type′ = ship type∧
coupon′ = coupon ∧ amount owed′ = amount owed

payment refused The amount sent was not correct. The customer sends a
new payment.

π : status = “received payment” ∧ amount paid 6= amount owed

ψ :status′ = “received payment” ∧ amount paid′ 6= λ
prod id′ = prod id ∧ ship type′ = ship type∧
coupon′ = coupon ∧ amount owed′ = amount owed

payment ok Check payment and ship the product.

π : status = “received payment” ∧ amount paid = amount owed

ψ :status′ = “shipping” ∧ amount paid′ = amount paid∧
prod id′ = prod id ∧ ship type′ = ship type∧
coupon′ = coupon ∧ amount owed′ = amount owed

ship A paid order gets shipped.

11

π : status = “shipping”
ψ :status′ = “shipping” ∧ prod id′ = prod id∧

ship type′ = ship type ∧ coupon′ = coupon∧
amount owed′ = amount owed∧
amount paid′ = amount paid

Observe that ship can be applied forever, thus allowing infinite runs.

2.2. Constrained artifact systems

In addition to the basic (unconstrained) artifact systems defined earlier,
we shall also study artifact systems whose underlying database is constrained
by a set ∆ of dependencies. We will consider tuple and equality generating
dependencies (referred to collectively as dependencies). We briefly recall
(see [1] for details) that an equality-generating dependency (EGD) is an FO
sentence of the form ∀x̄(ϕ(x̄)→ y = z), where ϕ is a conjunction of relational
atoms and y, z ∈ x̄. A tuple-generating dependency (TGD) is a sentence of
the form ∀x̄(ϕ(x̄)→ ∃z̄ψ(x̄, z̄)), where ϕ and ψ are conjunctions of relational
atoms. If z̄ is empty, the dependency is called full; if every atom in ψ(x̄, z̄)
contains an existentially quantified variable in z̄, it is called embedded (note
that every TGD can be written as a conjunction of full and embedded TGDs).
A set of TGDs is acyclic if the following graph is acyclic: the nodes are
database relations and there is an edge from P to Q if P occurs in the body
of a TGD whose head contains Q. Note that inclusion dependencies are
instances of TGDs and functional dependencies (FDs) are EGDs.

A constrained artifact system is an expression Γ(∆), where Γ is an artifact
system and ∆ a set of dependencies over the database schema DB of Γ. The
set of linear runs of Γ(∆) is defined as Runs(Γ(∆)) = ∪{RunsD(Γ) | D |= ∆}.
Similarly, the global tree of runs TRuns∗(Γ(∆)) is the tree obtained by placing
all trees TRunsD(Γ) (for every database D satisfying ∆) under a common
root, connected by edges with a special label init.

In our running example, the database schema can be naturally enriched
with dependencies as follows (the underlined attributes are keys in each
relation):

PRODUCTS(id),
COUPON-DISCOUNTS(code, prod id, ship type, price),
SHIPPING(ship type, prod id, price),

12

One might also add natural foreign key constraints expressed as TGDs (e.g.
prod id in COUPON-DISCOUNTS references id in PRODUCTS).

In order to clearly distinguish basic artifact systems from constrained
artifact systems, we sometimes refer to the former as unconstrained artifact
systems.

2.3. Temporal properties of artifact systems

Temporal properties are specified using extensions of LTL (linear-time
temporal logic) and CTL(∗) (branching-time temporal logics). We begin
with LTL. LTL is propositional logic augmented with temporal operators G
(always), F (eventually), X (next) and U (until) (e.g., see [37]). Informally,
Gp says that p holds at all times in the run, Fp says that p will eventually
hold, Xp says that p holds at the next configuration, and pUq says that q will
hold at some point in the future and p holds up to that point. For example,
G(p→ Fq) says that whenever p holds, q must hold sometime in the future.

More precisely, the semantics of an LTL formula over set P of propositions
is defined as follows. LTL specifies properties of infinite words (ω-words)
{τi}i≥0 over the alphabet consisting of truth assignments to P . Let τ≥j denote
{τi}i≥j, for j ≥ 0.

The semantics of the temporal operators X, U is the following (where |=
denotes satisfaction and j ≥ 0):

• τ≥j |= Xϕ iff τ≥j+1 |= ϕ,

• τ≥j |= ϕUψ iff ∃k ≥ j such that τ≥k |= ψ and τ≥l |= ϕ for j ≤ l < k.

The G and F operators are defined as follows: Fϕ ≡ true U ϕ and
Gϕ ≡ ¬(F¬ϕ).

The extension of LTL used in [12], is obtained from LTL by replacing
propositions with quantifier-free FO statements about particular artifact
records in the run. The statements use the artifact variables and the database.
In addition, they may use global variables, shared by different statements
and allowing to refer to values in different records. The global variables
are universally quantified over the entire property. We denote this logic
by LTL(QFO). This differs from (and is more accurate than) the notation
LTL-FO used in [12] and other previous works.

Definition 7. Let A = 〈x̄,DB〉 be an artifact schema. A QFO component
over A is a quantifier-free FO formula over DB. An LTL(QFO) formula over
A is an expression ∀ȳϕf , where:

13

(i) ϕ is an LTL formula with propositions P ;

(ii) f is a mapping from P to QFO components over A

(iii) ϕf is obtained by replacing each p ∈ P with f(p);

(iv) ȳ is the set of variables occurring in ϕf that are different from x̄ ∪ x̄′.

The semantics of LTL(QFO) formulas is defined as follows. Let Γ =
〈A,Σ,Π〉 be an artifact system, ξ = ∀ȳϕf an LTL(QFO) formula over A,
and ρ a run of Γ on database D. Let µ be a valuation of ȳ into dom. A
QFO component ψ(x̄, x̄′, ȳ) of ϕf is satisfied in ρi with valuation µ if D |=
ψ(ρi, ρi+1, µ), i ≥ 0. The run ρ satisfies ϕf with valuation µ if {σ(ρi)}i≥0 |= ϕ,
where σ(ρi) is the truth assignment for P in which p is true iff f(p) is satisfied
in ρi with valuation µ. Finally, ρ |= ∀ȳϕf if ρ |= ϕf with every valuation µ of
ȳ into dom.

We say that an unconstrained artifact system Γ satisfies an LTL(QFO)
sentence ξ, denoted Γ |= ξ, if ρ |= ξ for every ρ ∈ Runs(Γ). Similarly, a
constrained artifact system Γ(∆) satisfies an LTL(QFO) sentence ξ, denoted
Γ(∆) |= ξ, if ρ |= ξ for every ρ ∈ Runs(Γ(∆)).

We illustrate LTL(QFO) with a simple example.

Example 3. The following LTL(QFO) formula ∀xϕf specifies a desir-
able business rule for the artifact system of Example 2, using variables
amount paid, amount refunded, status, amount owed, as well as the global
variable x.

∀xG((amount paid = x ∧ amount paid = amount owed)
→ F(status = ”shipped” ∨ amount refunded = x))

In more detail, ϕ is the LTL formula G(p→ Fq) and f is defined by

f(p) = amount paid = x ∧ amount paid = amount owed

f(q) = status = ”shipped” ∨ amount refunded = x

Property ∀xϕf states that if a correct payment is submitted then at some time
in the future either the product is shipped or the customer is refunded the
correct amount. Note the use of the universally quantified global variable x to
relate the value of paid and refunded amounts across distinct steps in the run
sequence.

14

The branching-time extensions CTL(QFO) and CTL*(QFO) are defined
analogously from CTL and CTL*. Recall that CTL* augments LTL with
path quantifiers A (for all) and E (exists) while CTL restricts the use of path
quantifiers so that they are always followed by a temporal operator (see [22]).

We note that variants of LTL(QFO) have been introduced in [22, 40]
(denoted by LTL-FO). The use of globally quantified variables is also similar
in spirit to the freeze quantifier defined in the context of LTL extensions with
data by Demri and Lazić [16, 17].

2.4. Verification of artifact systems

We informally review the results of [18, 12] on verification of LTL(QFO)
properties of artifact systems.

Classical model-checking applies to finite-state transition systems. Check-
ing that an LTL property holds is done by searching for a counterexample
run of the system. The finiteness of the transition system is essential and
allows to decide property satisfaction in pspace using an automata-theoretic
approach (see e.g. [10, 34]). In contrast, artifacts are infinite-state systems
because of the presence of unbounded data. The main idea for dealing with
the infinite search space is to explore the space of runs of the artifact system
using a symbolic representation of runs rather than the actual runs. This
yields the following result.

Theorem 4. [18] It is pspace-complete3 to check, given an artifact system
Γ and an LTL(QFO) property ξ, whether Γ satisfies ξ.

Unfortunately, Theorem 4 fails even in the presence of simple data depen-
dencies or arithmetic. Specifically, as shown in [18, 12], verification becomes
undecidable as soon as the database is equipped with at least one key depen-
dency, or if the specification of the artifact system uses simple arithmetic
constraints allowing to increment and decrement by 1 the value of some
atributes. Hence, a restriction is needed to achieve decidability for these
extensions. We discuss this next.

Feedback Freedom To gain some intuition, consider the undecidability
of verification for artifact systems with increments and decrements. The
proof of undecidability is based on the ability of such systems to simulate

3For fixed database schema.

15

counter machines, for which the problem of state reachability is known to be
undecidable [35]. To simulate counter machines, an artifact system uses an
attribute for each counter. A service performs an increment (or decrement)
operations by “feeding back” the incremented (or decremented) value into the
next occurrence of the corresponding attribute. To simulate counters, this
must be done an unbounded number of times. To prevent such computations,
a restriction is imposed in [12], called feedback freedom, designed to limit the
data flow between occurrences of the same artifact variable at different times
in runs that satisfy the desired property. The formal definition considers, for
each run, a graph capturing the data flow among variables, and imposes a
restriction on the graph. Intuitively, paths among different occurrences of the
same variable are permitted, but only as long as each value of the variable
is independent on its previous values. This is ensured by a condition that
takes into account both the artifact system and the property to be verified,
called feedback freedom, reviewed below. It turns out that artifact systems
designed in a hierarchical fashion by successive refinement, in the style of
the Guard-Stage-Milestone model, naturally satisfy the feedback freedom
condition (so there is no need for testing). Indeed, there is evidence that the
feedback freedom condition is permissive enough to capture a wide class of
applications of practical interest. As discussed in [12], this is confirmed by
numerous examples of real-life business processes modeled as artifact systems,
encountered in IBM’s practice.

We recall next the definition of feedback freedom from [12]. Feedback
freedom is defined for a pair (Γ,∀ȳϕf), where Γ is an artifact system and ∀ȳϕf
an LTL(QFO) formula over Γ. In the absence of a property, Γ is feedback
free if (Γ, true) is feedback free.

Feedback freedom is formalized using a notion of symbolic run consisting
of an infinite sequence of consecutive occurrences of artifact variables, together
with formulas associated to each transition from one occurrence to the next.
The formulas capture the pre-and-post condition of the service applied at
each transition in the run, and also specify which QFO components of ϕf are
satisfied.

More formally, let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉,
and ∀ȳϕf be an LTL(QFO) formula. We denote by CQ¬ quantifier-free
conjunctions of literals (positive and negated atoms over DB ∪ {=}).

We associate to each x ∈ x̄ an infinite set of new variables {xi}i>0, and we
denote x̄i = {xi | x ∈ x̄}. A symbolic constraint run % consists of a sequence
{ψi(x̄i, x̄i+1, ȳ)}i≥0 where each ψi(x̄i, x̄i+1, ȳ) is a CQ¬ formula over A with

16

variables among x̄i ∪ x̄i+1 ∪ ȳ. The formulas ψi are obtained from Σ and
ϕf as follows. We first define the sets of CQ¬ formulas below, that capture
symbolically the possible transitions in Γ, together with truth assignments to
the set of propositions P in ϕ, expanded in ϕf via f .

1. ∆Σ. For each service 〈π, ψ〉 ∈ Σ, consider the formula ξ obtained from
π ∧ ψ by putting it in DNF. For each such formula, ∆Σ contains all
disjuncts of ξ.

2. ∆ϕf contains, for each σ ∈ 2P , all disjuncts of the DNF of the formula∧
σ(p)=1

f(p) ∧
∧

σ(p)=0

¬f(p).

