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by EasyCrypt for modeling adversaries. We prove that our logic is sound w.r.t. the semantics of EasyCrypt

programs — we also provide full semantics for the EasyCrypt module system, which was previously lacking.

We showcase (for the first time in EasyCrypt and in other computer-aided cryptographic tools) how our

approach can express precise relationships between the probability of adversarial success and their execution

time. In particular, we can quantify existentially over adversaries in a complexity class, and express general

composition statements in simulation-based frameworks. Moreover, such statements can be composed to

derive standard concrete security bounds for cryptographic constructions whose security is proved in a

modular way. As a main benefit of our approach, we revisit security proofs of some well-known cryptographic
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1 INTRODUCTION
Cryptographic designs are typically supported by mathematical proofs of security. Unfortunately,

these proofs are error-prone and subtle flaws can go unnoticed for many years, in spite of careful

and extensive scrutiny from experts. Therefore, it is desirable that cryptographic proofs are formally

verified using computer-aided tools [28]. Over the last decades, many formalisms and tools have

been developed for mechanizing cryptographic proofs [5]. In this paper we focus on the EasyCrypt

proof assistant [9, 12], which has been used to prove security of a diverse set of cryptographic

constructions in the computational model of cryptography [2, 3]. In this setting, cryptographic

designs and their corresponding security notions are modeled as probabilistic programs. Moreover,

security proofs provide an upper bound on the probability that an adversary breaks a cryptographic
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design, often assuming that the attacker has limited resources that are insufficient to solve a

mathematical problem. While EasyCrypt excels at quantifying the probability of adversarial success,

it lacks support for keeping track of the complexity of adversarial computations. This is a limitation

that is common to other tools in computer-aided cryptography, and it means that manual inspection

is required to check that the formalized claims refer to probabilistic programs that fall in the

correct complexity classes. While this may be acceptable for very simple constructions, for more

intricate proofs it may be difficult to interpret what a proved claim means in the cryptographic

sense; in particular, existing computer-aided tools cannot fully express the subtleties that arise in

compositional approaches such as Universal Composability [19]. This is an important limitation,

as compositional approaches are ideally suited for proving security of complex cryptographic

designs involving many layers of simpler building blocks. This work overcomes this limitation and

showcases the benefits of reasoning about computational complexity in EasyCrypt, through three

broad contributions.

Formal verification of complexity statements. We define a formal system for specifying and proving

complexity claims. Our formal system is based on an expressive module system, which enriches

the existing EasyCrypt module system with declarations of memory footprints (specifying what

is read and written) and cost (specifying which oracles can be called and how often). This richer

module system is the basis for modeling the cost of a program as a tuple. The first component

of the tuple represents the intrinsic cost of the program, i.e. its cost in a model where oracle and

adversary calls are free. The remaining components of the tuple represent the number of calls

to oracles and adversaries. This style of modeling is compatible with cryptographic practice and

supports reasoning compositionally about (open) programs.

Our formal system is built on top of the module system and takes the form of a Hoare logic for

proving complexity claims that upper bound the cost of expressions and commands. Furthermore,

an embedding of the formal system into a higher-order logic provides support for reductionist

statements relating adversarial advantage and execution cost, for instance:

∀A.∃B. advS(A) ≤ advH(B) + ϵ ∧ cost(B) ≤ cost(A) + δ

where typically ϵ and δ are polynomial expressions in the number of oracle calls. The above

statement says that every adversaryA can be turned into an adversary B, with sensibly equivalent

resources, such that the advantage of A against a cryptographic scheme S is upper bounded by

the advantage of B against a hardness assumptionH . Note that the statement is only meaningful

because the cost of B is conditioned on the cost ofA, as the advantage of an unbounded adversary

is typically large (e.g., it succeeds with probability 1). The ability to prove and instantiate such

∀∃-statements is essential for capturing compositional reasoning principles.

We show correctness of our formal systemw.r.t. an interpretation of programs. Our interpretation

provides the first complete semantics for the EasyCrypt module system, which was previously

lacking. This semantics is of independent interest and could be used to prove soundness of the

two program logics supported by EasyCrypt: a Relational Hoare Logic [11] and a Union Bound

logic [10].

Implementation in the EasyCrypt proof assistant. We have implemented our formal system as an

extension to the EasyCrypt proof assistant, which provides mechanisms for declaring the cost of

operators and for helping users derive the cost of expressions and programs. Our implementation

brings several contributions of independent interest, including an improvement of the memory

restriction system of EasyCrypt, and a library and automation support to reason about extended

integers that are used for reasoning about cost. For the latter we follow [41] and reduce formulae

about extended integers to integer formulae that can be sent to SMT solvers. Another key step is
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to embed our Hoare logic for cost into the ambient higher-order logic—similar to what is done

for the other program logics of EasyCrypt. This allows us to combine judgments from different

program logics, and it enhances the expressiveness of the approach. Implementation-wise, this

extension required to add or rewrite around 8 kLoC of EasyCrypt. The implementation and examples

(including those of the paper as well as classic examples from the EasyCrypt distribution, including

Bellare and Rogaway BR93 Encryption, Hashed ElGamal encryption, Cramer-Shoup encryption,

and hybrid arguments) are open source [24].

Case study: Universal Composability. Universal Composability [18, 20] (UC) is a popular framework

for reasoning about cryptographic systems. Its central notion, called UC-emulation, formalizes when

a protocol π1 can safely replace a protocol π2. Informally, UC-emulation imposes that there exists a

simulator S capable of fooling any environmentZ by presenting to it a view that is fully consistent

with an interaction with π1, while it is in fact interacting with S(π2). This intuition, however, must

be formalized with tight control over the capabilities of the environment and the simulator. If this

were not the case, the definition would make no sense: existential quantification over unrestricted

simulators is too weak (it is crucial for the compositional security semantics that simulators use

comparable resources to real-world attackers), whereas universal quantification over unrestricted

environments results in a definition that is too strong to be satisfied [18, 19]. Moreover, when

writing proofs in the UC setting, it is often necessary to consider the joint resources of a sub-part of a

complex system that involves a mixture of concrete probabilistic algorithms and abstract adversarial

entities, when they are grouped together to build an attacker for a reductionistic proof. In these

cases, it is very hard to determine by inspection whether the constructed adversaries are within

the complexity classes for which the underlying computational assumptions are assumed to hold.

Therefore, tool support for complexity claims is of particular importance with UC — conversely,

UC is a particularly challenging example for complexity claims.

Using our enriched implementation of EasyCrypt, we develop a new fully mechanized formal-

ization of UC. In contrast to [22], which chooses to follow closely the classic execution model for

UC, our mechanization adopts a more EasyCrypt-friendly approach that is closer to the simplified

version of UC proposed by Canetti, Cohen and Lindell in [21]; this is further discussed in Section 6.

Our mechanization covers the core notions of UC, the classic composition lemmas, transitivity and

composability, which respectively state that UC-emulation (as a binary relation between crypto-

graphic systems) is closed under transitivity and arbitrary adversarial contexts. More importantly,

our development captures for the first time the complexity aspects of these general results. As an

illustrative application of our approach we revisit the example used in [22], where modular proofs

for Diffie-Hellman key exchange and encryption over ideal authenticated channels are composed

to construct a UC secure channel.

Discussion. The possibility to quantify over adversary using complexity claims introduces concep-

tual simplifications in layered proofs by i. supporting compositional reasoning and ii. avoiding the

use of explicit cost accounting modeling. The downside is that it also introduces some additional

burden on users, who nowmust prove complexity claims. However, we note that our extension does

not invalidate existing Easycrypt developments: complexity claims are optional, existing proofs

have been left unchanged, and their type-checking remains as fast as before. Furthermore, it is

possible to layer the complexity claims on top of standard EasyCrypt proofs that do not capture

the complexity aspects – in effect, this is what we did in our example. We have also provided

rudimentary support to automate proofs of complexity claims, and could enhance this support

even further by adopting ideas from cost analysis. We think that the current tool is significantly

more usable and scalable than prior versions without support for complexity reasoning.
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To make this claim more concrete, let us consider the implications of refactoring an existing

EasyCrypt development and extend it to take advantage of cost analysis for both dealing with query

counts and to include complexity claims. Removing the layer of modular wrapping that explicitly

keeps track of query counts leads to more readable code, and has essentially no impact on the

proofs. However, when it comes to complexity claims, new specifications and proof scripts must be

added to the development. The new specifications consist of the description of the cost model and

the declarations of the types of the various algorithms, which include explicit cost expressions. The

additional proof effort consists of applying our logic to prove complexity claims and discharging

the relevant side-conditions. As a coarse metric on the additional proof and specification efforts

required, we consider the ratio of the number of lines of codes related to the cost analysis over the

total number of lines. For the example presented in the next section, this ratio is 117/495. For the

Universal Composability example, the ratio is 270/2300 for the concrete protocol and 791/1775 for

the general composition theorems. We also note that there is a large body of work on automated

complexity analysis, as mentioned in the related work section, which might reduce this overhead.

This paper is an extended version of [6], which was presented at the ACM CCS’21 conference. A

full version of this paper is available here [7].
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2 WARM UP EXAMPLE: PKE FROM A ONE-WAY TRAPDOOR PERMUTATION
To illustrate our approach we use a public-key encryption (PKE) scheme proposed by [14] (BR93)

that uses a one-way trapdoor permutation f (used with public key pk) and a cryptographic hash

function H.o modeled as a random oracle (RO). The encryption of a message m by the BR93 scheme

is (f pk r || (H.o(r) ⊕ m)) where || is bit-string concatenation and ⊕ is bit-wise xor. We start by a quick

presentation of EasyCrypt modules, before delving into the proof of security of this scheme.

module BR93 (H : RO) = {
proc enc(pk, m) = {
var r : rand, h : plaintext;

r
$

←− drand;
h← H.o(r);
return (f pk r || h ⊕ m);

}
}.

Fig. 1. Example of an EasyCrypt module.

Modules are a key ingredient of an EasyCrypt formal-

ization. Roughly, a module is a structure packaging to-

gether variable and procedures declarations. Modules can

be parameterized by one or more modules — such pa-

rameterized modules are called functors. Fig. 1 gives a

small example of a functor named BR93 implementing the

BR93 encryption function. This module is parameterized

by a module H modeling the random oracle used by the

encryption scheme, which it uses in its implementation

of the enc procedure. Modules types are used to structure

module declarations, by declaring the signature of the

procedures that must be included in a module. Coming back to our example, RO is a module

type stating that H must declare a procedure named o from values of type rand to values of type

plaintext (c.f. Fig. 2) — the type of values outputted by the encryption. Finally, a module can contains

sub-modules, allowing for a rich hierarchical presentation.
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module type RO = {
proc o (r:rand) : plaintext compl[intr : to ]
}.

module type Scheme (H: RO) = {
proc kg() : pkey ∗ skey
proc enc(pk:pkey, m:plaintext) : ciphertext
proc dec(sk:skey, c:ciphertext) : plaintext option
}.

module type Adv (H: RO) = {
proc choose(p:pkey) :
(plaintext ∗ plaintext) compl[intr : tc , H.o : kc ]

proc guess(c:ciphertext) :
bool compl[intr : tд, H.o : kд ]

}.

module (Inv : INV) (H : RO) (A:Adv) = {
var qs : rand list

module QH = {
proc o(x:rand) = {
qs← x::qs;
r ← H.o(x);
return r; }

}

proc invert(pk:pkey,y:rand): rand = {
qs ← [];
(m0,m1)← A(QH).choose(pk);

h
$

←− dplaintext;
b ← A(QH).guess(y || h);
while (qs , []) {
r← head qs;
if (f pk r = y) return r;
qs← tail qs; }

}
}.

Fig. 2. Inverter for trapdoor permutation in EasyCrypt.

Intuitively, the RO is used to convert the message into a random input for the trapdoor permuta-

tion so as to allow a reduction to the one-wayness property. This proof strategy is used in BR93 and

many other schemes, including OAEP [14]. Fig. 2 shows the code of an inverter for the trapdoor

permutation that is constructed from an attacker against the encryption scheme.
1
This inverter

simulates the single random oracle used by the encryption scheme for the attacker and recovers the

pre-image to y with essentially the same probability as the attacker breaks the encryption scheme.