A symbolic transition template is a conjunction ψ(x̄, x̄′, ȳ) of one formula
from ∆Σ and one from ∆ϕf . Intuitively, the formula chosen from ∆Σ corre-
sponds to a transition caused by one of the services in Σ, while the formula
chosen from ∆ϕf determines a truth assignment σ for the QFO components of
ϕf . Note that there are finitely many such formulas associated with ∆Σ and
∆ϕf . For i > 0, each formula ψi in the symbolic constraint run is obtained
from some symbolic transition template ψ(x̄, x̄′, ȳ) by replacing x̄ with x̄i and
x̄′ with x̄i+1. We refer to ψi as a symbolic transition generated by ψ. For
i = 0, ψ0 is obtained by taking the conjunction of a formula obtained as above
with a formula accounting for the pre-condition Π (specifically, a disjunct of
the DNF of Π in prenex form, where x̄ is replaced with x̄0).

To formalize the feedback-free condition, we associate two undirected
graphs Gψ and Eψ to each symbolic transition template ψ = φ(x̄, x̄′, ȳ). The
graph Gψ captures all connections among variables occurring together in the
same atom, whereas Eψ captures equalities alone. Specifically, Gψ consists of
the restriction to x̄, x̄′, ȳ of the graph containing an edge among every two
variables occurring together in an atom of ψ, and Eψ is the restriction to
x̄, x̄′, ȳ of the transitive closure of the graph containing an edge among every
two variables in ψ that appear together in an equality atom of ψ.

Similarly, we define for each symbolic transition ψi the graphs Eψi and
Gψi by replacing x̄ by x̄i and x̄′ with x̄i+1 in Eψ and Gψ. Given a symbolic
constraint run % = {ψi}i≥0, we define G% = ∪i≥0 Gψi and E% as ∪i≥0Eψi .
We also denote by E∗% the transitive closure of E%. The graphs associated
with finite symbolic constraint runs are defined analogously.

Clearly, E∗% is an equivalence relation on the variables of % (its equivalence
classes are the connected components of E%). For each variable xi, we

17

denote by [xi] its equivalence class with respect to E∗% . The span of an
equivalence class [xi] is defined as span([xi]) = {j | xj ∈ [xi]}. It is clear that
span([xi]) is always an interval (possibly infinite). For each variable y ∈ ȳ,
span(y) = [0..∞].

Definition 8. (Γ,∀ȳϕf) is feedback-free if for every symbolic constraint run
prefix % = {ψi}i≤n, each path from xi to xj in G% contains a node z such that
span([xi]) ∪ span([xj]) ⊆ span([z]).

Thus, feedback freedom allows data flow between different occurrences
xi, xj of a given artifact variable x, but only if the flow is “cut” by some
intermediate variable z whose value remains unchanged during the entire life-
times of xi and xj . This restriction prevents dangerous recursive computation
leading to undecidability.

It is shown in [12] that feedback freedom of an artifact system together
with an LTL(QFO) property can be checked in pspace, by reduction to a
test of emptiness of a two-way alternating finite-state automaton.

Finally, an artifact system Γ is feedback free if (Γ, true) is feedback free.
It can be seen that, similarly to the running example of [12], the artifact
system in Example 2 is feedback free.

Feedback freedom turns out to ensure decidability of verification in the
presence of arithmetic constraints, and also under a large class of data
dependencies including key and foreign key constraints on the database.

Theorem 5. [12] It is decidable, given an artifact system Γ using arithmetic
(linear inequalities with integer coefficients) and whose database satisfies a set
of key and foreign key constraints, and an LTL(QFO) property ξ such that
(Γ, ξ) is feedback free, whether every run of Γ on a valid database satisfies ξ.

Unfortunately, the complexity is non-elementary with respect to the
number of artifact variables.

3. Linear-time service views

In this section, we define linear-time service views of artifact systems and
establish their regularity. We begin by recalling some basics on languages on
infinite words. Let Θ be a finite alphabet. An ω-word over Θ is an infinite
sequence of symbols from Θ and an ω-language is a set of ω-words. An
ω-language is ω-regular if it is accepted by a Büchi automaton (e.g., see [41]).

18

A Büchi automaton B is a non-deterministic finite-state automaton accepting
the set of infinite words for which some run of the automaton goes through
an accepting state infinitely often, denoted L(B). A Büchi automaton in
which every state is accepting is also referred to as a finite-state transition
system (or safety automaton, see [27]). Thus, a finite-state transition system
defines the ω-words for which there is some non-blocking run of the system
with transitions labeled by the symbols of the word.

Definition 9. Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉.
For each run ρ = {(ρi, σi)}i≥0 of Γ, the service view of ρ, denoted S(ρ),
consists of the ω-word (σi)i≥0. The linear-time service view of Γ is Slin(Γ) =
{S(ρ) | ρ ∈ Runs(Γ)}. A class A of artifact systems has effectively ω-regular
service views if there is an algorithm that produces, for each Γ in A, a Büchi
automaton defining Slin(Γ).

We will show that unconstrained artifact systems have effectively ω-regular
service views, and consider constrained artifact systems in Section 5. To
show effective regularity for unconstrained artifact systems, we will use a
symbolic representation of the runs of Γ. Intuitively, each transition in a
run is represented by the isomorphism type of the database restricted to the
consecutive artifact tuples involved in the transition. This information is
sufficient to determine which service can be applied at each point in the run.
Since there are only finitely many such isomorphism types, this will allow
us to construct a finite-state transition system defining precisely the service
view of Γ. As we shall see, it is straightforward that each sequence of services
occurring in an actual run of Γ is also allowed by the transition system. The
main technical difficulty is showing the converse: that every sequence of
services allowed by the transition system corresponds to a sequence of services
in an actual run of Γ.

We next define the notion of isomorphism type and corresponding transi-
tion system. Let C be the set of constants used in Γ. To each x ∈ x̄ we asso-
ciate an infinite set of new variables {xi}i≥0, and we denote x̄i = {xi | x ∈ x̄}.
An equality type for variables ȳ is an equivalence relation on ȳ ∪ C in which
no distinct constants in C are equivalent. An isomorphism type of ȳ is a pair
(H, ε) where ε is an equality type for ȳ and H is an instance of DB using
elements in ȳ ∪ C that is consistent with ε (i.e., for each R ∈ DB of arity k
and αi, βi ∈ ȳ ∪ C such that (αi, βi) ∈ ε for i ≤ i ≤ k, (α1, . . . αk) ∈ H(R) iff
(β1, . . . βk) ∈ H(R)).

19

Definition 10. A symbolic run % of Γ is a sequence {(x̄i, Hi, εi, σi)}i≥0 such
that, for each i ≥ 0:

(i) (Hi, εi) is an isomorphism type of x̄i ∪ x̄i+1,

(ii) the pre-condition Π of Γ holds in the restriction of (H0, ε0) to x̄0 ∪ C,

(iii) (Hi, εi) and (Hi+1, εi+1) agree on x̄i+1 ∪ C,

(iv) the pre-condition of σi holds in the restriction of (Hi, εi) to x̄i ∪ C, and

(v) the post-condition of σi holds in (Hi, εi).

We denote by SRuns(Γ) the set of symbolic runs of Γ.
If a symbolic run faithfully represents an actual run of Γ, we say that the

actual run is an enactment of the symbolic run. Intuitively, the actual run is
obtained by giving concrete values to the variables in the symbolic run. In
addition, the actual run is equipped with a finite database consistent with
the isomorphism types in the symbolic run (note that the symbolic run has
no database). We formalize this next.

Let % be a symbolic run of Γ and ≈ the transitive closure of ∪i≥0εi. Clearly,
≈ is an equivalence relation on ∪i≥0x̄i ∪ C. It is easily seen that εi is the
restriction of ≈ to x̄i ∪ x̄i+1 ∪ C. Let [xi]εi and [xi]≈ denote the equivalence
class of xi in εi, resp. ≈.

Definition 11. Let {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run of Γ. An enactment
of % is a triple (D, ρ, θ) where D is a database over DB, ρ = {(ρi, σi)}i≥0 is
a run of Γ over D, and θ is a mapping from (∪i≥0x̄i) to dom such that, for
each i ≥ 0:

• θ(xi) = ρi(x) for every x ∈ x̄,

• if y, z ∈ x̄i ∪ x̄i+1 and (y, z) ∈ εi then θ(y) = θ(z)

• the function θ̂ defined by θ̂([y]εi) = ρ(y) for y ∈ x̄i ∪ x̄i+1 is an isomor-
phism from Hi/εi to D|(ρi∪ρi+1) (where Hi/εi is the quotient structure
of Hi with respect to εi).

Lemma 6. For every database D over DB and run ρ of Γ over D there
exists a symbolic run % of Γ and a mapping h from (∪i≥0x̄i) to dom such that
(D, ρ, h) is an enactment of %.

20

Proof. The symbolic run % can be easily constructed by induction from ρ.
�

Consider the converse of Lemma 6: does every symbolic run have an
enactment on some database? This is much less obvious. It is easy to
construct, for each symbolic run % = {(x̄i, Hi, εi, σi)}i≥0, a triple (D%, ρ, h)
satisfying the definition of enactment except for the finiteness of D%. This
can be done as follows. The (infinite) domain of D% simply consists of all
equivalence classes of ≈, h maps each xi to [xi]≈, the relations are interpreted
as (∪i≥0Hi)/≈, and ρ is the image of % under h. However, it is far less clear
that a finite database D% exists with the same properties. Intuitively, different
classes of ≈ must be merged in order to obtain a finite domain, and this must
be done consistently with the Hi’s. We are able to show the following key
result.

Theorem 7. Let Γ be an artifact system with artifact variables x̄. Every
symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ has an enactment (D%, ρ, θ) where
the size of D% is exponential in |x̄|.

The proof is non-trivial and requires developing some technical machinery,
which we do next. The roadmap of the proof is the following. We first define a
normal form for artifact systems, called linear propagation form, requiring that
the only equalities in pre-and-post conditions of services be of the form x = x′

where x ∈ x̄ (with the exception of equalities with constants). Moreover, each
relational atom occurring in conditions uses only variables from x̄ or only
variables from x̄′. Intuitively, this limits the interaction between consecutive
instances to the propagation of a subset of the variables in the transition.
We note that this is similar in spirit to the treatment of equality in the
normal form for Knowledge and Action Bases developed in [25], and to the
singularization technique of [33].

We show that for every artifact system Γ we can construct an artifact
system Γ̄ in linear-propagation form, and a mapping h from the symbolic
runs of Γ to symbolic runs of Γ̄, such that from every enactment of h(%) one
can construct an enactment of %. Finally, we show that every symbolic run of
an artifact system in linear-propagation form has an enactment (the more
difficult part of the proof).

We begin with the definition of the linear-propagation normal form.

Definition 12. An artifact system Γ = 〈A,Σ,Π〉 with A = 〈x̄,DB〉 is in
linear propagation form if the following hold for each service (π, ψ) in Σ:

21

(i) π(x̄) uses only relational symbols from DB and equalities of the form
x = c (where c is a constant from dom).

(ii) ψ(x̄, x̄′) is of the form ψ1(x̄) ∧ ψ2(x̄′) ∧ α(x̄, x̄′) where ψ1(x̄) and ψ2(x̄′)
use only relational symbols from DB and equalities of the form x = c
(resp. x′ = c) where c is a constant, and α(x̄, x̄′) = ∧i∈I(xi = x′i) for
some I ⊆ [1...k].

Example 8. The artifact system in Example 2 is not in linear-propagation
form. Indeed, the services payment refused and payment ok violate con-
dition (i), and services choose ship, no coupon, apply coupon violate
condition (ii).

Definition 13. Let Γ1,Γ2 be artifact systems. We say that Γ2 symbolically
simulates Γ1 if there is a mapping h from SRuns(Γ1) to SRuns(Γ2) such that:

• for each symbolic run %1 of Γ1, if there exists an enactment (D, ρ2, f2)
of h(%1) then there exists an enactment (D, ρ1, f1) of %1 (with the same
database).

Intuitively, symbolic simulation is akin to a reduction. Its purpose is
to allow “translating” enactments of one artifact system into enactments
of another. Suppose Γ2 symbolically simulates Γ1. If we can show that
every symbolic run of Γ2 has an enactment, then the definition of symbolic
simulation implies that every symbolic run of Γ1 also has an enactment. Note
that this does not imply that Γ2 has the same service view as Γ1, or that Γ2

can replace Γ1 for the purpose of model checking.
Observe that symbolic simulation is transitive.

Lemma 9. Let Γ1 = 〈〈x̄,DB1〉,Σ1,Π1〉 be an artifact system. There exists
an artifact system Γ2 = 〈〈z̄,DB2〉,Σ2,Π2〉 in linear propagation form that
symbolically simulates Γ1.

Proof. The construction is done in several stages.

1. We first eliminate from pre-and-post conditions of services of Γ1 relational
atoms R(z̄) where z̄ contains variables from both x̄ and x̄′. This is done
by adding new artifact variables as follows. For each x ∈ x̄, let y(x) be a
distinct new variable. The artifact system Γ2 has artifact variables x̄ ∪ y(x̄).

22

Pre-conditions of services of Γ1 remain unchanged, and each post-condition
ψ(x̄, x̄′) is rewritten as ψ(x̄, y(x̄)) ∧

∧
x∈x̄ y(x) = x′. Clearly, every relational

atom in Γ2 uses only variables in x̄ ∪ y(x̄). The symbolic simulation h1 of
Γ1 by Γ2 is the mapping from symbolic runs of Γ1 to those of Γ2 induced in
the natual manner by the above modification. We illustrate this next. The
following represents a symbolic run %1 = {(x̄i, Hi, εi, σi)}i≥0 of Γ1. Recall that
the Hi may contain relational atoms with variables from both x̄i and x̄i+1.

x̄1 x̄2 x̄3 x̄4 x̄5 . . .

H1, ε1 H3, ε3

H2, ε2 H4, ε4Π

π1, ψ1 π2, ψ2 π3, ψ3 π4, ψ4

For each i ≥ 0 and x ∈ x̄, let yi(x) be a new variable denoting the
occurrence of y(x) in the i-th configuration of the symbolic runs of Γ2. Let
ȳi denote yi(x̄), i ≥ 0. The symbolic run %2 = h1(%1) of Γ2 is {((x̄i, ȳi), H ′i ∧
H ′i+1, ε

′
i ∧ ε′i+1 ∧ (x̄i+1 = ȳi), σ

′
i)}i≥0 represented below. In h1(%1), H

′
i =

Hi[ȳi/x̄i+1], ε′i = εi[ȳi/x̄i+1] and ψ′i = ψi[ȳi/x̄i+1] ∧ (x̄i+1 = ȳi).

x̄1

ȳ1

x̄2

ȳ2

x̄3

ȳ3

x̄4

ȳ4

x̄5

ȳ5

. . .

H ′1
ε′1

H ′2
ε′2

∧
∧ ȳ1 = x̄2 ∧

H ′3
ε′3

H ′4
ε′4

∧
∧ ȳ3 = x̄4 ∧

H ′2

ε′2
H ′3

ε′3
∧

∧ ȳ2 = x̄3 ∧
H ′4

ε′4
H ′5

ε′5
∧

∧ ȳ4 = x̄5 ∧Π

π1, ψ
′
1 π2, ψ

′
2 π3, ψ

′
3 π4, ψ

′
4

Consider an enactment (D, ρ2, θ2) of Γ2. An enactment (D, ρ1, θ1) of Γ1 is
easily constructed by redirecting θ2 from ȳi to x̄i+1 in the obvious way. Thus,
h1 is a symbolical simulation of Γ1 by Γ2.

2. Let Γ2 be the specification resulting from step (1). Let ū = x̄ ∪ y(x̄),
so that Γ2 = (〈ū,DB〉,Σ2,Π2). In the second stage, we eliminate from pre-
and-post-conditions of services in Σ2, and from Π2, all equalities of the form
u = v and u′ = v′ for u, v ∈ ū, u 6= v (called local equalities). Intuitively,

23

rather than stating these equalities explicitly, we keep track of them using one
additional artifact variable p and use in relational atoms just one representative
variable from each equality class. More precisely, let E and E ′ be the sets
of partitions (equality types) of ū and ū′. We assume an arbitrary ordering
on the variables in ū. For each u ∈ ū and ε ∈ E , let uε be the smallest
variable in ū in the same class of ε as u (and similarly u′ε′ for u′ ∈ ū′ and
ε′ ∈ E ′). For a formula ψ over ū ∪ ū′, and ε ∈ E , ε′ ∈ E ′, let ψε∪ε′ be the
formula obtained by eliminating all local equalities and replacing each u ∈ ū
with uε and each u′ ∈ ū′ by u′ε′ . For a quantifier-free formula ψ over ū ∪ ū′,
let δψ = {(ε, ε′) | ε ∈ E , ε′ ∈ E ′, ε ∪ ε′ is compatible with ψ}. Similarly, if ψ
is over ū alone, δ0

ψ = {ε | ε ∈ E , ε is compatible with ψ}. For each ε ∈ E , we
denote by ϕε the conjunction of (in)equalities specifying ε (and similarly for
ε′ ∈ E ′).

We are now ready to define h2(Γ2). Let Γ3 = (〈(ū, p),DB〉,Σ3,Π3) where:

• Π3(ū) =
∨
ε∈δ0

Π2

(p = ε ∧ (Π2)ε)

• Σ3 is obtained by rewriting each service (π, ψ) of Γ2 to (π′, ψ′), where
π′ =

∨
ε∈δ0

π
(p = ε ∧ πε) and ψ′ =

∨
(ε,ε′)∈δψ(p = ε ∧ p′ = ε′ ∧ ψε∪ε′).

The simulation h2 from symbolic runs of Γ2 to those of Γ3 is induced in the
natural way from the above construction.

3. We finally eliminate equalities of the form uε = v′ε′ with u, v ∈ ū, (uε)′ 6= v′ε′ .
Note that the variable p in Γ3 recording equality types does not occur in
such atoms. Intuitively, we ensure that (uε)

′ = v′ε′ by permuting variables
appropriately. To do this, we must keep track of the current permutation in
an additional artifact variable, and modify service post-conditions according
to the current permutation. This induces again a simulation from symbolic
runs of Γ3 to symbolic runs of the new specification. We omit the details.

The desired artifact system and final simulation is obtained by putting
together the specifications and simulations of (1-3). �

Example 10. We illustrate some aspects of the above construction for the
following services of Example 2:

choose ship The customer chooses a compatible shipping option.

24

π : status = “edit ship”
ψ : ∃x(SHIPPING(ship type′, prod id, x) ∧ status′ = “edit coupon”
∧prod id′ = prod id)

payment ok Check payment and ship the product.

π : status = “received payment” ∧ amount paid = amount owed

ψ :status′ = “shipping” ∧ amount paid′ = amount paid∧
prod id′ = prod id ∧ ship type′ = ship type∧
coupon′ = coupon ∧ amount owed′ = amount owed

As noted earlier, payment ok violates condition (i) of linear-propagation
form because of the equality amount paid = amount owed. Also,
choose ship violates condition (ii) because of the use of ship type′, prod id

in the atom SHIPPING(ship type′, prod id, x) of ψ. We first elim-
inate the use of ship type′ in SHIPPING(ship type′, prod id, p) by
introducing a new artifact variable ship type0 and rewriting ψ as
∃x(SHIPPING(ship type0, prod id, x)∧
ship type0 = ship type′0 ∧ ship type′0 = ship type′ ∧ status′ =

“edit coupon” ∧prod id′ = prod id). Then we eliminate the explicit equality
ship type′0 = ship type′ as well as amount paid = amount owed from the
pre-condition of payment ok by introducing a new variable p recording the
truth values of the two equalities (represented by special constants). Equality
tests amount paid = amount owed and ship type′0 = ship type′ are then
replaced by a disjunction of equality tests of the form p = c, respectively p′ = c,
where the c’s are constants designating the compatible truth assignments. If
no condition is imposed on p in a transition, then one of the constants is
assigned to it nondeterministically.

We now continue with the proof of Theorem 7. Let Γ = 〈A,Σ,Π〉 with
A = 〈x̄,DB〉 be an artifact system. By Lemma 9, we can assume that Γ is in
linear propagation form. Recall that for a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0

of Γ, we denote by ≈ the transitive closure of (∪i≥0εi) and by [xi]≈ the class
of xi wrt ≈. Note that, because Γ is in linear propagation form, we can
assume wihout loss of generality that [xi]≈ contains only variables xj. We
define span([xi]≈) = {j | xj ≈ xi}. Clearly, each span is an interval. Next, for
x ∈ x̄ we define lane(x) = {[xi]≈ | i ≥ 0} (totally ordered by [xi]≈ ≤ [xj]≈ iff
i ≤ j).

25

Intuitively, the proof of Theorem 7 consists of defining certain finite
characteristics of equivalence classes of ≈, so that different classes in a given
lane can be collapsed if they share the same characteristics. The characteristics
are rather involved, because the lanes of all artifact variables must be taken
into account simultaneously in order to obtain a consistent collapse. This
yields an enactment of the symbolic run over the finite database whose
elements are the collapsed classes. To achieve this, we need several definitions
and technical lemmas.

Definition 14. Let x, y ∈ x̄, x 6= y. Let a ∈ lane(x), b ∈ lane(y), span(a) =
[i, j] and span(b) = [i′, j′].

• b is a left-border span of a if i′ < i ≤ j′ < j.

• b is a right-border span of a if i < i′ ≤ j < j′.

• b is a border span of a if it is a left-border or a right-border span of a.

• b is an inner span of a if i ≤ i′ ≤ j′ ≤ j.

Remark 11. Left-border spans, right-border spans and inner spans of a are
illustrated below.

| |
Left border span

| |
Right border span

| |
Left border span

| |
Inner span

| |
Inner span

| |
Inner span

| |
Right border span

| |a

We next define the alternation number of one lane with respect to another.
This rather technical notion is key in capturing the relationship between the
lanes of different artifact variables, controlling the simultaneous collapse of
equivalence classes of different lanes so that overall consistency is ensured.

Definition 15. Let x, y ∈ x̄ be two artifact variables. Let (x̃i)i∈N be the
(ordered) values of lane(x), (ỹi)i∈N be the (ordered) values of lane(y). We
define the alternation number ANx,y of lane(x) with respect to lane(y) by
induction:

26

• ANx,y(x̃0) = 0

• if there exists j such that ỹj is a border span of x̃i then

ANx,y(x̃i+1) = ANx,y(x̃i) + 1 mod (4)

• otherwise ANx,y(x̃i+1) = ANx,y(x̃i)

We will need some basic properties of spans and alternation numbers.

Proposition 12. Let x, y ∈ x̄ be distincts artifact variables, x̃ ∈ lane(x) and
ỹ, ỹ′ ∈ lane(y).

• If ỹ is a left-border span of x̃, then x̃ is a right-border span of ỹ.

• x̃ has at most one left border span and one right border span on a given
lane.

• If ỹ is a left-border span of x̃ and ỹ′ a right-border or inner span of x̃
then ANy,x(ỹ) 6= ANy,x(ỹ

′).

Proof. The first two properties are trivial. Consider the third. We define
the unbounded alternation number ANu

x,y of lane(x) with respect to lane(y).
This is defined similarly to the alternation number, only without the modulo
operation:

• ANu
x,y(x̃0) = 0

• if there exists j such that ỹj is a border span of x̃i then

ANu
x,y(x̃i+1) = ANu

x,y(x̃i) + 1

• otherwise ANu
x,y(x̃i+1) = ANu

x,y(x̃i)

We note that {ANu
x,y(x̃i)}i≥0 is a non-decreasing sequence, and that for

all i ≥ 0, ANx,y(x̃i) = ANu
x,y(x̃i) mod (4).

Let x, y ∈ x̄ be two distinct artifact variables, x̃ ∈ lane(x) and ỹ, ỹ′ ∈
lane(y).

In order to prove the last property, we will show that if ỹ is a left-border
span of x̃ and ỹ′ a right-border or inner span of x̃ then

0 < ANu
y,x(ỹ

′)− ANu
y,x(ỹ) < 4

27

This would imply that ANy,x(ỹ) 6= ANy,x(ỹ
′).

Let (ỹi)i∈N be the (ordered) value of the y lane. Assume that there exists
i, j integers such that ỹi is the left border span of x̃ and ỹj is the right border
span of x̃.

The cases where ỹi+1, ỹi+2 or ỹi+3 is a right border span of x̃ are easy
because then we have j − i < 4, which implied the result trivialy (since the
difference between two consecutive values of ANu

y,x is bounded by 1). Hence
assume j − i ≥ 4. There are two possible configurations for the left part of x̃.

|
x̃

Case 1

|
|

ỹi ||
ỹi+1 |

ỹi+2 |

x̃′
|

x̃
Case 2

|
|

ỹi ||
ỹi+1 |

ỹi+2 |

In case 1, ỹi has a border span on the x lane but ỹi+1 has not. It follows
that

ANu
y,x(ỹi+2) = ANu

y,x(ỹi) + 1

In case 2, ỹi has a border span on the x lane, and so has ỹi+1. Consequently

ANu
y,x(ỹi+2) = ANu

y,x(ỹi) + 2

Thus we obtain our first inequality

0 < ANu
y,x(ỹi+2)− ANu

y,x(ỹi) < 3

Now there are two different configuration for the right part of x.

| |
x̃
Case 1

|
| |
ỹl.| |

ỹj−1
|

ỹj

| |
x̃
Case 2

|
| |
ỹl. | |

ỹj−1
|

ỹj

For all integers l such that i+ 2 < l < j − 1, ỹl has no border span on the
x lane. Hence we have

ANu
y,x(ỹi+2) = ANu

y,x(ỹl) = ANu
y,x(ỹj−1)

In the case 2, ỹj−1 has a border span on the x lane, but not in the case 1. So

0 ≤ ANu
y,x(ỹj)− ANu

y,x(ỹj−1) ≤ 1

28

By combining the previous inequalities we obtain

∀i < l ≤ j, 0 < ANu
y,x(ỹl)− ANu

y,x(ỹi) < 4

This concludes the proof of the lemma. �

We are now ready to define the equivalence relation among elements of a
lane that allows the finite collapse.