We first define module types for random oracles RO, schemes Scheme, and adversaries Adv. The

module type for random oracles declares a single procedure o with cost ≤ to . The module type

for schemes declares three procedures for key generation, encryption, and decryption, and is

parameterized by a random oracle H. No cost declaration is necessary. The module type for (chosen-

plaintext) adversaries declares two procedures: choose for choosing two plaintextsm0 andm1, and

guess for guessing the (uniformly sampled) bit b given an encryption of mb . The cost of these

procedures is a pair: the second component is an upper bound on the number of times it can call

the random oracle, and the first is an upper bound on its intrinsic cost, i.e. its cost assuming that

oracle calls (modeled as functor parameters) have a cost of 0. This style of modeling is routinely

used in cryptography and is better suited to reason about open code. This cost model is also more

fine-grained than counting the total cost of the procedure including the cost of the oracles, as we

have a guarantee on the number of time oracles are called.

Next, we define the inverter Inv for the one-way trapdoor permutation. It runs the adversary

A, keeping track of all the calls that A makes to H in a list qs (using the sub-module QH), and
then searches in the list qs for a pre-image of y under f pk. Search is done through a while loop,

which we write in a slightly beautified syntax. This inverter can be used to state the following

reductionist security theorem relating the advantage and execution cost of an adversary against

chosen-plaintext security of the PKE with the advantage of the inverter against one-wayness.

1
We use the following notation:

$

←− denotes a random sampling; [] is the empty list; a :: l appends a to the list l.
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Theorem 2.1 (Security of BR93). Let tf represent the cost of applying the one-way function f and
to denote the cost of H.o, i.e. the implementation of a query to a lazily sampled random oracle. Fix the
type for adversaries τA such that:

costA.choose ≤ compl[intr : tc ,H.o : kc ] and costA.guess ≤ compl[intr : tд ,H.o : kд]

and fix τI such that:

costI.invert ≤ compl[intr : (5 + tf ) · (kc + kд) + 4 + to · (kc + kд) + tc + tд] .

Then, ∀A ∈ τA ,∃I ∈ τI , advBR93

ind-cpa(A) ≤ advfow(I).

Here, IND-CPA refers to the standard notion of ciphertext indistinguishability under chosen-

plaintext attacks for PKE, where the adversary is given the public key and asked to guess which

of two messages of its choice has been encrypted in a challenge ciphertext; OW refers to the

standard one-wayness definition for trapdoor permutations, where the attacker is given the public

parameters and the image of a random pre-image, which it must invert. In the former, advantage

is the absolute bias of the adversary’s boolean output w.r.t. 1/2; in the latter, advantage is the

probability of successful inversion.

We prove the statement by providing Inv(A) as a witness for the existential quantification, which
creates two sub-goals. The first sub-goal establishes the advantage bound, which we prove using

relational Hoare logic. The second sub-goal establishes that our inverter satisfies the required cost

restrictions, and is proved using our Hoare logic for complexity. We declare the type of Inv as:

cost Inv.invert ≤ compl[intr : (5 + tf ) · (kc + kд) + 4,

H.o = kc + kд ,A.choose = 1,A.дuess = 1]

and so we first must establish that Inv belongs to this functor type. It is easy to show that A.choose
and A.guess are called exactly once, and that H.o is called at most kc + kд times. So we turn to the

intrinsic complexity of Inv. The key step for this proof is to show that the loop does at most kc + kд
iterations. We use the length of qs as a variant: the length of the list is initially 0, and incremented

by 1 by each call to the random oracle, therefore its length at the start of the loop is at most kc + kд .
Moreover, the length decreases by 1 at each iteration, so we are done. The remaining reasoning is

standard,
2
using the cost of each operator—fixed by choice in this particular example to 1, except

for the operator f. Our modeling of cost enforces useful invariants that simplify reasoning. For

instance, proving upper bounds on the execution cost of Inv requires proving an upper bound on

the number of iterations of the loop, and therefore on the length of qs upon entering the loop. We

derive the complexity statement in the theorem, which shows only the intrinsic cost of Inv, by
instantiating the complexity type of Inv with the cost of its module parameter A. This illustrates

how our finer-grained notion of cost is useful for compositional reasoning.

Comparison with EasyCrypt. Our formalization follows the same pattern as the BR93 formalization

from the EasyCrypt library. However, the classic module system of EasyCrypt only tracks read-and-
write effects and lacks first-class support for bounding the number of oracle calls and for reasoning

about the complexity of programs. To compensate for this first point, classic EasyCrypt proofs use
wrappers to explicitly count the number of calls and to return dummy answers when the number

of adversarial calls to an oracle exceeds a threshold. The use of wrappers suffices for reasoning

about adversarial advantage. However, no similar solution can be used for reasoning about the

computational cost of adversaries.

2
Notice that the condition of the loop is executed at most kc + kд time.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: March 2023.



Mechanized Proofs of Adversarial Complexity and Application to Universal Composability 1:7

Expressions (distribution expressions are similar):

e ::= v ∈ V (variable)

| f (e1, . . . , en ) (if f ∈ FE)

Statements:

s ::= abort (abort)

| skip (skip)

| s1; s2 (sequence)

| x ← e (assignment)

| x
$

←− d (sampling)

| x ← call F(®e ) (proc. call)

| if e then s1 else s2 (cond.)

| while e do s (loop)

Procedure body:

body ::= { var (®v : ®τ ); s; return e }

Function paths:

F ::= p. f (proc. lookup)

Module paths:

p ::= x (mod. ident.)

| p.x (mod. comp.)

| p(p) (func. app.)

Module expressions:

m ::= p (mod. path)

| struct st end (structure)

| func(x : M) m (functor)

Module structures:

st ::= d1; . . . ; dn (n ∈ N)

Module declarations:

d ::= module x = m

| proc f (®v : ®τ ) → τr = body

Fig. 3. Program and module syntax

Therefore, the BR93 formalization from the EasyCrypt library makes use of the explicit definition

of I, and users must analyze the complexity of I outside the tool. As a result, machine-checked

security statements are partial (complexity analysis is missing), cluttered (existential quantification

is replaced by explicit witnesses), and compositional reasoning is hard (existential quantification

over module types cannot be used meaningfully).

3 ENRICHED EASYCRYPT MODULE SYSTEM
We present a formalization of our extended module system for EasyCrypt. It is based on EasyCrypt
current imperative probabilistic programming language and module system, which we enrich to

track the read-and-write memory footprint and complexity cost of module components through

module restrictions. These module restrictions are checked through a type system: memory footprint

type-checking is fully automatic, while type-checking a complexity restriction generates a proof

obligation that is discharged to the user — using the cost Hoare logic we present later, in Section 4.

3.1 Syntax of Programs and Modules
The syntax of our language and module system is (quite) standard and summarized in Fig. 3. We

describe it in more detail below. We assume given a set of operators FE and a set of distribution

operators FD. For any д ∈ FE ∪ FD, we assume given its type: type(д) = τ1 × · · · × τn → τ where

τ1, . . . ,τn ,τ ∈ B with B the set of base types. We require that bool is a base type, and otherwise

leave B unspecified.

We consider well-typed arity-respecting expressions built from FE and variables inV . Similarly,

distribution expressions d are built upon FD andV . For any expression e , we let vars(e) be the set
of variables appearing in e (idem for distribution expression).
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Signature structures (for any n ∈ N):

S ::= D1; . . . ;Dn

Module signature declarations:

D ::= proc f (®v : ®τ ) → τr | module x : M

Module signatures:

M ::= sig S restr θ end | func(x : M) M′

Module restrictions:

θ ::= ϵ | θ , (f : λ) λ ::= ⊤ | λm ∧ λc

Memory restrictions (for any l ∈ N):

λm ::= +all mem\{v1, . . . ,vl } | {v1, . . . ,vl }

Complexity restrictions (for any l ,k,k1, . . . ,kl ∈ N):

λc ::= ⊤ | compl[intr : k, x1. f1 : k1, . . . , xl . fl : kl ]

Fig. 4. Module signatures and restrictions

We assume a simple language for program statements. A statement s can be an abort, a skip, a

statement sequence s1; s2, an assignment x ← e of an expression to a variable, a random sampling

x
$

←− d from a distribution expression, a conditional, a while loop, or a procedure call x ← call F(®e ).

The module system. In a procedure call, F is a function path of the form p. f where f is the

procedure name and p is a module path. Basically, when calling p. f , the module system will resolve

p to a module structure, which must declare the procedure f (this will be guaranteed by our type

system). Formally, a module structure st is a list of module declarations, and a module declaration

d is either a procedure (with typed arguments, and a body which comprises a list of local variables

with their types ®v : ®τ , a statement s and a return expression e) or a sub-module declaration.

The component c of a module x can be accessed through the module path expression x.c . Since a
module can contain sub-modules, we can have nested accesses, as in x. . . . .z.c . Hence, a module

path is either a module identifier, a component access of another module path p, or a functor

application. Finally, a module expressionm is either a module path, a module structure or a functor.

3.2 Module Signatures and Restrictions
The novel part of our system is the use of module restrictions in module signatures. Objects related

to module restriction are highlighted in red throughout this paper (this is only here to improve

readability, not to convey additional information). The syntax of module signatures and restrictions

is given in Fig. 4. A module structure signature S is a list of module signature declarations, which

are procedure signatures or sub-module signatures. Then, a module signature M is either a functor

signature, or a structure signature with a module restriction θ attached.

Module restrictions. A module restriction restricts the effects of a module’s procedures. We are

interested in two types of effects. First, we characterize the memory footprint (i.e. global variables

which are read or written to) of a module’s procedures through memory restrictions. Second, we
upper bound the execution cost of a procedure, and the number of calls a functor’s procedure can

make to the functor’s parameters, through complexity restrictions.
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Restrictions are useful for compositional reasoning, as they allow stating and verifying properties

of a module’s procedures at declaration time. In the case of an abstract module (i.e. a module

whose code is unknown), restrictions allow to constrain, through the type system, its possible

instantiations. This is a key idea of our approach, which we exploit to prove complexity properties

of cryptographic reductions.

module type HSM = {
proc enc (x:msg) : cipher }.

module Hsm : HSM = {
proc enc (x:msg) : cipher = { . . . } }.

module type Adv (H : HSM) {+all mem, -Hsm} = {
proc guess () : skey compl[intr : k0, H.enc : k]}.

Fig. 5. Example of adversary with restrictions.

For example, we give in Fig. 5 EasyCrypt code
corresponding to an adversary against a hard-

ware security module. In this scenario the goal

of the adversary is to recover the secret key

stored in the module Hsm. The example uses two

types of restrictions. The module-level restriction

{+all mem, -Hsm} states that such an adversary can
access all the memory, except for the memory used

by the module Hsm. The procedure-level restric-

tion [intr : k0, H.enc : k] attached to guess, states
that guess execution time is at most k0 (excluding

calls to H.enc), and that guess can make at most k queries to the procedure H.enc.
Formally, a module restriction is a list of pairs comprising a procedure identifier f and a procedure

restriction λ, and a procedure restriction λ is either ⊤ (no restriction), or the conjunction of a

memory restriction λm and a complexity restriction λc:

Memory. A memory restriction λm, attached to a procedure f , restricts the variables that f can

access directly. We allow for positive memory restrictions {v1, . . . ,vl }, which states that f can only

access the variables v1, . . . ,vl ; and negative memory restrictions +all mem\{v1, . . . ,vl }, which
states that f can access any global variables except the variables v1, . . . ,vl .
Note that λm only restricts f ’s direct memory accesses: this excludes the memory accessed by

the procedure oracles (which are modeled as functor’s parameters). This is crucial, as otherwise, an

adversary that is not allowed to access some oracle’s memory (a standard assumption in security

proofs) would not be allowed to call this oracle. E.g., the adversary of Fig. 5 can call the oracle

H.enc (which can be instantiated by Hsm), even though it cannot access directly Hsm’s memory.

Complexity. A complexity restriction λc attached to a procedure f restricts its execution time

and the number of calls that f can make to its parameters: it is either ⊤, i.e. no restriction; or the

restriction compl[intr : k, x1. f1 : k1, . . . , xl . fl : kl ], which states that: i) its execution time (excluding

calls to the parameters) must be at most k ; ii) f can call, for every i , the parameter’s procedure

xi . fi at most ki times. We require that all parameters’ procedures appear in the restriction. This

can be done w.l.o.g. by assuming that any missing entry is zero (which is exactly what is done in

our EasyCrypt implementation).

3.3 Typing Enriched Module Restrictions

module A = {
module B = { · · · }

module C = {
module E = A.B (∗ Valid full path ∗)
module F = B (∗ Invalid path ∗)
}}

Fig. 7. Example: valid and invalid paths.