Definition 16. Let % = {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run. Let y ∈ x̄
and (ỹi)i∈N be the (ordered) elements of the y lane. We define ỹi ∼ ỹj if the
following hold:

• the relational portions of the isomorphism types of ỹi and ỹj are identical
at the beginning of their span (up to renaming). More precisely, if
i1 = min(span(ỹi)) and i2 = min(span(ỹj)), then

(Hi1)|x̄i1 =
(
(Hi2))|x̄i2

)
[x̄i1/x̄i2]

• i and j have the same parity

• for every z ∈ x̄ and y 6= z, ANy,z(ỹi) = ANy,z(ỹj)

• for all a, b such that {a, b} = {i, j}:
∀z ∈ x̄,∀z̃ ∈ lane(z) if z̃ is a left-border span of ỹa then there exists
z̃′ ∈ lane(z) such that z̃′ is a left-border span of ỹb and ANz,y(z̃) =
ANz,y(z̃

′)

• for all a, b such that {a, b} = {i, j}:
∀z ∈ x̄,∀z̃ ∈ lane(z) if z̃ is an inner span of ỹa then there exists
z̃′ ∈ lane(z) such that z̃′ is an inner span of ỹb and ANz,y(z̃) = ANz,y(z̃

′)

Finally, for ỹ and z̃ on different lanes, ỹ 6∼ z̃.

The following is immediate.

Lemma 13.

• ∼ is an equivalence relation.

• ∼ is of finite index (exponential in |x|).

29

Let % = {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run, R a relation of DB of arity
l and y1, . . . , yl variables in x̄. For all 1 ≤ i ≤ l, let ỹi ∈ lane(yi). We say
that R(ỹ1, . . . , ỹl) holds in % (denoted by % |= R(ỹ1, . . . , ỹl)) if there exists
j ∈

⋂
1≤i≤l span(ỹi) such that Hj |= R(ỹ1, . . . , ỹl).

Note the following: if for all 1 ≤ i ≤ l we have ỹi ≈ ȳi, then % |=
R(ỹ1, . . . , ỹl) iff % |= R(ȳ1, . . . , ȳl) (this follows easily from the definition of
symbolic run).

We can now show the following key lemma.

Lemma 14. Let % = {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run and R ∈ DB be a
relation of arity l. For each j, 1 ≤ j ≤ l, let x̃j and x̃′j be such that x̃j ∼ x̃′j.
Furthermore assume that

⋂
1≤j≤l span(x̃j) 6= ∅ and

⋂
1≤j≤l span(x̃′j) 6= ∅.

Then we have:

% |= R(x̃1, . . . , x̃l) iff % |= R(x̃′1, . . . , x̃
′
l)

Proof. Suppose {x̃j}1≤i≤l, {x̃′j}1≤i≤l satisfy the hypothesis of the lemma.
Let J = {j | ∀1 ≤ i ≤ l,min(span(x̃i)) ≤ min(span(x̃j))}. Let jmax ∈ J

be such that for all j ∈ J , min(span(x̃′j)) ≤ min(span(x̃′jmax)). Let z be such
that x̃jmax ∈ lane(z).

We will show that

(†) ∀1 ≤ j ≤ l,min(span(x̃′j)) ≤ min(span(x̃′jmax))

Assume towards a contradiction that this is false, and let jabs be such
that ∀1 ≤ j ≤ l,min(span(x̃′j)) ≤ min(span(x̃′jabs)) and min(span(x̃′jmax)) <
min(span(x̃′jabs)). Let y be such that x̃jabs ∈ lane(y). Observe the following:

(i) Since
⋂

1≤j≤l
span(x̃′j) 6= ∅ and ∀1 ≤ j ≤ l,min(span(x̃′j)) ≤

min(span(x̃′jabs)) exactly one of the following holds:

– x̃′jmax is an inner span of x̃′jabs

– x̃′jabs is an inner span of x̃′jmax

– x̃′jmax is a left-border span of x̃′jabs

(ii) Since
⋂

1≤j≤l
span(x̃j) 6= ∅ and ∀1 ≤ j ≤ l,min(span(x̃j)) ≤

min(span(x̃jmax)) exactly one of the following is true:

30

– x̃jabs is an inner span of x̃jmax

– x̃jmax is an inner span of x̃jabs

– x̃jabs is a left-border span of x̃jmax

Suppose first that x̃′jmax is an inner span of x̃′jabs . This implies that
min(span(x̃′jabs)) ≤ min(span(x̃′jmax)), which contradicts the fact that

min(span(x̃′jmax)) < min(span(x̃′jabs)).

Now assume that x̃′jabs is an inner span of x̃′jmax . There are three cases:

• if x̃jabs is an inner span of x̃jmax then min(span(x̃jmax)) =
min(span(x̃jabs)) and so jabs ∈ J . By definition of jmax we know that
min(span(x̃′jabs)) ≤ min(span(x̃′jmax)), contradicting the fact that

min(span(x̃′jmax)) < min(span(x̃′jabs)).

• if x̃jmax is an inner span of x̃jabs ; since x̃jabs ∼ x̃′jabs , there is some z̃′

on lane(y) such that z̃′ is an inner span of x̃′jabs . This implies that
span(x̃′jabs) = span(x̃′jmax). This contradicts the fact that

min(span(x̃′jmax)) < min(span(x̃′jabs)).

• if x̃jabs is a left-border span of x̃jmax then since x̃jmax ∼ x̃′jmax , there
is some z̃′ on lane(y) such that z̃′ is a left-border span of x̃′jmax and
ANy,z(x̃jabs) = ANy,z(z̃

′). Since x̃′jabs is an inner span of x̃′jmax , we know
by Proposition 12 that ANy,z(x̃

′
jabs

) 6= ANy,z(z̃
′). This contradicts the

fact that ANy,z(x̃
′
jabs

) = ANy,z(x̃jabs) (because x̃′jabs ∼ x̃jabs).

Finally, the case when x̃′jmax is a left-border span of x̃′jabs is similar to the
above (omitted).

This concludes the proof of (†). Next, for all 1 ≤ i ≤ l, let zi be the lane
of x̃i (and of x̃′i). Let m = min(span(x̃jmax)) and m′ = min(span(x̃′jmax)). By
definition of jmax, ∀1 ≤ j ≤ l,min(span(x̃j)) ≤ min(span(x̃jmax)). Thus for
all 1 ≤ i ≤ l, m ∈ span(x̃i). Hence

% |= R(x̃1, x̃2, ..., x̃l) iff Hm |= R((z1)m, (z2)m, ..., (zl)m)

Additionally, (†) implies that

% |= R(x̃′1, x̃
′
2, ..., x̃

′
l) iff Hm′ |= R((z1)m′ , (z2)m′ , ..., (zl)m′)

31

Moreover, since x̃jmax ∼ x̃′jmax we know that (Hm)|x̄m coincides with
(Hm′)|x̄m′ [x̄m/x̄m′] on x̄m, so

% |= R(x̃1, x̃2, ..., x̃l) iff % |= R(x̃′1, x̃
′
2, ..., x̃

′
l)

This concludes the proof of Lemma 14. �

Lemma 14 allows us to define an enactment (D, ρ, θ) for every symbolic
run % = {(x̄i, Hi, εi, σi)}i≥0 of an artifact system Γ in linear propagation form.
The domain of D consists of the equivalence classes of ∼ (of which there
are finitely many), and for each R ∈ DB of arity l, the tuples it contains
are defined as above. The mapping θ sends xi to the equivalence class of
[xi]≈ under ∼, and ρ is the image of % under θ. It is easy to check that
(D, ρ, θ) so defined is an enactment of %. Finally, Lemma 9 allows to transfer
enactments of symbolic runs of artifact systems in linear propagation form to
enactments of symbolic runs of arbitrary artifact systems. Observe that the
final enactment is exponential in |x̄|. This completes the proof of Theorem 7.

Effective regularity of the service view We can now show the effective
regularity of the service view of Γ. From Lemma 6 and Theorem 7 it follows
that Slin(Γ) = {S(%) | % ∈ SRuns(Γ)}. We can construct a finite-state
transition system F(Γ) accepting the latter as follows:

• States: the isomorphism types (H, ε) of x̄ ∪ x̄′,

• Initial states: the states whose restrictions to x̄ satisfy Π

• Transitions: (H, ε)
σ−→ (H̄, ε̄) if (H, ε) satisfies items (iv) − (v) of

Definition 10 for service σ and (H, ε)|x̄′ and (H̄, ε̄)|x̄ are identical modulo
renaming x̄′ to x̄.

The ω-language accepted by F(Γ) consists of the sequences of transition
labels in all infinite runs of the system starting from some initial state. By
construction, this is precisely {S(%) | % ∈ SRuns(Γ)}. Thus, we have the
following.

Theorem 15. The class of unconstrained artifact systems has effectively
ω-regular service views.

32

Verification vs. effective ω-regularity We note that the effective ω-
regularity of Slin(Γ) implies decidability of LTL(QFO) properties of artifact
systems, but is strictly stronger. Decidability of verification follows from
ω-regularity because for each Γ and LTL(QFO) property ξ = ∀ȳϕf , and each
choice of isomorphism type for ȳ, one can construct an artifact system Γϕf
and an LTL formula ϕ̄ such that Γ |= ϕf(ȳ) iff Slin(Γϕf) |= ϕ̄. Essentially,
Γϕf is obtained, for a fixed choice of ȳ, by augmenting the artifact variables
and pre-and-post conditions of each service of Γ in order to record the truth
values of the FO-components of ϕf in each transition. Since a finite-state
transition system specifying Slin(Γϕf) can be effectively constructed, this
reduces verification to classical finite-state LTL model-checking, and yields
decidability. The converse is falsified by results of [39] which imply that
artifact systems equipped with a total order do not have ω-regular service
views, yet verification of LTL(QFO) properties is decidable.

Universal test databases The above results, notably Theorem 7, have
some potentially significant benefits for verification. We can show the following
rather surprising result.

Theorem 16. Let Γ be a constant-free artifact system with k artifact vari-
ables. One can construct a database D∗ of size double exponential in k
such that for every constant-free LTL(QFO) formula ξ over Γ, Γ |= ξ iff
RunsD∗(Γ) |= ξ.

Proof. Consider an LTL(QFO) formula ξ over Γ. As shown in [12] (Lemma
3.3), global variables can be easily eliminated, so one can assume that ξ = ϕf .
Let % = {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run of Γ. Satisfaction of ξ by %
is defined similarly to actual runs, by evaluating each FO component of
ϕf on the consecutive Hi/εi. Consider an enactment (D, ρ, θ) of %, where
ρ = {(ρi, σi)}i≥0. Because Hi/εi and D|(ρi ∪ ρi+1) are isomorphic, it is clear
that % |= ξ iff ρ |= ξ. This in conjunction with Lemma 6 and Theorem
7 shows that Γ |= ξ iff every symbolic run of Γ satisfies ξ. Because each
symbolic run has an enactment on some database of size exponential in k,
Runsk(Γ) = ∪{RunsD(Γ) | |D| ≤ exp(k)} are enactments of all symbolic
runs of Γ. Thus, Γ |= ξ iff all runs in Runsk(Γ) satisfy ξ. Suppose Γ and ξ
are constant free. There are finitely many non-isomorphic databases of size
bounded by exp(k), and let D∗ be their disjoint union. Clearly, Γ |= ξ iff all
runs over D∗ satisfy ξ. The size of D∗ is double exponential in k. �

33

Thus, D∗ acts as a universal test database (akin to an Armstrong relation)
for satisfaction of constant-free LTL(QFO) properties of Γ. In particular, a
fixed D∗ can be pre-computed and used to generate a counter-example run
for every constant-free LTL(QFO) property violated by Γ. In contrast, the
counter-example databases constructed by the algorithms in [18, 12] depend
on both the specification and property. Note that, if Γ and ξ use some set C
of constants, then constructing a single universal test database is no longer
possible: one needs a separate database for each isomorphism type over C.
Constructing the most concise test databases possible, and evaluating the
practical benefits, are important issues yet to be explored.

Theorem 16 also provides a potentially fruitful bridge to a line of re-
search that considers the verification of data-centric systems for a fixed initial
database (e.g., see [14, 23, 24], and the survey [8]). It shows that, for artifact
systems and properties satisfying the conditions of the theorem, verification
of runs over arbitrary databases can be reduced to verification of runs over
the fixed universal test database D∗.

4. Branching-Time Service Views

In this section we consider branching time service views of artifact systems.
Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. Recall the
branching-time semantics of Γ, given by TRuns∗(Γ). The branching-time
service view of Γ, denoted T S∗(Γ), is the tree obtained from TRuns∗(Γ) by
ignoring the contents of the nodes and retaining only the service labels of the
edges. We use the following definition of regularity for infinite trees: T S∗(Γ)
is regular if it is isomorphic to the unfolding of a finite-state transition system
with edge labels (equivalently, T S∗(Γ) has finitely many non-isomorphic
subtrees). Figure 2 shows a finite-state transition system representing the
branching-time service view of the artifact system in Example 2.

Analogously to the linear case, we say that a class A of artifact systems has
effectively regular branching-time service views if there is an algorithm that,
for each Γ in A, produces a finite-state transition system defining T S∗(Γ).

As we shall see, it turns out that unlike linear-time service views, branching-
time service views of unconstrained artifact systems are generally not regular.
One might hope that effective regularity holds for artifacts obeying the
natural feedback-free property that has proven so effective in overcoming
undecidability of LTL(QFO) properties for specifications with dependencies
and arithmetic [12]. Unfortunately, this is not the case. Indeed, we show that

34

even very simple CTL(QFO) properties are not decidable for feedback-free
artifacts, thus implying that they do not have effectively regular branching-
time service views.

Theorem 17. It is undecidable, given an unconstrained artifact system Γ
and a CTL(QFO) formula ξ such that (Γ, ξ) is feedback-free, whether Γ |= ξ.

Proof. The proof that CTL(QFO) model checking of feedback-free artifact
systems is undecidable is by reduction from the Post Correspondence Problem
(PCP) [38]. This is done in several stages. First, we sketch a proof of the result
of [18] (Theorem 4.2, stated there without proof) that checking LTL(QFO)
properties is undecidable for databases satisfying a functional dependency
(FD). This uses a reduction from the PCP. Next, we note that satisfaction
of FDs by the database can be expressed as a CTL(QFO) property. Using
this, we wish to mimick the reduction from the PCP that works for databases
with FDs. However, there is a glitch: LTL(QFO) model checking is decidable
for feedback-free specifications and properties even in the presence of FDs.
Thus, a direct reduction from the linear-time case is not possible. Instead,
we show how feedback freedom can be circumvented collectively by different
branches of the tree of runs while being obeyed by each individual branch,
and use this to adapt the PCP reduction to the branching-time framework.

We begin by recalling the following result from [18] and sketch a proof
that we will next adapt to the branching-time setting.

Lemma 18. [18] It is undecidable, given a set ∆ of FDs, an artifact system
Γ, and an LTL(QFO) formula ξ, whether Γ(∆) |= ξ.

Proof. Consider a PCP instance consisting of two sequences (u1, u2, ..., uk),
(v1, v2, ..., vk) of words over the alphabet {0, 1}. We sketch the construction
of an artifact system Γ whose database satisfies one FD, and an LTL(QFO)
formula ξ such that Γ |= ξ iff there is no solution to the PCP instance.

The database DB consists of a unary relation S and a binary relation R
satisfying two FDs 1→ 2 and 2→ 1. Hence R can be viewed as a directed
graph in which every node has out-degree 1. Thus, every simple path in R
can be uniquely identified by its initial vertex. Moreover, each vertex x can
be labelled by a 1 (if S(x) holds) or a 0 (if S(x) does not hold). This way, we
can associate a word over {0, 1} to each path in R.

The artifact system Γ implements a walk along a simple path in R, starting
from some nondeterministically chosen node x0, and checks if the word w

35

spelled by the labels along the path is a solution to the PCP. To do so, Γ
non-deterministically picks a sequence i1, . . . in of indexes from [1, ..., k], and
stores the positions in w reached by ui1 . . . uin , resp. vi1 . . . vin , in two variables
xu and xv. Initially, xu = xv = x0. Upon chosing a new index ij = m, Γ tries
to match the corresponding words um and vm in parallel against w, starting
from the current xu, resp. xv, using additional variables as cursors on um
and vm. The variables xu and the cursor for um advance in lock-step, being
incremented only if they point to the same character, and similarly for xv and
vm. A solution to the PCP is found if xu = xv ∧ xu 6= x0. The LTL(QFO)
property ξ is then G(¬(xu = xv ∧ xu 6= x0)). �

We now proceed with the proof of Theorem 17, by adapting the previous
reduction from the PCP.

First, we force the relation R to satisfy the FDs 1 → 2 and 2 → 1. Let
Skey be the service whose pre-condition is ∃x, y, z(R(x, y) ∧R(x, z) ∧ y 6= z).
We see that this service can not be applied if and only if the relation R satisfy
a key dependency on its first attribute. Hence by adding to the CTL(QFO)
formula the atom ¬Skey we can force R to satisfy this key dependency.

We would like to mimick the reduction for the linear case by following
a simple path in R while checking if a solution to the PCP is found. Note
first that a direct application of the previous construction does not work,
because walking through consecutive nodes in R creates a violation of feedback
freedom.

We show how to circumvent feedback freedom by using different branches in
the tree of runs, to make the necessary connections. Suppose x contains a node,
and we wish that x′ contain its successor. Requiring directly R(x, x′) would
violate feedback freedom. Instead, we do this indirectly, using an additional
variable y. Clearly, R(x, x′) is equivalent to R(x, y) ∧ (x′ = y). However,
using this formula still leads to violation of feedback freedom. Instead, we
separate this condition in two parts, tested in different branches using two
services: Scheck with post-condition R(x, y), and Snext with post-condition
x′ = y.

The following represents a fragment of the symbolic tree of runs that
achieves this (edges indicate equalities among variables).

36

x0 , y0

x12 , y12

x22 , y22

x11 , y11

R(x11, y11)

x21 , y21

R(x21, y21)

Scheck Snext

Scheck Snext

The x variables on the right branch of the tree (i.e. x0, x12, x22) are
consecutive nodes on a path in R, yet each branch in the tree is feedback
free. Using this as a building block, the construction used in the linear case is
easily simulated. The CTL(QFO) formula stating the existence of a solution
to the PCP is of the form4 ξ = ¬Skey∧E(ϕ U Smatch) where ϕ states that the
services Scheck and Snext occur along the path as described above. Moreover,
(Γ, ξ) is feedback free by construction. �

Similarly to the linear-time case, it can be shown that effective regularity
of T S∗(Γ) implies decidability of CTL(∗)(QFO) properties. We therefore have
the following.

Corollary 19. Feedback-free artifact systems5 do not have effectively regular
branching-time service views.

Note that Corollary 19 does not exclude the possibility that T S∗(Γ) might
be regular for feedback-free Γ. However, it says that even if this holds, a
transition system defining T S∗(Γ) cannot be effectively constructed for each
such Γ.

Intuitively, feedback-freedom is ineffective in the branching-time setting
because the restriction can be circumvented collectively by different branches
of the tree of runs while being obeyed by each individual branch. To prevent

4Formally, the application of a service is detected by an additional artifact variable used
as a flag, turned on by the post-condition of the service.

5An artifact system Γ is feedback free if (Γ, true) is feedback free.

37

this, we introduce a natural extension of feedback-freedom to trees of runs,
called global feedback freedom. Recall the definition of feedback freedom
from Section 2.4. In a nutshell, global feedback freedom extends feedback
freedom by having the computation graph take into account connections
among variables in the entire tree of runs rather than just individual branches
Since we are not dealing with verification, we define global feedback-freedom
for artifact systems alone, without associated properties.

The definition of symbolic run of an artifact system can be extended to
the tree of symbolic runs in the natural way, as follows. The nodes of the tree
are all prefixes of symbolic runs, and there is an edge from a node % to all
nodes extending % by one transition. We denote the tree of symbolic runs of
Γ by TSRuns(Γ).

In order to define global feedback freedom we need to extend the notion
of computation graph from linear symbolic runs to TSRuns(Γ). Assume
for simplicity that all pre-and-post conditions of services are CQ¬ formulas
(otherwise, Γ can be brought to this form by putting the conditions in DNF and
defining one service for each pair of disjuncts from the pre-and-post condition).
Likewise, we assume that the global pre-condition Π of Γ is a CQ¬ formula
(otherwise, TSRuns(Γ) is decomposed in a finite union of trees, one for each
disjunct of Π in DNF). Note that every symbolic run % = {(x̄i, Hi, εi, σi)}i≥0

has an associated symbolic constraint run s(%) = {σi(x̄i, x̄i+1)}i≥0. We define
the computation graph associated to each prefix TSRunsn(Γ) of depth n of
TSRuns(Γ). The computation graph of TSRunsn(Γ) is essentially the union
of the computation graphs for the symbolic constraint runs corresponding to
each of its branches (maximal paths). To make this more formal, we need a
naming convention for variables in different branches of the tree. For each
prefix ρ = {(x̄i, Hi, εi, σi)}0≤i≤n of a symbolic run, and x ∈ x̄, let xρ and xε
be new variables. We define inductively an injective mapping δρ on ∪n+1

i=0 x̄i
as follows: (i) if n = 0 then δρ(x̄0) = x̄ε, and δρ(x̄1) = x̄ρ; (ii) if n > 0 and
ρ = ρ′ · (x̄n, Hn, εn, σn) then δρ|(∪ni=0x̄i) = δρ′ |(∪ni=0x̄i) and δρ(x̄n+1) = x̄ρ.
Note that δρ is defined on all x̄i where i ≤ |ρ|. For each branch β =
{(x̄i, Hi, εi, σi)}0≤i≤n, let Gβ and Eβ be the computation graph, respectively
equality graph, of the set of formulas {Π(x̄ε)} ∪ {σi(δβ(x̄i, x̄i+1))}0≤i≤n. Let
Gn be union of all Gβ, and En the transitive closure of the union of all Eβ,
where β are the branches in TSRunsn(Γ). For each node ρ in TSRunsn(Γ)
and variable xρ, we denote by [xρ] its equivalence class with respect to En.
The span of [xρ] in a branch β, denoted spanβ([xρ]), is defined as in the linear
case. TSRunsn(Γ) is globally feedback free if for every x ∈ x̄, and nodes ρ1, ρ2

38

of TSRunsn(Γ) such that ρ1 is a prefix of ρ2, if there is a path from xρ1 to xρ2

in Gn then there exists y ∈ x̄ and an ancestor ρ3 of ρ1 such that yρ3 occurs
on the path, spanρ2

([xρ1]) ⊆ spanρ2
([yρ3]) and spanρ2

([xρ2]) ⊆ spanρ2
([yρ3]).

Finally, Γ is globally feedback free if TSRunsn(Γ) is globally feedback free for
every n ≥ 0.

While the above definition is quite technical, it is satisfied, just like
feedback freedom, by natural examples of practical business processes such as
those discussed in [12], encountered in our collaboration with IBM. It can be
verified that the artifact system in Example 2 is globally feedback free. The
artifact system constructed in the proof of Theorem 17 is feedback free but
not globally feedback free. We also note the following.

Remark 20. An artifact model called Hierarchical Artifact System (HAS),
abstracting core elements of GSM, is studied in [20]. HAS extends the basic
artifact model with task hierarchy, concurrency, updatable artifact relations,
arithmetic, and database constraints (keys and foreign keys). The model is
subject to a set of restrictions on the data flow among tasks, which allows
verifying a significant class of temporal properties. The definition of global
feedback freedom applies to the HAS model equipped with artifact variables,
but without updatable artifact relations. It can be shown that such HAS are
globally feedback free.

We will show the following.

Theorem 21. The class of globally feedback-free artifact systems has effec-
tively regular branching-time service views.

The proof requires some technical development, which we present in the
remainder of the section. The basic idea is to show that there are only finitely
many subtrees TRunsD(Γ) of TRuns∗(Γ) up to bisimulation. Moreover, each
is realized by a database of bounded size, depending only on |x̄|. Since
bisimilar trees have the same branching-time service views, this establishes
the theorem.

We recall the standard notion of bisimulation. Two infinite trees T , T ′
with labeled edges are bisimilar if there exists a relation ∼ from the nodes of
T to those of T ′ such that: (i) root(T) ∼ root(T ′), (ii) if α ∼ α′ and α

σ−→ β
then there exists β′ such that α′

σ−→ β′ and β ∼ β′, and (iii) if α ∼ α′ and
α′

σ−→ β′ then there exists β such that α
σ−→ β and β ∼ β′.