We now present the core rules of our module type system,

which are summarized in Fig. 6 and Fig. 8. The rest of the

rules are in the full version [7]. For clarity of presentation,

our module type system requires module paths to always

be long modules paths, from the root of the program to the

sub-module called (we give a simple example in Fig. 7). This

allows to have a simpler module resolution mechanism, by

removing any scoping issues. This is done without loss of
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Module path typing Γ ⊢ p : M.

Name

Γ(p) = _ : M

Γ ⊢ p : M

Compnt

Γ ⊢ p : sig S1; module x : M; S2 restr θ end

Γ ⊢ p.x : M

FuncApp

Γ ⊢ p : func(x : M′) M Γ ⊢ p′ : M′

Γ ⊢ p(p′) : M[x 7→ memΓ(p′)]

Module expression typing Γ ⊢p m : M.

We omit the rules Γ ⊢ M to check that a module signature M is well-formed.

Alias

Γ ⊢ pa : M

Γ ⊢p pa : M

Struct

Γ ⊢p,θ st : S

Γ ⊢p struct st end : sig S restr θ end

Func

Γ ⊢ M0 Γ(x) undef
Γ, module x = absparam : M0 ⊢p(x) m : M

Γ ⊢p func(x : M0) m : func(x : M0) M

Sub

Γ ⊢p m : M0

⊢ M0 <: M

Γ ⊢p m : M

Module structure typing Γ ⊢p,θ st : S.

ProcDecl

body = { var ( ®vl : ®τl); s; return r } ®v, ®vl fresh in Γ Γf = Γ, var ®v : ®τ , var ®vl : ®τl
Γf ⊢ s Γf ⊢ r : τr Γ ⊢ body▷ θ [f ] Γ(p.f ) undef Γ, proc p.f ( ®v : ®τ ) → τr = body ⊢p,θ st : S

Γ ⊢p,θ (proc f ( ®v : ®τ ) → τr = body; st) : (proc f ( ®v : ®τ ) → τr ; S)

ModDecl

Γ ⊢p.x m : M Γ(p.x) undef Γ, module p.x = m : M ⊢p,θ st : S

Γ ⊢p,θ (module x = m; st) : (module x : M; S)

StructEmp

Γ ⊢p,θ ϵ : ϵ

Environments typing ⊢ E

EnvEmp

⊢ ϵ

EnvSeq

⊢ E E ⊢ δ

⊢ E, δ

EnvVar

E(v) undef

E ⊢ var v : τ

EnvMod

E ⊢x m : M E(x) undef

E ⊢ (module x = m : M)

EnvAbs

E ⊢ Ml E(x) undef

E ⊢ (module x = absK : M)

Fig. 6. Core typing rules.

generality: in practice, one can always replace short module

paths with long module paths when parsing a program.

A typing environment Γ is a list of typing declarations. A typing declaration, denoted δ , is either
a variable, module, abstract module or procedure declaration, with a type.

δ ::= var v : τ | module p = m : M | module x = absK : M | proc p. f (®v : ®τ ) → τr = body

K ::= open | param Γ ::= ϵ | Γ,δ

Note that module and procedure declarations can be rooted at an arbitrary path p.
An abstract module declaration module x = absK : M states that x is a module with signature M

whose code is unknown. This is used either for open code, or to represent a functor parameter at

typing time. Open modules and parameters are treated differently by the type system: a memory

restriction ignores the memory footprint of a functor parameter; and a complexity restriction

restricts the number of calls that can be made by parameters’ procedures. Therefore, we annotate

an abstract module with its kind, which can be open or param. Finally, module and procedure

declarations come with the absolute path from the root of the program to the parent module where

the declaration is made (variable and abstract modules are always declared at top-level).

For example, the entry (module p.x = m : M) means that there is a sub-module m named x and
with type M declared at path p. As usual we require that typing environments do not contain two

declarations with the same path. This allows to see a typing environment Γ as a partial function

from variable names v , module paths p or procedure paths p. f to (base, module, abstract modules

or procedure) values and their types, defined as follows:

Γ(v) = τ ( if Γ = (Γ1; var v : τ ; Γ2))
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Γ(p) = m : M ( if Γ = (Γ1; module p = m : M; Γ2))

Γ(x) = absK x : M ( if Γ = (Γ1; module x = absK : M; Γ2))

Γ(p. f ) = proc f (®v : ®τ ) → τr = body ( if Γ = (Γ1; proc p. f (®v : ®τ ) → τr = body; Γ2))

and Γ(z) = undef otherwise. Also, we write Γ(z) undef when Γ(z ′) = undef. for any prefix z ′ of z.3

Abstract modules. Abstract modules representing open code (i.e. with kind open) are restricted
to low-order signatures:

Ml ::= sig Sl restr θ end | func(x : sig Sl restr θ end) Ml

Sl ::= Dl1; . . . ;Dln Dl ::= proc f (®v : ®τ ) → τr

Basically, we only allow module structures, or functors whose parameters are module structures.

This restriction is motivated by the fact that further generality is not necessary for cryptographic

proofs (adversaries and simulations usually return base values, not procedures); and, more impor-

tantly, this restriction allows the abstract call rule of our instrumented Hoare logic Abs presented

in Fig. 12 to remain tractable.

For any Ml, we let procs(Ml) = { f1, . . . , fn} be the set of procedure names declared inMl.

Environments. The semantics of programs, presented later in Section 5, is parametrized by an

environment E. Essentially, a environment is a typing environment that do not contain abstract

module declarations of kind, and which contains only top-level module declaration (i.e. with a

module path of the form x).

E ::= ϵ | E, var v : τ | E,module x = m : M | E,module x = absopen : Ml

For any E, we let abs(E) = {x1, . . . , xn} be the set of abstract module names declared in E.

Typing module paths. The typing judgment Γ ⊢ p : M states that the module path p refers to a

module with typeM. Its typing rules, which are given in Fig. 6, are standard [33], except for the

functor application typing rule FuncApp:

FuncApp

Γ ⊢ p : func(x : M′) M Γ ⊢ p′ : M′

Γ ⊢ p(p′) : M[x 7→ memΓ(p′)]

A key point here is that we need to substitute x in the module signature. The substitution function

is standard (for a detailed definition, see the full version [7]), except for module restrictions, which

are modified as follows:

• a memory restriction restricts the variables that a procedure can access directly — however,

memory accesses done through functor parameters are purposely not restricted. Hence, when

we instantiate a functor parameter x by a module path p′, we must add its memory footprint,

which is memΓ(p′). This is handled when substituting x in a memory restriction:

λm[x 7→ memΓ(p′)] = λm ⊔memΓ(p′)

• a complexity restriction gives upper bounds on a procedure execution time, and on the

number of calls it can make to its functors’ parameters. When we instantiate a functor,

3
Meaning that the (variable, module or procedure) path z is not declared by Γ, even through a sub-module or functor

application.
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Restriction checking Γ ⊢ { var (®vl : ®τl); s; return e } ▷θ .

RestrCheck

Γ ⊢ body▷ λm
Γ ⊢ body▷ λc

Γ ⊢ body▷ λm ∧ λc

RestrMem

Γ ⊢ s▷ λm Γ ⊢ e ▷ λm

Γ ⊢ { _; s; return e } ▷ λm

RestrMemS

memΓ(s) ⊑ λm

Γ ⊢ s▷ λm

RestrMemE

vars(e) ⊑ λm

Γ ⊢ e ▷ λm

RestrComplTop

Γ ⊢ body▷⊤

RestrCompl

E ⊢ {⊤} s {ψ | t} ⊢ {ψ } r ≤ tr (t + tr · 1conc) ≤compl λc

E ⊢ { _; s; return r } ▷ λc

Notes: the relation ⊑ checks the inclusion of a memory restriction into another (see [7]). Also, memΓ(s) computes
an over-approximation of a instruction’s memory footprint (see [7]).

Fig. 8. Restriction checking rules.

we remove a functor parameter, and therefore remove the corresponding entries in the

complexity restrictions.

compl[intr : k, y1. f1 : k1, . . . , yl . fl : kl ][x 7→ _] =

compl[intr : k, (y1. f1 : k1)[x 7→ _], . . . , (yl . fl : kl )[x 7→ _]]

where (y. f : k)[x 7→ _] =

{
ϵ if y = x

y. f : k otherwise

Also, note that when substituting x into p in p.y, we do not substitute the module component

identifier y (essentially, only top-level module names are substituted). Similarly, when we substitute

x into p in a module declaration (module y = m), we ignore y.

Other typing rules. The typing judgment for module expressions Γ ⊢p m : M states that the

module expression m, declared at path p, has type M. Functor are typed by the Func rule. Note

that the functor body is typed in an extended typing environment, where the module parameter x
has been declared as an abstract module with kind param.

The typing judgment for module structures Γ ⊢p,θ st : S is annotated by both the module path

of the structure being typed, and the module restriction θ that the structure must verify. Remark

that when we type a procedure using ProcDecl, we check that the procedure f body satisfies the

module restriction θ [f ] by requiring that the restriction checking judgment Γ ⊢ body▷θ [f ] holds.

Restrictions. The restriction checking rules are given in Fig. 8. The RestrMem rule checks that

a procedure body { _; s; return e } (where s is the procedure’s instructions, and e the returned
expression) verifies a memory restriction through a fully automatic syntactic check done in the

auxiliary rules RestrMemS and RestrMemE.

RestrMem

Γ ⊢ s▷ λm Γ ⊢ e ▷ λm

Γ ⊢ { _; s; return e } ▷ λm

RestrMemS

memΓ(s) ⊑ λm
Γ ⊢ s▷ λm

RestrMemE

vars(e) ⊑ λm
Γ ⊢ e ▷ λm

This syntactic check uses memE(s) and vars(e), which are sound over-approximations of an in-

struction and expression memory footprint (the approximation is not complete, e.g. it will include

memory accesses done by unreachable code).

The RestrCompl rule checks that an instruction verifies some complexity restriction. The rule

generates proof obligations in a Hoare logic for cost. These proof obligations are discharged
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Module path resolution resΓ(p) to module expression

resΓ(p) = resΓ(m̄) (if Γ(p) = m̄ : _)

resΓ(p.x) = resΓ(m) (if resΓ(p) = struct st1;module x = m : M; st2 end)

resΓ(p(p
′)) = resΓ(m0[x 7→ p′]) (if resΓ(p) = func(x : M) m0)

resΓ(p(p
′)) = (absK x)(®p0, p′) (if resΓ(p) = (absK x)(®p0))

Module expression resolution resΓ(m̄)

resΓ(struct st end) = struct st end

resΓ(func(x : M) m) = func(x : M) m

resΓ((absK x)(®p)) = (absK x)(®p)

Module procedure resolution f-resΓ(m. f )
(note that this includes resolution for function paths f-resΓ(p. f ))

f-resΓ(p. f ) = (proc f (®v : ®τ ) → τr = body) (if Γ(p. f ) = (proc f (®v : ®τ ) → τr = body))

f-resΓ(m. f ) = (proc f (®v : ®τ ) → τr = body) (if resΓ(m) = struct st1; proc f (®v : ®τ ) → τr = body; st2 end)

f-resΓ(m. f ) = (absK x)(®p). f (if resΓ(m) = (absK x)(®p))

Fig. 9. Resolution functions for paths, module expressions and module procedure.

interactively using the proof system we present later, in Section 4.

RestrCompl

E ⊢ {⊤} s {ψ | t} ⊢ {ψ } r ≤ tr (t + tr · 1conc) ≤compl λc

E ⊢ { _; s; return r } ▷ λc

Here, the proof obligation E ⊢ {⊤} s {ψ | t} states that the execution of s in any memory has a

complexity upper bounded by t , and that the post-conditionψ holds after s’s execution. The proof
obligation ⊢ {ψ } r ≤ tr upper-bounds the cost of evaluating the return expression r . Finally, the
rule checks that the sum of t and tr is compatible with the complexity restriction λc through the

premise (t + tr · 1conc) ≤compl λc. We leave the precise definition of ≤compl to Section 4 (see Fig. 13).

Intuitively, t is a record of entries of the form (x. f 7→ lf ), each stating that the abstract module

x’s procedure f has been called at most lc times, plus a special entry (conc 7→ lc ) stating that s
execution time, excluding abstract calls, is at most lc . Then, t0≤complλc checks that t0[x. f ] ≤ λc[x. f ]
for every functor parameter x. f , and that λc[intr] upper-bounds everything else in t0.