39

We now present the main steps in the proof. Let Γ = 〈〈x̄,DB〉,Σ,Π〉
be an artifact system, with |x̄| = k. As in the global feedback freedom
definition, we assume that service pre-and-post conditions are in CQ¬ form
(conjunctions of literals). For a service σ = (π, ψ) we denote by fσ(x̄, ȳ) the
formula π(x̄) ∧ ψ(x̄, ȳ).

We next define the notion of n-type of a vector x̄ of artifact variables. An
n-type is a formula associated with a subtree of depth n of TSRuns(Γ), rooted
at x̄. The formula is obtained by composing the pre-and-post conditions of
all services along the paths of the subtree. Thus, the n-type characterizes the
x̄’s that can sit at the root of such subtrees. We show that there are only
finitely many non-equivalent n-types for n ≥ 0, which then allows showing
that there are only finitely many subtrees of TRuns∗(Γ) up to bisimulation.

Definition 17. The set Tn of n-types of x̄ is defined inductively as follows.

• T0 = { true }

• For n ≥ 0, Tn+1 consists of all formulas of the form∧
σ∈Σ0

∧
τ∈Tσ

∃ȳ(fσ(x̄, ȳ) ∧ τ(ȳ))

where ∅ 6= Σ0 ⊆ Σ and ∅ 6= Tσ ⊆ Tn.

Let D be a database over DB and ν be a valuation of x̄. It is easy to
check that, for every ν that labels some node in TRunsD(Γ), and each n ≥ 0,
there exists a unique strongest6 τn ∈ Tn such that D, ν |= τn. We denote the
latter by τn(D, ν). It is clear that τn+1(D, ν)→ τn(D, ν) for every n ≥ 0.

Note that all subtrees of TRunsD(Γ) rooted at node labeled ν are isomor-
phic. Let TRunsνD(Γ) be any such subtree. We will show that the sequence
of types {τn(D, ν) | n ≥ 0} provides sufficient information to determine
TRunsνD(Γ) up to bisimilarity (Lemma 25). Before however, we need the
following key lemma. Recall that the quantifier rank of an FO formula is the
maximum number of quantifiers on a path from root to leaf in the syntax
tree of the formula (e.g., see [30])

6With respect to logical implication.

40

Lemma 22. Let Γ be a globally feedback-free artifact system. There exists
b > 0, depending only on |x̄|, such that for every database D, tuple ν labeling
a node in TRunsD(Γ) and n ≥ 0, τn(D, ν) is equivalent to an FO sentence of
quantifier rank ≤ b.

Proof. We use the term (symbolic) pre-run to designate a finite prefix of
a (symbolic) run. The notion of enactment is adapted in the obvious way
from runs to pre-runs. In order to show that the type of a reachable tuple is
of bounded quantifier rank we relate τn(D, ν) to the computation graphs of
trees of symbolic runs defined earlier, then use global feedback freedom.

We say that a symbolic pre-run % reaches ν in D if it has an enactment
(D, ρ, hρ) in which ν is the last valuation in ρ. Suppose % reaches ν in D.
For each n ≥ 0, we denote by Σn(D, ν) and Tn(D, ν) the set of services, resp.
subset of Tn, such that

τn+1(D, ν)(x̄) =
∧

σ∈Σn(D,ν)

∧
τ∈Tn(D,ν)

∃ȳ(σ(x̄, ȳ) ∧ τ(ȳ))

(recall that T0 = { true }). We rename the variables in τn(D, ν) as in the
earlier definition of computation graph for a tree of symbolic runs. Let ξ be
the symbolic constraint pre-run of %. Then we define τn+1(D, ν)(x̄ξ) by∧

σ∈Σn(D,ν)

∧
τ∈Tn(D,ν)

∃x̄(ξ.σ)(σ(x̄ξ, x̄(ξ.σ)) ∧ τ(x̄(ξ.σ)))

Observe that this renaming provides a connection between the computation
graph of the (n)-type of a reachable tuple and the global computation graph.
Indeed, the following is immediate from the definition.

Lemma 23. Let ν be a reachable valuation in D, and % be a symbolic pre-run
that reaches ν. Let ξ be the symbolic constraint pre-run of %. Then for all
n ≥ 0, the computation graph of τn(D, ν)(x̄ξ) is included in G|%|+n.

We next show that Φ = τn(D, ν)(x̄ξ) is equivalent to a formula of quantifier
rank bounded by 2 × k2. By pushing all atoms inside the formula, Φ is
equivalent to ∃ȳφ(ȳ, z̄) where the free variables of φ are z̄ ⊆ x̄ξ. To obtain the
desired result, we show that Φ′ = ∃z̄∃ȳφ(ȳ, z̄) can be rewritten with quantifier
rank bounded by 2× k2.

If ψ is a conjunction of literals then the computation graph Gψ of ψ is
the graph whose nodes are var(ψ) and where there is an edge between two

41

variables u and v if and only if they both appear in a literal of ψ. Remark
that the formula φ defined in the previous paragraph is a conjunction of
literals.

In the following we denote by ≤p the relation between symbolic constraint
pre-run “is a prefix of”. Recall that if xξ is a variables of var(φ) then [xξ] is
the equivalence class of xξ for the equivalence relation defined by the transitive
closure of En. By extension, we denote by [φ] the formula obtained from φ by
replacing each variable x by its equivalence class [x].

We next define a class of formulas that will correspond to connected
subgraphs of G[φ]:

Definition 18. Let ∃ūψ′ be a formula. We say that ∃ūψ′ is a connected
subformula of [φ] if :

• ū ⊆ var([φ])

• (Gψ′)|ū is connected.

• ψ′ is a conjunction of a subset of the conjuncts of [φ]

We will show that each connected subformula ∃ūψ′ of [φ] can be rewritten
into a formula of the form ∃v̄

∧
0≤i≤l (∃ūiφi(ūi)) where all the ∃ūiφi(ūi) are

connected subformula and v̄ is “small”. Intuitively the set v̄ consists of the
minimum set of common variables between the {∃ūiφi(ūi)}0≤i≤l.

We first define the rewriting process and bound the size of v̄. Then we
define a measure on connected subformulas and show that it strictly decreases
at each application of the rewriting step (i.e. the measure of ∃ūψ′ is strictly
larger than the measure of ∃ūiφi(ūi)) and that ∃[z̄]∃[ȳ][φ] can decomposed
into a conjunction of connected subformulas such that the measure on each
of them is bounded by a constant. This will yield an equivalent formula of
bounded quantifier rank.

Observe that by definition of τn(D, ν)(x̄ξ), if uξ1 and vξ2 have an edge in
Gφ then either ξ1 and ξ2 are the same symbolic constraint pre-run, or one
is the child of the other. As an immediate consequence, if C is a connected
subgraph of Gφ then there exists a symbolic constraint pre-run ξp and an
artifact variable u ∈ x̄ such that uξp is a node of C and for all uξ ∈ node(C),
ξp is a prefix of ξ. We call ξp the minimum prefix of C.

Let ∃ūψ′ be a connected subformula of [φ]. Assume that ū 6= ∅. Let ξp be
the minimal prefix of ∃ūψ′, and v̄ = [x̄ξp]∩ ū. Note that, since there |x̄ξp | ≤ k,

42

we know that |v̄| ≤ k. Let w̄ be the free variables of ∃ūψ′ and ū0, ..., ūl be
the connected component of (Gψ′)|ū\v̄. For all 0 ≤ i ≤ l let ψi = ψ′|ūi∪v̄∪w̄. It

is easy to check that ∃ūiψi are connected subformulas of [φ].
Since for all 0 ≤ i ≤ l, the formula ψi is a restriction of ψ′ to ūi ∪

v̄ ∪ w̄, we know that ∃v̄
∧

0≤i≤l (∃ūiψi(ūi)) is implied by ∃ūψ′. Conversely,
let R(a0, ..., al) be a conjunct of ψ′; then all the variables of ā\(v̄ ∪ w̄) are
connected in (Gψ′)ū\v̄, so there is 0 ≤ i ≤ l such that ā ⊆ ūi ∪ v̄ ∪ w̄. Thus,
R(a0, ..., al) is a conjunct of ∃ūiψi. This shows that ∃ūψ′(ȳ′) is equivalent to
∃v̄
∧

0≤i≤l (∃ūiψi(ūi)).
Now we need to define a measure on connected subformulas and show that

it decreases when a rewriting step is performed. Let ∃ūψ′ be a connected
subformula of [φ] and ξp be its minimal prefix. The measure of ∃ūψ′ will be
of the form max

ξp≤pβ
(m1(∃ūψ′, β) +m2(∃ūψ′, β)), where m1 and m2 are defined

next.
To define m1 we use an extension of the notion of width used in [12].

Specifically, the width of β in (Gψ′)|ū (denoted by width(Gψ′)|ū
(β)) is defined

as the number of nodes of (Gψ′)|ū that are in [x̄β]. Since x̄ has k variables,
width(Gψ′)|ū

(β) ≤ k. We then define m1(∃ūψ′, β) = width(Gψ′)|ū
(β).

The measure m2(∃ūψ′, β) is the support of β in (Gψ′)|ū, denoted by
support(Gψ′)|ū(β), defined as the maximum number of variables in x̄ occurring
in some path of (Gψ′)|ū starting at β. More formally:

support(Gψ′)|ū(β) =

max
β≤pβ′′

(
|{x ∈ x̄ | ∃β′, β ≤p β′ ≤p β′′ and [xβ′] is a node of (Gψ′)|ū}|

)
We show the following.

Lemma 24. Let ∃ūψ′ be a connected subformula of [φ]. Assume that ū 6= ∅.
Let ∃v̄

∧
0≤i≤l (∃ūiφi(ūi)) be the rewriting of ∃ūψ′ defined earlier and ξp be the

minimal prefix of ∃ūψ′. Then for all 0 ≤ i ≤ l and β, if there exists u ∈ x̄
such that uβ ∈ ūi then we have

m1(∃ūψ′, β) +m2(∃ūψ′, β) < m1(∃ūiφi(ūi), β) +m2(∃ūiφi(ūi), β).

Proof. Let ψ′ be a formula with var(ψ′) ⊆ var([φ]) and β be a pre-run. We
denote by (Gψ′)β the restriction of Gψ′ to the variables in {[x%] | x ∈ x̄∧ % ≤p
β}.

43

It is easy to check that width(Gψ′)|ū
(β) ≤ width(Gφi)|ūi

(β) and

support(Gψ′)|ū(β) ≤ support(Gφi)|ūi (β). So it is sufficient to prove that one of
the inequalities is strict.

Let β be a symbolic pre-run with ξp ≤p β and 0 ≤ i ≤ l. Let [vξp] ∈ v̄
be such that spanβ([vξp]) is maximal. If β ∈ spanβ([vξp]) then we know that
width(Gψ′)|ū

(β) < width(Gφi)|ūi
(β).

Now assume that β 6∈ spanβ([vξp]). Assume that there is β ≤p β′ such
that [vβ′] ∈ ūi. Since a span on a branch is an “interval” and β 6∈ spanβ([vξp])
we know that vβ′ 6∈ [vξp]. Observe that since ūi is a connected component of
(Gψ′)|ū\v̄ and (Gψ′)|ū is connected, (Gψ′)|ūi∪v̄ is connected. Hence there is a
path between [vξp] and [vβ′] in (Gψ′)|ūi∪v̄.

Since ψ′ is a conjunction of literals of [φ], if there is an edge between
[x%] and [y%′] in Gψ′ then there is a path between x% and y%′ in Gφ such that
all elements of the path are in [x%] ∪ [y%′]. So there is a path between vξp
and vβ′ in Gφ such that all nodes on the path are in

(
∪u∈(ūi∪v̄)u

)
. Moreover,

Lemma 23 implies that there exists m such that Gφ is included in the global
computation graph Gm. Since Gm is globally feedback free, there exist ξg with
ξg ≤p ξp and x ∈ x̄ such that xξg is on the path and

spanβ′([vβ′]) ∪ spanβ′([vξp]) ⊆ spanβ′([xξg]).

Since xξg is on the path, [xξg] ∈ ūi∪v̄. Moreover since ξp is a minimal prefix
of ∃ū.ψ′, it follows that ξp ≤p ξg, so ξg = ξp and [xξg] ∈ v̄. Additionally, β 6∈
spanβ([vξp]) and β ≤p β′, so spanβ′([vβ′]) and spanβ′([vξp]) are disjoint, which
implies that the above inclusion is strict. This contradicts the maximality
of spanβ([vξp]). So there is no β ≤p β′ such that [vβ′] ∈ ūi. This implies that
support(Gψ′)|ū(β) < support(Gφi)|ūi (β), which concludes the proof of Lemma
24. �

Finally, it remains to initialize the process by decomposing (G[φ])|[ȳ]∪[z̄] into
connected components ȳ0, . . . , ȳr so that [φ] is equivalent to

∧
0≤i≤r

(
∃ȳi[φ]|ȳi

)
.

Now all the formulas ∃ȳi[φ]|ȳi are connected subformulas of [φ], so we can
apply Lemma 24. Each application of the lemma to ∃ūψ′ yields new connected
subformulas {∃ūiψi}0≤i≤l and v̄ (with less than k variables) such that ∃ūψ′(ȳ′)
is equivalent to ∃v̄

∧
0≤i≤l (∃ūiφi(ūi)). Furthermore, it can be easily shown

that the last condition yields an upper bound of 2 × k on the number of
nested applications of the lemma. At each step we add at most k existential
quantifiers, so the quantifier rank of the resulting formula is bounded by
2× k2. This concludes the proof of Lemma 22. �

44

Using Lemma 22, we show the following.

Lemma 25. Let ν1, ν2 be valuations of x̄ labeling nodes in TRunsD(Γ). If
τn(D, ν1) = τn(D, ν2) for every n ≥ 0 then TRunsν1

D (Γ) and TRunsν2
D (Γ) are

bisimilar.

Proof. For a node ρ of TRunsD(Γ) we denote its label by λ(ρ). We define a
sequence of equivalence relations (∼n)n≥0 on nodes of TRunsD(Γ) as follows:

• ∼0 is the cross product of all nodes

• ρ1 ∼n+1 ρ2 if for every edge ρ1
σ−→ ρ′1 there exists an edge ρ2

σ−→ ρ′2
such that ρ′1 ∼n ρ′2, and conversely

Intuitively, ρ1 ∼n ρ2 says that the subtrees of depth n rooted at ρ1 and ρ2 are
bisimilar. Clearly, ∼n+1 refines ∼n for every n ≥ 0. The following is easily
shown by induction:

(†) for every n ≥ 0, ρ1 ∼n ρ2 iff τn(D,λ(ρ1)) = τn(D,λ(ρ2))

By Lemma 22, there are finitely many non-equivalent formulas τn(D,λ(ρ))
for nodes ρ in TRunsD(Γ). Therefore, there are finitely many distinct relations
∼n for n ≥ 0. Since (∼n)n≥0 is a decreasing sequence (with respect to
refinement), there exists N > 0 such that ∼n=∼N for every n ≥ N . In
particular, ∼N+1=∼N . It easily follows that ∼N is a bisimilarity relation on
TRunsD(Γ). Also, for all nodes ρ1, ρ2 such that τn(D,λ(ρ1)) = τn(D,λ(ρ2))

for every n ≥ 0, ρ1 ∼N ρ2 so TRuns
λ(ρ1)
D (Γ) and TRuns

λ(ρ2)
D (Γ) are bisimilar.

�

From Lemma 22 it follows that for every D and reachable ν, there exists
N > 0 such that τn(D, ν) ≡ τN(D, ν) for every n ≥ N . We denote τN(D, ν)
by τ ∗(D, ν) and call it the type of ν in D. Thus, τ ∗(D, ν) is equivalent to
{τn(D, ν) | n ≥ 0}. Observe that, by Lemma 22, there are finitely many tuple
types. The set of all tuple types is denoted by T .

Finally, we define database types as follows.

Definition 19. The type of a database D is τ(D) = {τ ∗(D, ν) | D |= Π(ν)}.

We have the following.

45

Lemma 26. Let D1 and D2 be databases over DB such that τ(D1) = τ(D2).
Then TRunsD1(Γ) and TRunsD2(Γ) are bisimilar.

Note that, since there are finitely many tuple types, there are also finitely
many database types. Since a database type can be written as the conjunction
of finitely many tuple types, Lemma 22 also applies to database types, and
each can be written as an ∃∗FO sentence. Let d be the maximum number
of existential quantifiers in these sentences. Thus, there are finitely many
equivalence classes of trees of database runs under bisimulation, and each
has a representative TRunsD(Γ) for some database D whose domain is of
size ≤ d. Since trees of runs equivalent under bisimulation have the same
branching-time service views, it follows that T S∗(Γ) is ω-regular, and a finite-
state transition system defining it can be effectively constructed from Γ. This
concludes the proof of Theorem 21.

Remark 27. Theorem 21 continues to hold for artifact systems extended
with arithmetic (e.g., linear inequalities with integer coefficients over Q).
To see this, augment DB with a finite set C of relation symbols with fixed
interpretations as linear constraints, and let the data domain be Q. The
definition of global freedom applies, by treating the relation symbols in C as
arbitrary relations, and Lemma 22 carries through. Also, satisfiability of a
type involving mixed data and arithmetic relations can be effectively tested:
the only interaction between the two is via equality types.

As noted earlier, effective regularity of the branching-time service views of
a class of systems generally implies decidability of its CTL*(QFO) properties.
In order for this to hold, we must however extend the global feedback freedom
restriction to pairs (Γ, ϕ) where Γ is an artifact system and ϕ a CTL*(QFO)
property. Taking into account the property is done similarly to feedback-
freedom (details omitted). We can then show the following.

Theorem 28. It is decidable, given an artifact system Γ and a CTL*(QFO)
formula ϕ such that (Γ, ϕ) is globally feedback free, whether Γ |= ϕ.

Proof. From a globally feedback-free (Γ, ϕ) one can construct a globally
feedback-free artifact system Γ̄ and a CTL* formula ϕ̄ such that Γ |= ϕ iff
T S∗(Γ̄) |= ϕ̄. Since T S∗(Γ̄) is specified by a finite-state transition system
effectively constructed from Γ and ϕ, the result follows. �

46

5. The impact of data dependencies

In this section we consider the impact of data dependencies on the regular-
ity of service views. We focus on constrained artifact systems Γ(∆) where ∆
is a set of equality or tuple-generating dependencies (see definitions in Section
2.2).

Linear-time service views We first consider linear-time service views.
Let Γ(∆) be a constrained artifact system. The linear-time service view of
Γ(∆) is S∆

lin(Γ) = {S(ρ) | ρ ∈ Runs(Γ(∆))}. We say that a class A of artifact
systems constrained by a class D of dependencies has effectively ω-regular
linear-time service views if there is an algorithm which, given Γ ∈ A and
∆ ∈ D, produces a Büchi automaton defining S∆

lin(Γ). Observe that the
requirement of an effective construction is essential: it is possible in principle
that S∆

lin(Γ) may be regular for each Γ ∈ A and ∆ ∈ D, without S∆
lin(Γ) being

effectively constructible from Γ and ∆.
We can show the following.

Theorem 29. Artifact systems constrained by EGDs do not have effectively
ω-regular linear-time service views. Moreover, this holds even if the EGDs
are limited to a single FD.

Proof. It can be shown, similarly to Lemma 18, that it is undecidable, given
an artifact system Γ, a set ∆ of EGDs, and a service σ, whether there exists
a run of Γ(∆) in which service σ is used. This holds even if ∆ consists of a
single FD. The result follows. �

Note that, similarly to Corollary 19, Theorem 29 leaves open the possibility
that S∆

lin(Γ) might be ω-regular.

Remark 30. One might wonder if S∆
lin(Γ) can be characterized by some

natural extension of ω-regular languages. It turns out that Theorem 29 can
be extended to any family L of ω-languages with the following properties: (i)
L is closed under intersection with ω-regular languages, and (ii) emptiness of
languages in L is decidable. This assumes a finite specification mechanism for
languages in L, and that (i) is effective, i.e. the specification of the intersection
of a language in L with the ω-language defined by a Büchi automaton must be
computable. One example of such L is the family of ω-context-free languages,
defined by infinitary extensions of pushdown automata and context-free
grammars (see [5, 41]).

47

We now consider TGDs. Rather surprisingly, the easy case is that of
embedded TGDs.

Theorem 31. Artifact systems constrained by embedded TGDs have effec-
tively ω-regular linear-time service views.

Proof. It is enough to show that every symbolic run % of Γ has an enactment
on a database satisfying ∆. Indeed, this implies that S∆

lin(Γ) = Slin(Γ), thus
establishing effective ω-regularity. Let % be a symbolic run of Γ. By Theorem
7, % has an enactment (D, ρ, θ). Let d be some domain value not occurring in
D or the constants of Γ. Observe that an extension D̄ of D satisfying ∆ can
be obtained by chasing D with the TGDs in ∆ so that d is used as a witness
to every existentially quantified variable in the head of a TGD. Since D̄ is an
extension of D, (D̄, ρ, θ) is also an enactment of %. �

For full TGDs we have the following.

Theorem 32. There exists an artifact system Γ and set ∆ of full TGDs such
that S∆

lin(Γ) is not ω-regular.

Proof. Let the database schema of Γ consist of a binary relation R and
∆ be the full TGD ∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z)), guaranteeing that
R is transitive. Γ has one attribute variable x and two services init and
next. The global precondition is ¬R(0, 0) ∧ x = 0 where 0 is a constant.
The pre-condition of init is x 6= 0 and its post-condition is x′ = 0. The
pre-condition of next is true and its post-condition is R(x, x′) ∧ ¬R(x′, x′).
Runs of Γ consist of stepping through R using next, starting from 0, using
only elements which do not belong to a cycle, until init reinitializes x to 0 and
the process is restarted. Since R is finite, S∆

lin(Γ) consists of all ω-words of
the form (next)n1 · init · (next)n2 · init · · · such that for each word there exists
N > 0 for which ni ≤ N for all i ≥ 1. It is easy to see that this language,
and therefore S∆

lin(Γ), is not ω-regular. �

It turns out that effective ω-regularity is recovered for acyclic full TGDs.

Theorem 33. Artifact systems constrained by acyclic sets of full TGDs have
effectively ω-regular linear-time service views.

48

Proof. Recall the finite-state transition system F(Γ) used earlier to define
Slin(Γ). Its states consist of the isomorphism types of Γ, and edges are
labeled by services. The same transition system can be viewed as defining
the language SRuns(Γ), by taking into account the isomorphism type of each
state in addition to the edge labels.

Consider ∆. A partial unfolding of a TGD is obtained by replacing one
relational atom R(z̄) in its body by the body of any TGD in ∆ with R in its
head (if such an atom exists), with appropriate renaming of variables. Let
∆∗ by the closure of ∆ under partial unfoldings. Obviously, ∆∗ and ∆ are
equivalent. Because ∆ is acyclic, ∆∗ is finite.

The idea of the proof is to define a Büchi automaton B that accepts
the runs of F(Γ) that are inconsistent with some TGD in ∆∗. Using ∆∗

instead of ∆ facilitates this task by allowing to ignore compositions of TGDs.
Let ξ = ∀ȳ(∃z̄ϕ(ȳ, z̄) → R(ȳ)) in ∆∗. An inconsistency with ξ occurs in a
symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 if for some j ≥ 0 and ȳ ⊆ x̄j ∪ x̄j+1,
¬R(ȳ) is in Hj and there exist z̄ ⊆ ∪i≥0x̄i such that ϕ(ȳ, z̄) is satisfied by
∪i≥0Hi. It can be seen, using the construction in the proof of Theorem 7, that
a symbolic run is consistent with ∆∗ iff it has an enactment on a database
satisfying ∆.

The Büchi automaton non-deterministically guesses an inconsistency. The
first component of the inconsistency, ¬R(ȳ), can be guessed by B whenever
¬R(ȳ) is in Hj for the current j. To enable checking the second component
of an inconsistency, the states of B also contain variables z̄. The values of
the variables z̄ are non-deterministically guessed throughout the run, and
the connections between them, as specified by the isomorphism types, are
recorded. A run is accepted whenever ¬R(ȳ) and ϕ(ȳ, z̄) hold for some
TGD and guessed ȳ and z̄. The set of symbolic runs consistent with ∆∗ is
then SRuns(Γ) ∩ L(Bc), where Bc defines the complement of L(B). Finally,
S∆∗

lin (Γ) = h(SRuns(Γ) ∩ L(Bc)), where h is the homomorphism removing
the isomorphism types and retaining just the service names. Since ω-regular
languages are closed under complement, intersection, and homomorphism
(with effective constructions), S∆∗

lin (Γ) is ω-regular and its specification can be
effectively constructed. �

We finally consider feedback-free artifact systems. Recall that these are
particularly well-behaved with respect to verification. In particular, while
model-checking is undecidable for artifact systems in the presence of FDs,
it becomes decidable for feedback-free systems [12]. One might hope that

49

feedback-free systems are similarly well-behaved with respect to linear service
views. Indeed, in contrast to Theorems 29 and 32, we have the following.