Remark 3.1. Note that the complexity checking rule RestrCompl is not extended to typing

environment, because the cost Hoare judgment E ⊢ {⊤} s {ψ | t} is not defined for typing

environment. While we could probably extend RestrCompl to allow typing in a typing environment
Γ, this would complicate a lot the soundness proof of our logic. Indeed, as it stands, we do not

need to show closure of Hoare logic derivations under substitution of a module parameter x of
type absparam : M by a concrete module m of the same type M (because an environment E cannot

contain a declaration of an abstract module of kind param, only of open modules of kind open,
which are never substituted, only instantiated). Instead, we only need to show closure under such

substitution for typing judgment (not Hoare logic derivations), which simplifies the proof.
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3.4 Module Resolution
We present the semantics of our module system, which we use to give the semantics of our

programming language in Section 5. Our module system semantics is given by a module resolution

mechanism, which describes how module expression m are evaluated in a typing environment Γ.

Extended module resolution. Because a module expressionm is evaluated in a typing environment

Γ that can contain abstract modules (representing open code or functor parameters), the resolved

module resΓ(m) may not be a module expression according to our syntactic categories. We let

extended module expressions be the elements of the form:

m̄ ::= m | absK x

Note that it would not make much sense to extend the syntax of module expressions to allow them

to contain abstract modules, as abstract modules of kind param are reserved to the type system;

and open modules must be introduced at the logical level (in the ambient higher-order logic).

Module resolution. The resolution function resΓ(_) evaluates a module path, in Γ, into a (resolved)
extended module expression, which can be a module structure, a functor, or an (potentially applied)

abstract module. Mostly, resΓ(_) take care of functor application through the rules:

resΓ(p(p′)) = resΓ(m0[x 7→ p′]) (if resΓ(p) = func(x : M) m0)

resΓ(p(p′)) = (absK x)(®p0, p′) (if resΓ(p) = (absK x)(®p0))

(the full definition is in Fig. 9). In the concrete functor case, we must substitute the module identifier

x into a path p′ in a module expression m0.

Example 3.1. Consider a typing environment Γ, and the path x.y(z)(v)(w), which must be read as

(((x.y)(z))(v))(w). Then, assuming that Γ(z) = absopen z, Γ(v) = mv, Γ(w) = absparam w and:

Γ(x) = struct module y = func(u : _) u end

where mv is some module expression, then resΓ(x.y(z)(v)(w)) = (absopen z)(v,w).

We define the module procedure resolution function f-resΓ(m. f ). A resolved module procedure

f-resE(m. f ) is: i) either a concrete procedure declaration (proc f (®v : ®τ ) → τr = body); ii) or the
procedure component f of a resolved (potentially applied) abstract module (absK x)(®p). f .

4 COMPLEXITY REASONING IN EASYCRYPT
We now present our Hoare logic for cost, which allows to formally prove complexity upper-bounds

of programs. This logic manipulates judgment of the form E ⊢ {ϕ} s {ψ | t}, where s is a statement,

ϕ,ψ are assertions, and t is a cost. We leave the assertion language unspecified, and only require

that the models of an assertion formula ϕ are memories, and write ν ∈ ϕ whenever ν satisfies ϕ.
Essentially, the judgment E ⊢ {ϕ} s {ψ | t} states that s is a program well-typed in the environ-

ment E (e.g. this means that s can only call concrete or abstract procedures declared in E), and

that: i) the execution of the program s on any initial memory νi satisfying the precondition ϕ (i.e.

νi ∈ ϕ) terminates in time at most t ; and ii), the final memory νf obtained by executing s starting
from νi satisfies the post-conditionψ (i.e. νf ∈ ϕ).

4.1 Cost Judgment
A key point of our Hoare logic for cost is that it allows to split the cost of a program s between
its concrete and abstract costs, i.e. between the time spent in concrete code, and the time spent

in abstract procedures. To reflect this separation between concrete and abstract cost, a cost t is a
record of entries mapping each abstract procedure x. f to the number of times this procedure was
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s1

sc

s2

. . .

sc

B

sc

. . .

s3A:

B:

C:

concrete intrinsic (A.a) abstract

module type TC = { proc c () : unit }.

module C = { proc c () = { sc } }.

module type TB (C0 : TC) = {
proc b () : unit compl[intr : tb, C0 .c : 2] }.

module type TA (B0 : TB) (C0 : TC) = {
proc a () : unit compl[intr : ta, B0 .b : 1, C0 .c : 1] }.

module A (B0 : TB) (C0 : TC) : TA= {
proc a () = {
s1; C0.c(); s2; B0(C0).b(); s3;
}}.

Judgment E ⊢ {⊤} A(B,C).a {⊤ | [conc 7→ tconc,B.b 7→ 1]} where E = (module B = absopen : TB).

Fig. 10. Graphical representation of the different cost measurements.

called, and mapping a special element conc to the concrete execution time (i.e. excluding abstract

procedure calls). Since the set of available abstract procedures (and consequently the number of

entries in the cost t ) depends on the current environment E, we parameterize the notion of cost by

the environment E considered:

Definition 4.1. A E-cost is an element of the form:

t ::= [conc 7→ k, x1. f1 7→ k1, . . . xl . fl 7→ kl ]

where E is an environment, k,k1, . . . ,kl are integers, and the xi . fi are all the abstract procedures
declared in E.

Example 4.1. Consider E with two abstract modules x and y:

E = (module x = absopen : sig (proc f _) restr _ end);

(module y = absopen : sig (proc h _) restr _ end)

Then [conc 7→ 10; x. f 7→ 0; y.h 7→ 3] represents a concrete cost of 10, at most three calls to y.h,
and none to x. f .

Definition 4.2. A cost judgment for a statement is an element of the form E ⊢ {ϕ} s {ψ | t} where
E must be well-typed, s must be well-typed in E and t must be an E-cost. We define similarly a

cost judgment for a procedure E ⊢ {ϕ} F {ψ | t}.

In Fig. 10, we give a graphical representation of a cost judgment for the procedure A(B,C).a,
where A and C are concrete modules, and B is an abstract functor with access to C as a parameter.

Then, intuitively, the cost judgment:

E ⊢ {⊤} A(B,C).a {⊤ | [conc 7→ tconc,B.b 7→ 1]}

is valid whenever tconc upper-bounds the concrete cost (in hatched gray ) which is the sum of:

i) the intrinsic cost of A.a, which is the cost of A.a without counting parameter calls, represented

in hatched blue in the figure, and must be at most ta as stated in TA’s restriction; and ii) the

sum of the cost of the three calls to C.c .
The cost of the execution of the abstract procedure B.b (in hatched red ), which excludes the

two calls B.b makes to C.c , are accounted for by the entry (B.b 7→ 1) in the cost judgment. Note

that it is crucial that this excludes the cost of the two calls to C.c, which are already counted in the

concrete cost tconc .
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Skip

E ⊢ {ϕ } skip {ϕ | 0}

Weak

E ⊢ {ϕ′ } s {ψ ′ | t ′ } ϕ ⇒ ϕ′ ψ ′ ⇒ ψ t ′ ≤ t

E ⊢ {ϕ } s {ψ | t }

False

E ⊢ {⊥} s {ψ | t }

Assign

⊢ {ϕ } e ≤ te
E ⊢ {ϕ ∧ψ [x ← e]} x ← e {ψ | te }

Rand

⊢ {ϕ0 } d ≤ t
ϕ = (ϕ0 ∧ ∀v ∈ dom(d ).ψ [x ← v])

E ⊢ {ϕ } x
$

←− d {ψ | t }

Seq

E ⊢ {ϕ } s1 {ϕ′ | t1 }

E ⊢ {ϕ′ } s2 {ψ | t2 }

E ⊢ {ϕ } s1; s2 {ψ | t1 + t2 }

If

E ⊢ {ϕ ∧ e } s1 {ψ | t }
E ⊢ {ϕ ∧ ¬e } s2 {ψ | t } ⊢ {ϕ } e ≤ te
E ⊢ {ϕ } if e then s1 else s2 {ψ | t + te }

While

I ∧ e ⇒ c ≤ N
∀k, E ⊢ {I ∧ e ∧ c = k } s {I ∧ k < c | t (k )} ∀k ≤ N , ⊢ {I ∧ e ∧ c = k } e ≤ te (k ) ⊢ {I ∧ ¬e } e ≤ te (N + 1)

E ⊢ {I ∧ 0 ≤ c } while e do s {I ∧ ¬e |
∑N
i=0

t (i) +
∑N+1

i=0
te (i)}

Call

argsE (F) = ®v ⊢ {ϕ[ ®v ← ®e ]} ®e ≤ te
E ⊢ {ϕ } F {ψ [x ← ret] | t }

E ⊢ {ϕ[ ®v ← ®e ]} x ← call F(®e ) {ψ | te + t }

Conc

f-resE (F) = (proc f ( ®v : ®τ ) → τr = { _; s; return r })
E ⊢ {ϕ } s {ψ [ret← r ] | t } ⊢ {ψ } r ≤ tret

E ⊢ {ϕ } F {ψ | t + tret }

Convention: ret cannot appear in programs (i.e. ret < V).

Fig. 11. Basic rules for cost judgment.

Expression cost. We have a second kind of judgment ⊢ {ϕ} e ≤ te , which states that the cost of

evaluating e in any memory satisfying ϕ is at most te , where te is an integer, not a E-cost (indeed, an
expression cost is always fully concrete, as expressions do not contain procedure calls). We do not

provide a complete set of rules for such judgments, as this depends on low-level implementation

details and choices, such as data-type representation and libraries implementations. In practice,

we give rules for some built-ins, a way for the user to add new rules, and an automatic rewriting

mechanism which automatically prove such judgments from the user rules in most cases.

4.2 Hoare Logic for Cost Judgment
We present our Hoare logic for cost, which allows to prove cost judgments of programs. Our logic

has one rule for each possible program construct (assignment, loop,...), plus some structural rules

(e.g. weakening). We start by describing the rules for the basic program constructs (the rules can be

found in Fig. 11).

Basically, our cost judgment are standard Hoare logic judgment with the additional cost informa-

tion, and both aspects must be handled by the rules of our logic.

In some cases, these can be handled separately. E.g. the rule:

If

⊢ {ϕ} e ≤ te E ⊢ {ϕ ∧ e} s1 {ψ | t} E ⊢ {ϕ ∧ ¬e} s2 {ψ | t}

E ⊢ {ϕ} if e then s1 else s2 {ψ | t + te }

state that if: i) the evaluation of the condition e takes time at most te ; ii) the execution of the then
branch program s1, assuming pre-condition ϕ ∧ e , guarantees the post-conditionψ and takes time

at most t ; iii) and the execution of the else branch, assuming the pre-condition ϕ ∧ ¬e , guarantees
the same post-condition ψ , and also takes time at most t ; then the full conditional statement

if e then s1 else s2, assuming pre-condition ϕ, guarantees the post-condition ψ in time at most
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Abs

f-resE (F) = (absopen x)(®p). f E(x) = absopenx : (func(®y : _) sig _ restr θ end)
θ [f ] = λm ∧ λc λc = compl[intr : K , zj1 . f1 : K1, . . . , zjl . fl : Kl ] FV(I ) ∩ λm = ∅
®k fresh in I ∀i,∀®k ≤ (K1, . . . ,Kl ), ®k[i] < Ki → E ⊢ {I ®k} ®p[ji ]. fi {I (®k + 1i ) | ti k}

E ⊢ {I ®0} F {∃®k, I ®k ∧ ®0 ≤ ®k ≤ (K1, . . . ,Kl ) | Tabs}

where Tabs =
{
x. f 7→ 1;

(
G 7→

∑l
i=1

∑Ki−1

k=0
(ti k)[G]

)
G,x.f

}
Conventions: ®y can be empty (this corresponds to the non-functor case).

Fig. 12. Abstract call rule for cost judgment.

t + te . Note that we use the same cost upper-bound t for both branches: essentially, t can be chosen

to be the maximum of the execution times of both branches.

We designed rules for all basic constructs of the logic. E.g. the assignment rule Assign lets the

user provide a dedicated pre-condition ϕ used to upper-bound the cost of evaluating e4; and the

weakening rule Weak is the standard Hoare logic weakening rule, with an additional premise

t ′ ≤ t .
Other rules are more involved, and require the user to show simultaneously invariants of the

memory state of the program and cost upper-bounds. This is the case of the abstract call rule, and

of the instantiation rule.

4.3 Abstract Call Rule
The abstract call rule allows to upper-bound the cost of a call to an abstract procedure F. To ease

the presentation, we first present a version of the rule for usual Hoare judgment without costs, and

explain how to add costs after.

abs-partial

f-resE (F) = (absopen x)(®p). f E(x) = absopen x : (func(®y : _) sig _ restr θ end)
θ [f ] = λm ∧ _ FV(I ) ∩ λm = ∅ ∀p0 ∈ ®p,∀д ∈ procsE (p0), E ⊢ {I } p0.д {I }

E ⊢ {I } F {I }

First, the function path F is resolved to (absopen x)(®p). f , i.e. a call to the procedure f of an abstract

functor x applied to the modules ®p (the case where x is not a functor is handled by taking ®p = ϵ).
Then, x’s module type is lookup in E, and we retrieve the module restriction θ attached to it. The

rule allows to prove that some formula I is an invariant of the abstract call, by showing two things.

First, we show that I is an invariant of x. f , excluding calls to the functor parameters. This is

done by checking that x. f cannot access the variables used in I , using its memory restriction λm
(looked-up by the premise θ [f ] = λm ∧ _) and requiring that FV(I ) ∩ λm = ∅ .

Then, we prove that I is an invariant of x. f ’s calls to functor parameters. This is guaranteed by

requiring that for every functor parameter p0 ∈ ®p, for any of p0’s procedure д ∈ procsE(p0), the

judgment E ⊢ {I } p0.д {I } is valid.

Abstract Call Rule. We now present our Abs rule for cost judgments, which is given in Fig. 12.

Essentially, the cost of the call to x(®p). f is decomposed between:

• the intrinsic cost of x. f excluding the cost of the calls to x’s functor parameters. This is

accounted for by the entry (x. f 7→ 1) in the final cost Tabs.
• the cost of the calls to x. f functor parameters, which are enumerated in the restriction:

λc = compl[intr : K , zj1 . f1 : K1, . . . , zjl . fl : Kl ]

4
If the rule forced to take ϕ = ψ [x ← e], then it would not be complete, as prior information on the value on x (e.g. coming

from a previous assignment to x ) is erased, which may prevent us from proving a precise upper-bound on ⊢ {ϕ } e ≤ te .
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Instantiation

Ml = func(®y : ®M) sig Sl restr θ end E ⊢x m : erasecompl(Ml)

®z fresh in E ∀f ∈ procs(Sl), (E,module ®z : absopen ®M ⊢ {⊤} m(®z). f {⊤ | tf })
∀f ∈ procs(Sl), tf ≤compl θ [f ] E,module x = absopen : Ml ⊢ {ϕ} s {ψ | ts }

E,module x = m : Ml ⊢ {ϕ} s {ψ | Tins}

where:

Tins =
{
G 7→ ts [G] +

∑
f ∈procs(Sl) ts [x. f ] · tf [G]

}
tf ≤compl θ [f ] = ∀z0 ∈ ®z,∀д ∈ procs( ®M[zo ]), tf [z0.д] ≤ θ [f ][z0.д] ∧

tf [conc] +
∑

A∈abs(E)
h∈procsE (A)

tf [A.h] · intrE (A.h) ≤ θ [f ][intr]

Conventions: intrE (A.h) is the intr field in the complexity restriction of the abstract module procedure A.h
in E.

Fig. 13. Instantiation rule for cost judgment.

We require, for every i , a bound on the cost of the k-th call to the functor argument zji
procedure’s fi , where k can range anywhere between 0 and the maximum number of calls

x. f can make to zji , which is Ki . The cost of the k-th call to zji . fi is bounded by (ti k) where

k = ®k[i] and:

E ⊢ {I ®k} ®p[ji ]. fi {I (®k + 1i ) | ti k}

To improve precision, we let the invariant I depend on the number of calls to the functor

parameters through the integer vector
®k . After calling ®p[ji ]. fi , we update ®k by adding one to

its i-th entry (1i is the vector where the i-th entry is one and all other entries are zero).

The final cost Tabs (except for x. f ) is obtained by taking the sum, over all functor parameters and

number of calls to this functor parameter, of the cost of each call.

4.4 Instantiation Rule
The Instantiation rule, given in Fig. 13, allows to instantiate an abstract module x by a concrete

module m. Assume that we can upper-bound the cost of a statement s by ts , when x is abstract:

E,module x = absopen : Ml ⊢ {ϕ} s {ψ | ts }

Then we can instantiate x by a concrete modulem as long asm complies with the module signature

Ml, which is checked through two conditions.

First, we check that m has the correct module type, except for complexity restrictions, through

the premise E ⊢x m : erasecompl(Ml)

Then, we check that m satisfies the complexity restriction θ in Ml, by requiring that for any

procedure f of x:
E,module ®z : absopen ®M ⊢ {⊤} m(®z). f {⊤ | tf }

where tf must respect θ [f ], which is guaranteed by tf ≤compl θ [f ], which does two checks:

• first, it ensures that the number of calls to any functor parameter z0 of x done by m. f is

upper-bounded by θ [f ][z0].

• then, it verifies that the bound of x’s intrinsic cost θ [f ][intr] upper-bounds the cost of the
execution of m. f , excluding functor parameter calls, through the condition:

tf [conc] +
∑

A∈abs(E)
h∈procsE (A)

tf [A.h] · intrE(A.h) ≤ θ [f ][intr]
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where intrE(A.h) is the upper-bound on A.h intrinsic cost declared in E (if A.h declares no intrinsic

bound in E, then intrE(A.h) is undefined (hence A.h execution time can be arbitrarily large), and

the Instantiation rule cannot be applied). In other words, the concrete execution time tf [conc]
of x. f , plus the abstract execution time of x. f (excluding functor parameters, already accounted

for), must be bounded by θ [f ][intr].
The final cost Tins (in Fig. 13) is the sum of the cost ts of s (which excludes the cost of x’s

procedures), plus the sum, for any procedure f of x, of the number of times s called x. f (which is

ts [x. f ]), times the cost of x. f (which is tf ).

5 INSTRUMENTED SEMANTICS
We now define the denotational semantics of our programming language and cost judgments. We

first quickly introduce the main aspects of our semantics below, before defining it formally in the

rest of the section. We use this semantics to state our main soundness theorem. The proof of our

soundness theorem can be found in the full version of this paper [7]).

Program semantics. The semantics JsKE,ρν of our language depends on the initial memory ν , the

environment E, and on the interpretation ρ of E’s abstract modules. Essentially, JsKE,ρν is a discrete

distribution overM×N, where the integer component is the cost of evaluating s in (E, ρ), starting
from the memory ν . Then, the E-cost of an instruction s under memory ν and interpretation of

E’s abstract modules ρ, denoted by costE,ρν (s) ∈ N ∪ {+∞}, is the maximum execution cost in any

final memory, defined as:

costE,ρν (s) = inf

{
c ′ | Pr

(
(_, c) ← JsKE,ρν ; c ≤ c ′

)
= 1

}
(1)

Judgments semantics. Basically, the judgment E ⊢ {ϕ} s {ψ | t} states that: i) the memory ν
obtained after executing s in an initial memory ν ∈ ϕ must satisfy ψ ; ii) the complexity of the

instruction s is upper-bounded by the complexity of the concrete code in s, plus the sum over all

abstract oracles A. f of the number of calls to A. f times the intrinsic complexity of A. f . Formally:

costE,ρν (s) ≤ t[conc] +
∑

A∈abs(E)
f ∈procs(E(A))

t[A. f ] · complE,ρA.f

where complE,ρA.f is the intrinsic complexity of the procedure A. f , i.e. its complexity excluding calls

to A’s functor parameters.

5.1 Semantics
We now present the semantics of our programs. For any setA, we denote by D(A) the set of discrete
sub-distributions over A — i.e. the set of function µ : A → [0, 1] with discrete support s.t. µ is

summable and |µ | =
∑

x µ(x) ≤ 1. For x ∈ A, the Dirac distribution at x is written 1Ax or 1x whenA is

clear from the context. If µ ∈ D(A) and µ ′ ∈ A→ D(B), the expected distribution of µ ′ ∈ D(B)when
ranging over µ, written Ex∼µ [µ

′(x)] or Eµ [µ
′], is defined as Eµ [µ

′] = b ∈ B 7→
∑

a∈A µ(a) µ
′(a)(b).

For µ ′ ∈ D(A) and f : A → B, the marginal of µ ′ w.r.t. f , written f #(µ ′) ∈ D(B), is defined as

f #(µ ′) = b 7→
∑

a∈A |f (a)=b µ
′(a). We write π #

1
(resp. π #

2
) for resp. the first and second marginal

— i.e. when f is resp. the first and second projection. For any base type τ ∈ B, we assume an

interpretation domain Vτ . We let V be the set of all possible values ∪τ ∈BVτ . A memory ν ∈ M is a

function fromV to V . We write ν [x] for ν (x). For ν ∈ M and v ∈ V , we write ν [x ← v] for the
memory that maps x to v and y to ν [y] for y , x .

Expressions semantics. For any operator f ∈ FE with type τ1 × · · · × τn → τ , we assume given its

semantics Lf M : Vτ1
× · · · × Vτn 7→ Vτ , and the cost of its evaluation cE(f , ·) : Vτ1

× · · · × Vτn 7→ N.
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JskipKE,ρν = 1
(ν,0)

JabortKE,ρν = 0

Js1; s2K
E,ρ
ν = E

(ν ′,c ′)∼Js1K
E,ρ
ν
[Js2K

E,ρ
ν ′ ⊕ c

′]

Jx ← eKE,ρν = 1
(ν [x←LeMν ],cE(e,ν ))

Jx
$

←− dKE,ρν = Ev∼LdMν [1(ν [x←v],cD(d,ν ))
]

Jif e then s1 else s2K
E,ρ
ν =


Js1K

E,ρ
ν ⊕ cE(e,ν ) if LeMν , 0

Js2K
E,ρ
ν ⊕ cE(e,ν ) otherwise

Jwhile e do sKE,ρν = lim

n 7→∞
Jloope,sn KE,ρν

where loope,sn+1
= if e then (s; loope,sn ) else skip

and loope,s
0
= if e then abort else skip

Moreover, if f-resE (m. f ) = proc f (®v : ®τ ) → τr = { _; s; return r }:

Jx ← call m. f (®e )KE,ρν = let ν0 = ν [®v ← L®e Mν ] in
E
(ν ′,c ′)∼JsKE,ρν

0

[1ν ′[x←Lr Mν ′ ],c ′+cE(®e,ν )+cE(r,ν ′)
]

And if f-resE (m. f ) = (absopen x)(®p). f :

Jx ← call m. f (®e )KE,ρν = Jx ← call ρ(x)(®p). f (®e )KE,ρν

Fig. 14. (E, ρ)-denotational semantics J_KE,ρν .

The semantics LeMν :M → V of a well-typed expression e in a memory ν is defined inductively by:

LeMν =

{
ν (x) if e = x ∈ V

Lf M(Le1Mν , . . . , LenMν ) if e = f (e1, . . . , e1)

And the cost of the evaluation of a well-typed expression cE(e, ·) :M 7→ N is defined by:

cE(e,ν ) =


1 if e = x ∈ V

cf +
∑

1≤i≤n cE(ei ,ν ) if e = f (e1, . . . , en)

and cf = cE(f , Le1Mν , . . . , LenMν )

For technical reasons, we assume that there exists one operator with a non-zero cost.
5

For any distribution operator d ∈ FD with type τ1 × · · · × τn → τ , we assume given its semantics

LdM : Vτ1
× · · · × Vτn 7→ D(Vτ ), and the cost of its evaluation cD(d, ·) : Vτ1

× · · · × Vτn 7→ N. We

define similarly LdMν :M → D(V ) and cD(d, ·) :M 7→ N.

Environment and E-pre-interpretation. To give the semantics of a program in an environment E,

we need an interpretation of E’s abstract modules. A E-pre-interpretation is a function ρ from E’s

abstract modules to module expressions, with the correct types, except for complexity restrictions.
We will specify what it means for a module expression to verify a complexity restriction later, after

having defined the semantics of our language.

5
Some of our lemmas do not hold if all programs have a cost of zero.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: March 2023.



Mechanized Proofs of Adversarial Complexity and Application to Universal Composability 1:21

Definition 5.1. Let erasecompl(M) be the module signature M where every complexity restriction

λc has been erased, by replacing it by ⊤. Then ρ is a E-pre-interpretation if and only if for every x
such that E = E1;module x = absopen : Ml; E2, we have E1 ⊢ϵ ρ(x) : erasecompl(Ml).

Note that we type ρ(x) in E1, which lets the interpretation of x use any module or abstract

module declared before x in E.