Theorem 34. Feedback-free artifact systems constrained by sets of EGDs
and full TGDs have effectively ω-regular linear-time service views.

Proof. The approach is similar to that of [12] for showing decidability of
model-checking. Consider a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ. For
each i ≥ 0, let νi(x̄i) be the formula ∃x̄0 . . . ∃x̄i−1(Π(x̄0)∧

∧
0≤j<i σj(x̄j, x̄j+1)).

Intuitively, νi(x̄i) completely specifies the constraints placed on x̄i by the first
i transitions. Let Φ = {∃x̄iνi(x̄i) | i ≥ 0}. It can be shown that there exists
an enactment of % on a database D satisfying ∆ iff D |= Φ ∪∆ (this uses the
finiteness of D and a pigeonhole argument). As shown in [12], because Γ is
feedback-free, each formula in Φ can be rewritten as a formula of quantifier
rank bounded by |x̄|2. Since there are finitely many non-equivalent formulas
of bounded quantifier rank [30], Φ is equivalent to a single ∃FO formula ϕ.
Moreover, because all formulas in ∆ are universally quantified, if % has an
enactment on a database satisfying ∆, it also has an enactment on such a
database whose domain is bounded by the number of variables (say v) in
ϕ. Thus, S∆

lin(Γ) = ∪{Slin(RunsD(Γ)) | D |= ∆, |dom(D)| ≤ v}. Since each
Slin(RunsD(Γ)) is ω-regular, S∆

lin(Γ) is effectively ω-regular. �

Branching-time service views We now consider briefly the impact of
data dependencies on branching-time service views. Recall that these views
are not regular, even for feedback-free systems. However, by Theorem 21, the
views are effectively regular for globally feedback-free systems.

Let Γ be an artifact system and ∆ a set of dependencies. The branching-
time service view of Γ(∆) , denoted T S∗(Γ(∆)), is obtained as before from
TRuns∗(Γ(∆)) by ignoring the contents of the nodes and retaining only
the service labels of the edges. We say that a class A of artifact systems
constrained by a class D of dependencies has effectively regular branching-
time service views if there is an algorithm which, given Γ ∈ A and ∆ ∈ D,
produces a finite-state transition system specifying T S∗(Γ(∆)).

We can show the following.

Theorem 35. Globally feedback-free artifact systems constrained by sets of
EGDs and full TGDs have effectively regular branching-time service views.

50

Proof. Recall the proof of Theorem 21 and the formulas ∃∗FO defining
database types, whose number of existential quantifiers is bounded by some
b depending only on Γ. Note that the EGDs and full TGDs in ∆ can be
expressed by a sentence in ∀∗FO. Suppose there is a database D of type τ
satisfying ∆. Then there exists D0 ⊆ D, whose domain consists of b witnesses
to the existentially quantified variables of τ , that also has type τ and satisfies
∆. Thus, every database type that includes an instance satisfying ∆, also has
a representative satisfying ∆ whose domain is bounded by b. It follows that
T S∗(Γ(∆)) is regular, and a specification can be effectively constructed from
Γ and ∆. �

Remark 36. Theorem 35 alternatively holds for sets ∆ of EGDs and arbi-
trary TGDs (full and embedded), as long as the set of TGDs is acyclic.

6. Conclusions

We considered the problem of extracting process-centric views from highly
declarative, data-driven workflows. Classical process-centric workflow specifi-
cation frameworks provide a variety of means for describing the valid sequences
(or trees) of events in the workflow, with finite-state transition diagrams at
their core. We considered views consisting of the sequences of services applied
during linear or branching-time runs of an artifact system. The results estab-
lish when such views are regular and can be specified effectively by finite-state
transition systems. Thus, we showed that linear-time service views are regular,
while branching-time views are regular only under certain conditions. We also
considered the impact of data dependencies (tuple and equality generating
dependencies) on regularity of views. We showed that linear-time views are
no longer regular in presence of FDs or cyclical full TGDs, but remain regular
with acyclic or embedded TGDs. Regularity of branching-time service views
is preserved in the presence of EGDs and full TGDs.

Our results also have some interesting connections to verification. For
instance, the techniques developed to show regularity of linear-time views
yield potentially more efficient ways to generate counterexample databases
witnessing violations of LTL(QFO) properties. As a side-effect of results
on branching-time service views, we showed that CTL(QFO) properties are
undecidable for artifact systems, but model-checking CTL*(QFO) becomes
decidable under the same restrictions guaranteeing regularity of branching-
time views.

51

Several interesting questions remain to be investigated. If a class of
declarative workflows does not have regular service views, two courses of
action are plausible. First, one might seek an extension of regular languages
powerful enough to describe the views while remaining palatable to users.
Alternatively, one might opt for a regular approximation of the view, resulting
from relaxations that users are likely to find reasonable. In all cases, the views
could be made more expressive and informative by augmenting the purely
process-centric specifications with light-weight annotations on transitions with
conditions on the data, in the spirit of BPEL and YAWL [43]. Besides the
technical problems per se, this brings into play interesting HCI and usability
issues.

7. Acknowledgements

This work was supported in part by the National Science Foundation
under award IIS - 1422375.

References

[1] Abiteboul, S., Hull, R., Vianu, V., 1995. Foundations of Databases.
Addison Wesley.

[2] Belardinelli, F., Lomuscio, A., Patrizi, F., 2012. An abstraction technique
for the verification of artifact-centric systems. In: Proc. Intl. Conf. on
Knowledge Representation.

[3] Bhattacharya, K., Caswell, N. S., Kumaran, S., Nigam, A., Wu, F. Y.,
2007. Artifact-centered operational modeling: Lessons from customer
engagements. IBM Sys. Journal 46 (4).

[4] Bhattacharya, K., et al., 2005. A model-driven approach to industrializing
discovery processes in pharmaceutical research. IBM Systems Journal
44 (1).

[5] Boasson, L., Nivat, M., 1980. Adherences of languages. J. Comput.
System Sci. 20 (3).

[6] Bozzon, A., Brambilla, M., Ceri, S., Mauri, A., 2013. Reactive crowd-
sourcing. In: 22nd International World Wide Web Conference, WWW,
Rio de Janeiro, Brazil. pp. 153–164.

52

[7] Bozzon, A., Brambilla, M., Ceri, S., Mauri, A., Volonterio, R., 2014.
Pattern-based specification of crowdsourcing applications. In: Web Engi-
neering, 14th International Conference, ICWE 2014, Toulouse, France.
pp. 218–235.

[8] Calvanese, D., De Giacomo, G., Montali, M., 2013. Foundations of
data-aware process analysis: a database theory perspective. In: ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems
(PODS).

[9] Chao, T., et al., 2009. Artifact-based transformation of IBM Global
Financing: A case study. In: Int’l. Conf. on Business Process Management
(BPM).

[10] Clarke, E., Grumberg, O., Peled, D., 2000. Model Checking. MIT Press.

[11] CMMN, 2013. Case Management Model and Notation, FTF Beta 1.
OMG Document Number dtc/2013-01-01, Object Management Group.
URL http://www.omg.org/spec/CMMN/1.0/Beta1/

[12] Damaggio, E., Deutsch, A., Vianu, V., 2012. Artifact systems with
data dependencies and arithmetic. ACM Trans. Database Syst. 37 (3),
Preliminary version in ICDT 2011.

[13] Damaggio, E., Hull, R., Vacuĺın, R., 2013. On the equivalence of incre-
mental and fixpoint semantics for business artifacts with Guard-Stage-
Milestone lifecycles. Information Systems 38, 561–584.

[14] De Giacomo, G., Masellis, R. D., Rosati, R., 2012. Verification of con-
junctive artifact-centric services. Int. J. Cooperative Inf. Syst. 21 (2),
111–140.

[15] de Man, H., 2009. Case management: Cordys approach. BP Trends
(www.bptrends.com).

[16] Demri, S., Lazić, R., 2006. LTL with the Freeze Quantifier and Register
Automata. In: ACM/IEEE Symp. on Logic in Computer Science (LICS).

[17] Demri, S., Lazić, R., Sangnier, A., 2008. Model checking freeze LTL over
one-counter automata. In: FoSSaCS.

53

[18] Deutsch, A., Hull, R., Patrizi, F., Vianu, V., 2009. Automatic verification
of data-centric business processes. In: Int’l. Conf. on Database Theory
(ICDT).

[19] Deutsch, A., Hull, R., Vianu, V., 2014. Automatic verification of data-
driven systems. Sigmod Record 43 (3), 5–17.

[20] Deutsch, A., Li, Y., Vianu, V., 2016. Verification of hierarchical artifact
systems. In: ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems (PODS).

[21] Deutsch, A., Sui, L., Vianu, V., 2007. Specification and verification of
data-driven web applications. JCSS 73 (3), 442–474.

[22] Emerson, E. A., 1990. Temporal and modal logic. In: Leeuwen, J. V.
(Ed.), Handbook of Theoretical Computer Science, Volume B: Formal
Models and Sematics. North-Holland Pub. Co./MIT Press, pp. 995–1072.

[23] Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.,
2013. Verification of relational data-centric dynamic systems with external
services. In: ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems (PODS).

[24] Hariri, B. B., Calvanese, D., De Giacomo, G., Masellis, R. D., Felli, P.,
2011. Foundations of relational artifacts verification. In: Intl. Conf. on
Business Process Management (BPM). pp. 379–395.

[25] Hariri, B. B., Calvanese, D., Montali, M., Giacomo, G. D., Masellis,
R. D., Felli, P., 2013. Description logic knowledge and action bases. J. of
Art. Intelligence Res. 46, 651–686.

[26] Hull, R., Damaggio, E., Masellis, R. D., Fournier, F., Gupta, M., III,
F. H., Hobson, S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P.,
Vacuĺın, R., 2011. Business artifacts with guard-stage-milestone lifecycles:
Managing artifact interactions with conditions and events. In: ACM Int’l.
Conf. on Distributed Event-Based Systems (DEBS).

[27] Isaak, D., Löding, C., 2012. Efficient inclusion testing for simple classes
of unambiguous -automata. Inf. Process. Lett. 112 (14-15).

54

[28] Koutsos, A., Vianu, V., 2015. Process-centric views of data-driven busi-
ness artifacts. In: Int’l. Conf. on Database Theory (ICDT).

[29] Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R., 2003. ADoc-
oriented programming. In: Symp. on Applications and the Internet
(SAINT).

[30] Libkin, L., 2004. Elements of Finite Model Theory. Springer.

[31] Lomuscio, A., Michaliszyn, J., 2014. Model checking unbounded artifact-
centric systems. In: Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fourteenth International Conference, KR 2014,
Vienna, Austria, July 20-24, 2014.

[32] Marin, M., Hull, R., Vacuĺın, R., 2012. Data centric BPM and the emerg-
ing case management standard: A short survey. In: BPM Workshop.

[33] Marnette, B., 2009. Generalized schema-mappings: from termination to
tractability. In: ACM SIGMOD-SIGACT-SIGART Symp. on Principles
of Database Systems (PODS).

[34] Merz, S., 2001. Model checking: a tutorial overview. In: Modeling and
verification of parallel processes. Springer-Verlag New York.

[35] Minsky, M. L., 1967. Computation: finite and infinite machines. Prentice-
Hall.

[36] Nigam, A., Caswell, N. S., 2003. Business artifacts: An approach to
operational specification. IBM Systems Journal 42 (3).

[37] Pnueli, A., 1977. The temporal logic of programs. In: FOCS.

[38] Post, E. L., 1947. Recursive unsolvability of a problem of Thue. J. of
Symbolic Logic 12, 1–11.

[39] Segoufin, L., Torunczyk, S., 2011. Automata based verification over
linearly ordered data domains. In: STACS.

[40] Spielmann, M., 2003. Verification of relational transducers for electronic
commerce. JCSS. 66 (1), 40–65.

55

[41] Thomas, W., 1990. Handbook of theoretical computer science (vol. b).
Ch. Automata on Infinite Objects.

[42] van der Aalst, W., Song, M., 2004. Mining social networks: Uncovering
interaction patterns in business processes. In: Business Process Manage-
ment. Vol. 3080 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 244–260.

[43] van der Aalst, W., ter Hofstede, A., 2005. YAWL: Yet another workflow
language. Information Systems 30 (4).

[44] Zhu, W., et al., 2014. Advanced case man-
agement with IBM case manager. Available at
http://www.redbooks.ibm.com/abstracts/sg247929.html?Open.

56