Programs semantics. If µ ∈ D(M ×N) and n ∈ N, we write µ ⊕ n for the distribution f #(µ) where
f : (m, c) 7→ (m, c + n). Let E be a well-typed environment, and s be a well-typed instruction in

E, i.e. such that E ⊢ s. The E-denotational semantics of an instruction s under the memory ν and

E-pre-interpretation ρ, written JsKE,ρν ∈ D(M × N), is defined in Fig. 14.

We give the semantics for an extended syntax, which allows procedure calls to be of the form

x ← callm. f (®e )wherem is a module expression. Note that this subsumes the syntax of statements,

since a module expression m can be a module path p. This allows to concisely define the semantics

of a call to an abstract procedure (absopen x)(®p). f as the semantics of a call to ρ(x)(®p). f .
The E-cost of an instruction s undermemoryν and E-pre-interpretation ρ, denoted by costE,ρν (s) ∈

N ∪ {+∞}, is defined as:

costE,ρν (s) = sup(supp(π #

2
(JsKE,ρν )))

where supp is the support of a distribution (this definition is equivalent to the one given in Equ. 1).

5.2 Cost Judgement Semantics and Soundness of our Proof System
To define the semantics of our cost judgments, we need two additional complexity measures: the

number of calls a program execution makes to some abstract procedure, and the intrinsic cost of a

program execution (i.e. the cost of the program without the cost of parameters calls). For space

reasons, these additional complexity measures are defined in the full version [7].

Soundness. We now have all the tools to define the semantics of our expression and program

cost judgments.

Definition 5.2. the judgment ⊢ {ϕ} e ≤ te stands for:

∀ν ∈ ϕ, cE(e,ν ) ≤ te

Definition 5.3. The judgment E ⊢ {ϕ} s {ψ | t} means that for any E-interpretation ρ and ν ∈ ϕ:

supp(π #

1
(JsKE,ρν )) ⊆ ψ ∧ cost

E,ρ
ν (s) ≤ t[conc] +

∑
A∈abs(E)f ∈procs(E(A)) t[A. f ] · complE,ρA.f

where a E-interpretation is a E-pre-interpretation mapping abstract modules to concrete module

satisfying the requiredmemory and complexity restrictions, and complE,ρA.f is the intrinsic complexity

of the procedure A. f , i.e. its complexity excluding calls to A’s functor parameters (the detailed

definition is given in the full version [7]).

Basically, the complexity of the instruction s is upper-bounded by the complexity of the concrete

code in s, plus the sum over all abstract oracles A. f of the number of calls to A. f times the intrinsic

complexity of A. f .
We are now ready to state our main theorem showing the soundness of our Hoare logic for cost.

Theorem 5.1. The proof rules in Figures 12, 11 and 13 are sound.

The proof can be found in the full version [7].
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6 EXAMPLE: UNIVERSAL COMPOSABILITY
UC security guarantees that a protocol π1 can safely replace a protocol π2 while preserving both

the functionality and the security of the overall system. The most common application of this

framework is to set π2 to be an idealized protocol that assumes a trusted-third-party (TTP) to which

parties delegate the computation; the specification of the TTP is called an ideal functionality F .
An ideal functionality F defines what protocol π1 should achieve both in terms of correctness and

security to securely replace the TTP. Moreover, F can be used as an ideal sub-component when

designing higher-level protocols, which then can be instantiated with protocol π1 to obtain a fully

concrete real-world protocol.

The UC framework defines an execution model where protocol participants, attackers and

contexts are modeled as Interactive Turing Machines (ITM). The model was carefully designed

to give a good balance between expressive power—e.g., one can capture complex interactions in

distributed protocols involving multiple parties in a variety of communication models, various

forms of corruption, etc.—and a tailored (and relatively simple) resource analysis mechanism that

permits keeping track of the computing resources available to both honest and malicious parties.

The model is described in detail in [18, 19]. However, most UC proofs found in the literature refer

only to a common understanding of the semantics of the execution model and a set of high-level

restrictions that are inherent to the model. These include the allowed interactions between different

machines, the order in which machines are activated, predefined sequences of events, etc. More

fine-grained descriptions of the execution model are sometimes introduced locally in proofs, when

they are needed to deal with more subtle points or technicalities that can only be clarified at the cost

of extra details. This stands in contrast with typical game-based proofs for simpler cryptographic

primitives [11], where security proofs are given in great detail. This is one of the reasons why,

while there has been impressive progress in machine-checking game-based proofs [5], we are only

now giving the first steps in formalizing proofs in the UC setting [22, 27, 34]. Another reason is

that the ITM model for communication is difficult to express in procedure-based semantics offered

by tools that target game-based proofs.

To overcome these difficulties, we propose a new approach to machine-checking UC proofs

that shares many features of the simplified version of UC proposed by Canetti, Cohen and Lindell

in [21]. As in [21], we statically fix the machines/modules in the execution model and we allow an

adversarial entity to control which module gets to be executed next, rather than allowing machines

to pass control between them more freely as in the original UC execution model. The crucial

difference to the ITM execution model is that the above interactions are procedure-based, which

means that whenever the environment passes control to the protocol, the internal protocol structure

will follow a procedure call tree that guarantees (excluding the possibility of non-terminating code)

that control returns to the environment.
6
As in [21], we lose some expressiveness, but we do not

go as far as hard-wiring a specific communications model for protocols based on authenticated

channels; instead, we leave it to the protocol designer to specify the communications model by using

an appropriate module structure. We recover the authenticated communications model of [21] by

explicitly defining a hybrid real-world, in which concrete modules for ideal authenticated channels

are available to the communicating parties. We discuss the trade-offs associated with our approach

more in depth at the end of this section, drawing a parallel to the work in [22].

6
Intuitively, the UC model expresses a single line of execution using a token-passing mechanism that allows one machine to

transfer computational resources to another, and even to create new machines. In our setting, resource analysis is much

simpler. All modules representing honest and adversarial entities are fixed from the start and the cost model is concrete: all

adversarial entities have a resource usage type, which means they are known to execute a maximum number of operations

and perform a bounded number of procedure calls. Hence the resources used by any subset of modules in our formalizations

can be stated as expressions over these type parameters.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: March 2023.



Mechanized Proofs of Adversarial Complexity and Application to Universal Composability 1:23

module type IO = {
proc inputs (i:inputs) : unit
proc outputs(o:ask_outputs) : outputs option
}.

module type BACKDOORS = {
proc step (m:step) : unit
proc backdoor (m:ask_backdoor) : backdoor option
}.

module type E_INTERFACE = {
include IO
include BACKDOORS
}.

module type PROTOCOL = {
proc init() : unit
include E_INTERFACE
}.

Fig. 15. PROTOCOL type in EasyCrypt.

6.1 Mechanized Formalization in EasyCrypt
We propose a natural simplification of the UC execution model that is based on EasyCryptmodules

and show that this opens the way for a lightweight formalization of UC proofs. This formalization

has been conducted in our extension of EasyCrypt (the proofs of the lemmas and theorems of this

section are fully mechanized).

Protocols and Functionalities as EasyCrypt modules. The basic component in our UC execution

model is a module of type PROTOCOL given in Fig. 15. Inhabitants of this type represent a full

real-world configuration—a distributed protocol executed by a fixed number of parties—or an

ideal-world configuration—an ideal functionality executing a protocol as a trusted-third party. The

type of a protocol has a fixed interface, but it is parametric on the types of values exchanged via

this interface. The fixed interface is divided into three parts: i) init allows modeling some global

protocol setup; ii) IO captures the interaction of a higher level protocol using this protocol as a

sub-component; and iii) BACKDOORS captures the interaction of an adversary with the protocol

during its execution.

When we define real-world protocols, a module of type PROTOCOL will be constructed from

sub-modules that emulate the various parties and the communications channels between them. In

this case, BACKDOORS models adversarial power in this communication model. For ideal-world

protocols, a PROTOCOL is typically a flat description of the ideal computation in a single module;

here BACKDOORS models unavoidable leakage (e.g., the length of secret inputs or the states of

parties in an interactive protocol) and external influence over the operation of the trusted-third

party (e.g., blocking the computation to model a possible denial of service attack).
7

Execution Model. The real- and ideal-world configurations are composed by a statically deter-

mined set of modules, which communicate with each-other using a set of hardwired interfaces.

The execution model is defined by an experiment in which an external environment interacts with

the protocol via its IO and BACKDOORS interfaces until, eventually, it outputs a boolean value

(Fig. 16). The IO interface allows the environment to pass an input to the protocol using inputs
or to retrieve an output produced by the protocol using outputs. For example in the real-world,

the environment can use these procedures to give input to or obtain an output from one of the

sub-modules that represent the computing parties involved in the protocol. The BACKDOORS
interface allows the environment to read some message that may be produced by the protocol using

backdoor or make one of the protocol sub-components (parties) advance in its execution using step
to deliver a message.

7
Ideal-world backdoors are used to weaken the security requirements and are usually tailored to bring the security definition

down to a level that can be met by real-world protocols. Note that the definition of meaningful ideal functionalities is a crucial

aspect of UC security theory; here we just provide a mechanism that permits formalizing such definitions in EasyCrypt.
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module UC_emul (E:ENV) (P:PROTOCOL) = {
proc main() = {
var b;
P.init(); b← E(P).distinguish(); return b; }

}.

module CompS(F:IDEAL.PROTOCOL, S:SIMULATOR)
: PROTOCOL = {
proc init() = { F.init(); S(F).init(); }
include F [ inputs, outputs]
include S(F) [step, backdoor]
}.

Fig. 16. Executionmodel for real/ideal worlds (top) and composition of functionality with a simulator (bottom).

We describe now the typical sequence of events in a real-world execution; the ideal-world

will become clear when we describe the notion of UC emulation below. When the adversarial

environment uses the IO interface to pass input to a computing party, this may trigger the computing

party to perform some computations and, in turn, provide inputs to other sub-modules included in

the protocol description; in most cases this will correspond to sending a message using an idealized

communications channel represented by an ideal functionality.
8
Our convention is that inputs calls

do not allow obtaining information back (the return type is unit). This means that any outputs

produced by parties need to be pulled by the environment with separate calls to outputs. Similarly,

when the environment asks a party for an output, the party may perform some computation and

call the outputs interface of a hybrid ideal functionality (e.g., to see if a message has been delivered)

before returning the output to the environment.

The BACKDOORS interface follows these conventions closely. The backdoor method allows the

environment to retrieve leakage that may be available for it to collect (e.g., the public part of a

party’s state, or a buffered message in an authenticated channel). The step procedure allows the
environment to pass control to any module inside the protocol; this is important to make sure that

the environment always has full control of the liveness of the execution model and can schedule the

execution of the various processes at will whenever there are several possible lines of execution.

UC emulation. The central notion to Universal Composability is called UC-emulation, which is a

relation between two protocols π1 and π2: if π1 UC-emulates π2 with small advantage ϵ then π1

can replace π2 in any context (within a complexity class).

Definition 6.1 (UC emulation). Protocol π1 UC emulates π2 under complexity restrictions csim
and cenv and advantage bound ϵ if

∃S ∈ τ π1,π2,csim
sim ,∀Z ∈ τ π1,π2,S,cenv

env , | Pr[Z(π1) :⊤ ] − Pr[Z(⟨π2 ∥ S(π2)⟩) :⊤ ] | ≤ ϵ

We write this as Advuccsim,cenv (π1,π2) ≤ ϵ .

The first probability term corresponds to the event that the environment returns true in the

real-world execution model described above, i.e., in game UC_emul parameterized with ENV = Z
and P = π1. The second probability term corresponds to the equivalent event in the ideal-world (or

reference) execution model where, as shown in Fig. 17 (right), π2 is typically an ideal functionality;

this corresponds to game UC_emul parameterized with ENV = Z and a protocol P that results

from attaching S to the BACKDOORS interface of π2. We denote this ideal-world P by ⟨π2 ∥ S(π2)⟩,

corresponding to the EasyCrypt functor CompS also shown in Fig. 16.

UC-emulation imposes that a simulatorS is capable to fool any environment by presenting a view

that is fully consistent with the real-world, while learning only what the BACKDOORS interface of
π2 allows. If such a simulator exists, then clearly π2 cannot be worse than π1 in the information it

8
Real-world settings using ideal functionalities as sub-components are called hybrid.
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Fig. 17. Module restrictions. Arrows indicate ability to make procedure calls via the interface specified as a
label; all other cross-boundary memory access is disallowed.

reveals to the environment via its BACKDOORS interface.9 Our UC-emulation definition quantifies

over simulators and environments using types that give a full characterization of their use of

resources, including the ability to access memory, number and types of procedure calls and intrinsic

computational costs. The memory access restrictions are depicted in Fig. 17, and they can be easily

matched to the standard restrictions in the UC framework. Not shown are the cost restrictions,

which give explicit bounds for the resources used by various parts of the execution model; these are

crucial for obtaining, not only a meaningful definition, but also for obtaining meaningful reductions

to computational assumptions, as will be seen below.

Let us examine the types ofZ and S in more detail. We first note that the definition of emulation

is parametric in the resource restrictions csim and cenv. Clearly the IO interface of π2 must match

the type of the IO interface of π1, which is consistent with the goal that π1 can replace π2 in any

context, and this is enforced by our type system. This need not be the case for the BACKDOORS
interface and, in fact, if π2 is an ideal functionality, the BACKDOORS interface in the ideal world is

of a different nature altogether than the one in the real world: it specifies leakage and adversarial

control that are unavoidable even when the functionality is executed by a trusted third-party on

behalf of the parties. The type of the simulator S is given by τ π1,π2,csim
sim , which defines the type of

modules that has access to the BACKDOORS interface of π2, exposes the BACKDOORS interface of
π1 and is restricted memory-wise to exclude the memory of π2 and resource-wise by csim. Note that,
if S could look inside the ideal functionality, then it would know all the information that is also

given to the real-world protocol: a trivial simulator would always exist and the definition would

be meaningless because all protocols would be secure. The type of the environment is given by

τ π1,π2,S,cenv
env , the type of modules that have oracle access to the IO and BACKDOORS interfaces of π1,

and are restricted memory-wise to exclude the memories of π1, π2 and S, and resource-wise by

cenv. In this case, if the environment could look inside π1, π2 or S it could directly detect with which

world it is interacting, and no protocol would be secure. For concreteness, the cost restriction on

9
The emulation notions in [18, 19] quantify over a restricted class of balanced environments. Intuitively, such environments

must be fair to the simulator in that polynomial-time execution in the size of its inputs is comparable to the execution time

of the real-world adversary. Without this restriction, the definition would require the existence of a simulator that uses

much less resources than the real-world attacker, which makes the definition too strong. Balanced environments guarantee

that the resources given to the simulator match those given to the real-world adversary; moreover, the dummy adversary is

formally explicit in the real-world to enable this resource accounting. In our setting we deal with this issue differently: the

EasyCrypt resource model is concrete, which means that one can explicitly state in the security definition which resources

are used by the simulator and assess what this means in terms of protocol security. We refer the interested reader to [18,

Section 4.4] for a discussion of quantitative UC definitions such as the one we adopt. For this reason, as we show below, we

also do not need to keep the dummy adversary explicitly in the real world.
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the type of the environment imposed by cenv is of the form:

cenv := compl[intr : c1,π .inputs : c2,π .outputs : c3,π .backdoor : c4,π .step : c5]

where type refinements can set ci to depend on the types of other modules in the context.

6.2 Warm-up: Transitivity of UC emulation
It is easy to show that UC-emulation is a transitive relation: if π1 UC-emulates π2 and this, in turn,

UC-emulates π3, then π1 UC-emulates π3. When stating this lemma in EasyCrypt we move the

existential quantifications over the simulators in the hypotheses to global universal quantifications;

this logically equivalent formulation allows us to refer to the memory of these simulators when

quantifying over all adversarial environments in the consequence: we quantify only over those

that cannot look inside the simulators that are assumed to exist by hypothesis, which is a natural

(and necessary) restriction. In other examples we use the same approach. The lemma is stated in

EasyCrypt as follows (we adapt the Advuc,S·, · (·, ·) notation by indicating the universally quantified

simulator S in superscript).

Lemma 6.1 (Transitivity). For all ϵ1,2, ϵ2,3 ∈ R
+, all protocols π1, π2 and π3 s.t. the IO interfaces

of all three protocols are of the same type, all cost restrictions csim(1,2), csim(2,3) and all simulators
S1,2 ∈ τ

π1,π2,csim(1,2)
sim , S2,3 ∈ τ

π2,π3,csim(2,3)
sim , we have that:

Advuc,S1,2

csim(1,2), ĉenv(1,2)
(π1,π2) ≤ ϵ1,2 ⇒ Advuc,S2,3

csim(2,3), ĉenv(2,3)
(π2,π3) ≤ ϵ2,3

⇒ Advucĉsim(1,3),cenv(1,3) (π1,π3) ≤ ϵ1,2 + ϵ2,3

where ĉsim(1,3) corresponds to the cost of sequentially composing S1,2 and S2,3, ĉenv(2,3) must allow for
an adversarial environment that results from converting a distinguisher between π1 and π3 in cenv(1,3)
and composing it with S1,2, and ĉenv(1,2) = cenv(1,3).

In the statement of the lemma we use notation ĉ to denote the fact that these cost restrictions are
fixed as a function of the costs of other algorithms: intuitively, the cost of the environment in the

consequence is free and it constrains the costs of environments in the hypotheses; then, if for some

cost restrictions csim(1,2) and csim(2,3) the hypotheses hold, these in turn fix the cost of the simulator

we give as a witness. This pattern is observable in the remaining examples we give in this section.

From the proof, we get a witness simulator S1,3 = SeqS(S2,3,S1,2) that results from plugging

together the two simulators implied by the assumptions: intuitively, S2,3 is able to interact with π3

and emulate the BACKDOORS of π2, and this is sufficient to enable S1,2 to emulate the BACKDOORS
interface of π1, as required. Technically, the proof shows first that one can break down S1,3 and put

π2 in the place of CompS(π3,S2,3). To show this, we aggregateS1,2 into the environment to construct

a new environment that would break π2 if such a modification was noticeable, contradicting the

second hypothesis. The proof then follows by applying the first hypothesis. Note that this proof

strategy is visible in the resources used by S1,3, since they are those required to run the composed

module SeqS(S2,3,S1,2). Moreover, the quantification over the resources of the environments in

the second hypothesis must accommodate an environment that absorbs simulator S1,2 and runs it

internally.

6.3 The dummy adversary in UC
The standard notion of UC emulation [18, 19] enriches the real-world with an explicit adversaryA

representing an attacker that has access to the real-world BACKDOORS interface and colludes with

the environment to break the protocol. In this case, the real- and ideal- world execution models

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: March 2023.



Mechanized Proofs of Adversarial Complexity and Application to Universal Composability 1:27

become structurally identical, in that the environment interacts with the BACKDOORS interface via
adversarial entities in both worlds.

10

module type ADV(B : BACKDOORS) = {
include NONDUMMY.BACKDOORS

}.

module A_PROTOCOL(A : ADV, P : PROTOCOL)
: NONDUMMY.PROTOCOL = {
proc init() : unit = { P.init(); }
include P [inputs, outputs]
include A(P) [step,backdoor]

}.

Fig. 18. Real-world protocol with adversary.

Consider the functor in Fig. 18, which extends

any real-world protocol with abstract adversary

A (A in EasyCrypt notation) at its BACKDOORS
interface. The type ofA is parametric in the BACK-
DOORS offered by the protocol in our basic exe-

cution model, and it fixes the type of the BACK-
DOORS interface in the extended execution model

NONDUMMY.PROTOCOL. This means that when

we quantify over such adversaries, we quantify

also over the potential forms of environment-to-

adversary information exchange. The following

theorem shows that we do not lose generality by

working with an (implicit) dummy adversary in our execution model.

Theorem 6.2 (Dummy Adversary). UC emulation is equivalent to UC emulation with an explicit
real-world adversary. More precisely:
• Emulation with an implicit dummy adversary implies emulation with an explicit arbitrary
adversary: For all ϵ ∈ R+, all protocols π1 and π2 with IO interfaces of the same type, all
complexity restrictions csim, cenv and all simulators S ∈ τ π1,π2,csim

sim , we have

Advuc,Scsim,cenv (π1,π2) ≤ ϵ ⇒ ∀A ∈ τadv,Advucĉsim,cenv (⟨π1 ∥ A(π1)⟩,π2) ≤ ϵ

where ĉsim allows for a simulator S′ that combines adversary A and simulator S.
• Emulation with an implicit dummy adversary is implied by emulation with an explicit arbitrary
adversary: For all ϵ ∈ R+, all protocols π1 and π2 with IO interfaces of the same type, all
complexity restrictions csim, cenv and all simulator memory spacesM, we have

∀A ∈ τadv,Advuc,Mcsim,cenv (⟨π1 ∥ A(π1)⟩,π2) ≤ ϵ ⇒ Advuc,Mcsim,cenv (π1,π2) ≤ ϵ

where τadv accommodates the dummy adversary.

Our proof gives a simulator S′ for the first part of the theorem that joins together simulator

S and adversary A: intuitively the new simulator uses the existing one to fool the (non-dummy)

real-world adversary into thinking it is interacting with the real-world protocol and, in this way, it

can offer the expected BACKDOORS view generated by A to the environment. The resources used

by S′ are those required to run the composition of S and A. The proof of the second part of the

theorem is more interesting: we construct an explicit dummy adversary and use this to instantiate

the hypothesis and obtain a simulator for this adversary, which we then show must also work

when the dummy adversary is only implicit: this second step is an equivalence proof showing that,

if the simulator matches the explicit dummy adversary which just passes information along, then it

is also good when the environment is calling the protocols’ BACKDOORS interface directly. The
resulting simulator is therefore guaranteed to belong to the same cost-annotated type over which

we quantify existentially in the hypothesis.

We note a technicality in the second part of the theorem: since the hypothesis quantifies over

adversaries before quantifying existentially over simulators, we cannot use the approach adopted

10
For this reason the simulator is often called an ideal world adversary; we do not adopt this terminology here to avoid

confusion. The order of the quantifiers in the emulation definition is crucial for its compositional properties: it requires

that, for all adversaries A, there exists a simulator S such that, for all environments Z, the real- and ideal- worlds are

indistinguishable. We now show that the same result holds in our setting.
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in the transitivity proof and in the first part of the theorem, where we use global universal quan-

tifications over hypothesized simulators. Instead, we quantify globally over a memory spaceM,

restrict simulators in the hypothesis to only useM, and prevent other algorithms to interfere with

this memory space where appropriate (we abuse notation by indicatingM in Advuc to denote this).

6.4 Universal Composability
The fundamental theorem of Universal Composability is stated in our EasyCrypt formalization as

follows.

Theorem 6.3 (Universal Composability). For all ϵρ , ϵπ ∈ R+, all ideal functionalities f , F , all
protocols ρ(f ) and π , such that the IO interfaces of π and f (resp. ρ and F ) are of the same type, all
cost restrictions csim(ρ), csim(π ), and all simulators Sρ ∈ τ

ρ(f ),F,csim(ρ )
sim and Sπ ∈ τ

π , f ,csim(π )
sim , we have:

Advuc,Sπcsim(π ), ĉenv(π )
(π , f ) ≤ ϵπ ⇒ Adv

uc,Sρ
csim(ρ ), ĉenv(ρ )

(ρ(f ),F ) ≤ ϵρ ⇒ Advucĉsim,cenv (ρ(π ),F ) ≤ ϵρ + ϵπ

where ĉenv(π ) accommodates an environment that internally uses cenv resources and additionally runs
ρ, ĉsim corresponds to the cost of composing Sπ and Sρ , ĉenv(ρ) allows for an adversarial environment
built by composing Sπ with an environment in cenv.

This theorem establishes that any protocol ρ(f ) that UC-emulates a functionality F when

relying on an ideal sub-component f offers the same level of security when it is instantiated

with a protocol π that UC-emulates f . The proof first shows that the simulator Sπ that exists by

hypothesis can be converted into a simulator that justifies that ρ(π ) UC-emulates ρ(f ): intuitively
this new simulator uses Sπ when interacting with the backdoors of f and just passes along the

environment’s interactions with the backdoors of ρ. This part of the proof combines any successful

environmentZ against the composed protocol into a successful environment that absorbs ρ and

breaks π . This justifies the cost restriction on cenv. Then, we know by hypothesis that ρ(f ) UC
emulates F , and the result follows by applying the transitivity lemma, which also explains the

remaining cost restrictions.

Example: Composing key exchange with encryption. We conclude this section with an example of

the use of our framework and general lemmas stated above for concrete protocols. Consider the code

snippets in Fig. 19. On the left we show the inner structure of a two-party protocol formalization

(Diffie-Hellman) when one assumes an ideal sub-component (in this case a bi-directional ideal

authenticated channel F2Auth exposing IO interface Pi.REAL.IO). The full real-world configuration

is obtained by applying a functor CompRF that composes this protocol with F2Auth and exposes the

backdoors of both DHKE and F2Auth in a combined BACKDOORS interface. The IO interface to this

real-world protocol is simply the input/output interface for both parties; parties take as input a

role (initiator/responder) and the identities of parties involved in the protocol (type unit pkg); they
output a session key when the protocol completes.

The Initiator code is shown in Fig. 20. On initialization it samples its ephemeral key pair and

resets the derived key. When the environment provides input, which includes the identities of

the parties that will take part in the key exchange, the ephemeral public key is transmitted via

one of the ideal authenticated channels. The party then returns control to the environment (note

that delivering a message to the authenticated channel does not pass control to the authenticated

channel). When the environment calls step, the initiator checks the incoming ideal channel to

see if it received a message. At any point the environment can check the initiator output using

output. The backdoor interface provides no information, since all communications go through the

authenticated channels. The responder code is symmetric.
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module
(DHKE : RHO)
(F2Auth: Pi.REAL.IO) = {
module Initiator = { · · · }
module Responder = { · · · }

proc init() : unit = {
Initiator.init(); Responder.init(); }

proc inputs(r : role, p : unit pkg)
: unit = {
if (r = I) { Initiator.inputs(p); }
else { Responder.inputs(p); } }

proc outputs(r : role)
: group option = { · · · }

proc step(r : role) : unit = { · · · }

proc backdoor(r : role) : unit option = {
var rr;
if (r = I) { rr← Initiator.backdoor(); }
else { rr← Responder.backdoor(); }
return rr; }

}.

module FAuth : PROTOCOL = {
var st : state

proc init() : unit = {
st← init_st; }

proc inputs(r : role, p : msg pkg)
: unit = {
st← set_msg st r p;

}

proc outputs(r : role, p : unit pkg)
: msg option = {
return get_msg st r p;

}

proc step() : unit = {
st← unblock st; }

proc backdoor()
: leakage option = {
return leak st;

}
}.

module FKE : PROTOCOL = {
var st : state
proc init() : unit = {

k
$

←− gen; st← init k; }

proc inputs(r : role, p : unit pkg)
: unit = {
st← party_start st r p;

}

proc outputs(r : role)
: key option = {
return party_output st r;

}

proc step() : unit = {
st← unblock st;
}

proc backdoor()
: leakage option = {
return leak st;
}

}.

Fig. 19. Examples of real-world (left) and ideal-world protocols (middle and right). Left: structure of a Diffie-
Hellman protocol relying on FAuth for authenticated communication (one shot each way). Middle: ideal
functionality for one-shot authenticated channel FAuth. Right: ideal functionality for key exchange.

module Initiator = {

proc init() : unit = { st← IInit; _x
$

←− FDistr.dt; _X← g^_x; _K← None; }

proc inputs(_p : unit pkg) : unit = {
if (st = IInit) { p← _p; Auth.inputs(Left (I, (snd p, rcv p, _X))); st← ISent; }}

proc outputs() : group option = { return _K; }

proc step() : unit = {
if (st = ISent) {
_Y← Auth.outputs(Right (R, (rcv p, snd p, ())));
if (_Y , None) { _K← Some (oget (getr (oget _Y)) ^ _x); st← IDone; }

}}

proc backdoor() : unit option = { return None; }}.

Fig. 20. Diffie-Hellman Initiator.

In the middle code-snippet of Fig. 19 we give an example ideal functionality for a simple one-shot

unidirectional authenticated channel; one party provides input with the party identities and the

message to transmit (type msg pkg), and the other party can obtain the message if it calls outputs
with matching identities (type unit pkg.) The attacker can use the backdoor procedure to observe the
state of the channel, including the transmitted message and the party identities and it can use the

step procedure to control when the message is delivered (the unlock operator changes the state so
that, if a message is buffered, then it is made available at the output procedure) to the receiving

party (get_message is checking for identity consistency, which models authentication).
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The example starts with a proof that the Diffie-Hellman protocol on the left of Fig. 19 UC-

emulates the ideal functionality for key exchange shown on the right of Fig. 19 in a hybrid-real

world where the parties have access to authenticated channels. The FKE functionality runs internally
a state machine that waits for both parties to provide input, and allows an adversary/simulator

interacting with its BACKDOORS interface to control when the different parties obtain a fresh

shared secret key. This result is stated as follows; note the accounting of resources spent by the

combined Diffie-Hellman attacker, making it explicit that the DDH assumption must be valid for

such an attacker.

Lemma 6.4 (Security of DHKE). Fix cddh ∈ R+ and let ϵDDH be the maximum advantage of any
DDH attacker against the group over which we implement DHKE. Then, we have that

Advuccsim(DHKE),cenv(DHKE) (DHKE(F2Auth), FKE) ≤ ϵDDH

where csim(DHKE) is the cost of a concrete simulator SDHKE that just samples random group elements as
the protocol messages and mimics the states of the real-world parties and F2Auth; cenv(DHKE) must be
such that cddh accommodates the cost of an adversary that runs internally the entire UC emulation
experiment (including the environment) and interpolates between the real and ideal worlds, depending
on the external DDH challenge.

The second result shows that the ideal functionality for key exchange can be combined with

one-time-pad encryption to transform a one-shot authenticated channel into a one-shot secure

channel that also guarantees confidentiality. Formally:

Lemma 6.5 (Security of OTP). Fix any cenv(OTP). Then we have

Advuccsim(OTP),cenv(OTP) (OTP(FKE, FAuth), FSC) = 0

where csim(OTP) is the cost of a concrete simulator SOTP that just samples a random string in place of
the ciphertext and mimics the states of the real-world parties, FKE and FAuth.

Here, FSC represents the secure channel ideal functionality, which operates exactly as Fauth,
but does not leak the transmitted message; leakage includes only information on the state of the

channel. The protocol runs in a hybrid world where it has access to both FKE and Fauth, uses the
former to obtain a shared key between the two parties, and then transmits the one-time-padded

message using Fauth. We apply our Universal Composability theorem to derive that FKE can be

replaced by the DHKE protocol, resulting in a protocol that still UC-emulates the secure channel

functionality. The final theorem is stated as follows.

Theorem 6.6 (Security of OTP composed with DHKE). Fix cddh ∈ R+ and let ϵDDH be the
maximum advantage of any DDH attacker against the group over which we implement DHKE. Then

Advuccsim,cenv (OTP(DHKE, FAuth), FSC) ≤ ϵDDH

where cenv is constrained so that cenv(DHKE) accommodates an environment that internally uses cenv
resources and additionally runs OTP, and csim corresponds to the cost of composing SOTP and SDHKE.

The crucial application of the complexity restrictions is visible in the attacker against the DDH

assumption, which now has a more complex structure that results from the application of the

composition theorem: for this application of composition to be meaningful, it is crucial that the

global environment is computationally bounded (even though the OTP protocol is information-

theoretically secure) as a function of cddh, as otherwise the reduction to DDH would be meaningless.

Indeed, the class of DDH attackers must allow for the extra resources required to run a simulation

of OTP protocol in the reduction. Note also that the execution time of the global simulator is given
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by SOTP and SDHKE, which are very efficient; hence the UC emulation result has a small simulation

overhead [19, 20].

For the proof we used an auxiliary lemma, which is a specialization of the Universal Composability

theorem for the case where the hybrid functionality is the parallel composition of two ideal

functionalities and we apply the Universal Composability theorem to instantiate only one of them.

Our formalization vs EasyUC. Our Diffie-Hellman example is an alternative formalization of the

example given by Canetti, Stoughton and Varia [22] for the EasyUC framework. We borrow it

because, as in [22], it is a good toy examplewithwhich to validate and demonstrate our formalization.

This example is also convenient to show that the approach in this paper and EasyUC in effect

complement each other. An important design goal of EasyUC is to follow the UC execution model

as closely as possible; this allows a more direct translation of protocols and ideal functionalities.

In contrast, our goal is to take advantage of the EasyCrypt machinery to reduce proof effort

and development size: our development (including complexity) takes 2300 lines of code and it

includes general UC theorems that can be reused in future work; this compares to 18K lines of

code for EasyUC.
11
The downside of our approach is the impact in the way one specifies protocols

and ideal functionalities: message passing corresponds to procedure calls, and these must adhere to

the EasyCrypt tree-based procedure call semantics. For example, we do not allow an execution

environment where a party communicates with an ideal functionality arbitrarily without relying

on the environment for scheduling; one could of course formalize a message passing mechanism

on top of EasyCrypt as in [22] to allow for this, but this would then fall out of the scope of our

general composition theorems. Moreover, it would lead to larger developments and increased proof

effort, which would defeat our original purpose.

In short, one can think of the EasyUC approach as a front-end for cryptographers, and our

approach as a convenient back-end for conducting the machine-checked proofs. We leave it as an

interesting direction for future work to develop a sound translation between these two approaches

to modeling UC for a representative class of protocols such as those considered in [21]. Another

interesting direction for future work is to identify UC security proofs that cannot be naturally

expressed using our approach to formalizing UC and to investigate how it can be extended to deal

with these examples.

7 RELATEDWORK
Cost analysis. There is a very large body of work that uses program logics for cost analysis

of imperative programs. [37] uses Hoare logic for proving upper bounds on execution time of

deterministic programs. In the probabilistic setting, [31] uses a pre-expectation calculus inspired

from Kozen [32] and Morgan, McIver and Seidel [35] to compute upper bounds on the expected cost

of probabilistic programs. Building on prior work in automation of amortized analysis, [36] develop

a compositional and automated logic for proving upper bounds on expected time. Recently, [29]

show how the pre-expectations calculus can also be used for proving lower bounds on expected

time. While most of the cryptography literature considers worst-case execution time, expected-time

arises naturally in some applications; see e.g. [25] for a discussion of expected polynomial-time in

cryptography. It would be interesting to develop an adaptation of our system for expected-time

complexity, based on the approach developed in [31]. In addition, there is a long line of work on

automating cost analysis, both for deterministic and for probabilistic programs, see e.g. [1, 16, 26].

These techniques could be helpful to alleviate users efforts, and connecting with tools that support

them is an important direction for future work.

11
The count excludes general purpose libraries, but we should note that the exact numbers are not important, as the size of

a development varies significantly with style of coding and the use of automation.
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There is also a large body of work on cost analysis of higher-order languages, both in the

deterministic and probabilistic settings. Some of these works specifically focus on cryptography;

e.g., [4] develop a type system that accomodates non-heriditarily polynomial-time computations

(i.e. computations that contain non-polynomial-time subroutines), and use their type system to

analyze the complexity of the reduction from hardcore predicates to one-way functions. Many

of these works are based on (linear) type systems [23, 30], but other works use a fine-grained

program logic to support value-dependent cost analysis [39]. These approaches could be used in

conjunction with our type-and-effect module system to support compositional reductionist proofs

for a higher-order language.

Computer-aided cryptography. CryptoVerif [15] is an automated tool for computational security

proofs. CryptoVerif uses approximate equivalences to find (or check) cryptographic reductions, and

keeps track of the complexity of adversaries. Most other tools for computational security proofs,

including CertiCrypt [11], Foundational Cryptography Framework [38], and CryptHOL [13], share

their foundations and overall approach with EasyCrypt. However, these tools offer limited support

for complexity reasoning and they do not support the use of modules for defining cryptographic

schemes and notions. This is not a fundamental limitation, since these tools are embedded in a

general-purpose proof assistant. However, extending these tools to achieve similar effects as our

type-and-effect module system and program logic for complexity would represent a significant

endeavor.

Our module system is inspired from EasyCrypt [9, 12]. However, the EasyCrypt module sys-

tem lacks complexity restrictions, which hampers the use of compositional approaches. Beyond

EasyCrypt, several other tools and approaches use structures similar to modules for formalizing

cryptographic schemes and their security. Computational Indistinguishability Logic (CIL) [8] rely

on oracle systems, which are very closely related to our modules. Interestingly, the main judgment

of CIL establishes the approximate equivalence of two oracle systems, and is explicitly quantified

by the resources of an adversary. State-separating proofs [17] pursue similar goals, using a notion

of package. Packages have the expressivity of modules, but additionally support private functions.

Our modules can emulate private functions using restrictions. At present, there is no tool support

for state-separating proofs. [40] introduces the notion of interface, which is similar to module, for

formalizing cryptography.

8 CONCLUSION
We have developed an extension of the EasyCrypt proof assistant to support reasoning complexity

claims. The extension captures reductionist statements that faithfully match the cryptographic liter-

ature and supports compositional reasoning. As a main example, we have shown how to formalize

key results from Universal Composability, a long-standing goal of computer-aided cryptography.
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