
An Interactive Prover for
Protocol Verification in the Computational Model

David Baelde∗, Stéphanie Delaune†, Charlie Jacomme‡, Adrien Koutsos§ and Solène Moreau†
∗ LMF, ENS Paris-Saclay & CNRS, Université Paris-Saclay, France

†Univ Rennes, CNRS, IRISA, France
‡CISPA Helmholtz Center for Information Security, Germany

§Inria Paris, France

Abstract—Given the central importance of designing se-
cure protocols, providing solid mathematical foundations and
computer-assisted methods to attest for their correctness is
becoming crucial. Here, we elaborate on the formal approach
introduced by Bana and Comon in [10], [11], which was originally
designed to analyze protocols for a fixed number of sessions, and
lacks support for proof mechanization.

In this paper, we present a framework and an interactive
prover allowing to mechanize proofs of security protocols for an
arbitrary number of sessions in the computational model. More
specifically, we develop a meta-logic as well as a proof system
for deriving security properties. Proofs in our system only deal
with high-level, symbolic representations of protocol executions,
similar to proofs in the symbolic model, but providing security
guarantees at the computational level. We have implemented our
approach within a new interactive prover, the SQUIRREL prover,
taking as input protocols specified in the applied pi-calculus,
and we have performed a number of case studies covering
a variety of primitives (hashes, encryption, signatures, Diffie-
Hellman exponentiation) and security properties (authentication,
strong secrecy, unlinkability).

Index Terms—Security Protocols, Formal Methods, Observa-
tional Equivalence, Computational Security, Interactive Prover.

I. INTRODUCTION

Given the importance and difficulty of designing secure
communication protocols, computer scientists have strived to
provide solid mathematical foundations, formal methods and
tools for the computer-aided verification of security protocols.

A successful approach in this line of research is to model
cryptographic messages as formal terms subject to some
equational theory representing attacker capabilities. Originally
proposed by Dolev and Yao [36], this idea has been refined
over the years, resulting in a variety of so-called symbolic
models, based, e.g., on the applied pi-calculus [2] or multiset
rewriting [46]. These models capture large classes of attack-
ers and allow the automated verification of protocols. This
has lead to tools such as PROVERIF [20], TAMARIN [45],
DEEPSEC [26] and others [5], [25], [32], [37], which have
been used to prove the security of widely deployed protocols,
e.g. [14], [18], [35].

The research leading to these results has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program (grant agreement No 714955-POPSTAR), and
from the French National Research Agency (ANR) under the project TECAP.

To discuss the general principle and limitations of the
symbolic model, let us consider a simple protocol where a
tag (role T) with identity id carrying its own hashing key k is
authenticated by a reader (role R) that has access to a database
of legitimate pairs 〈id, k〉:

R→ T : n
T → R : id⊕ H(n, k)

In words, the reader sends a random number n and, when
receiving a reply, verifies that there is some 〈id, k〉 in its
database such that the reply is the identity id XORed with
the hash of n using the key k. To verify that an attacker
cannot impersonate a tag with data 〈id0, k0〉, we need to
check that the attacker cannot derive a message that the
reader would accept, whatever knowledge they may have
obtained from previous interactions. Assuming for simplicity
two identities id0 and id1, and that the attacker is only active
during its last interaction, we have to verify that, for distinct
names (nj)0≤j≤p, and for any i1, . . . , ip ∈ {0, 1}, there is no
context C made of public function symbols such that:

C[nj , idij ⊕ H(nj , kij)]1≤j≤p =E id0 ⊕ H(n0, k0)

where =E is equality modulo a relevant equational theory.
Rephrased like this, the problem may be solved using rewrit-

ing techniques such as unification, itself based on completion
or variant computation [30], [48]. However, the equational
theory E would need to contain equations reflecting the
algebraic properties of XOR which are typically problematic
for these techniques. In fact, PROVERIF and DEEPSEC do not
support XOR, and TAMARIN only provides limited support for
it. Supporting primitives with rich algebraic properties (e.g.,
blind signatures, exponentiation, XOR) is probably the main
challenge that these tools are currently facing.

An obvious limitation of the symbolic model is that it can
only be used to find logical flaws in protocols, e.g. man-in-
the-middle [44] or reflection attacks [15]. Indeed, security
in the symbolic model is weaker than the cryptographer’s
standard security notion, based on a computational model
where adversaries are arbitrary probabilistic polynomial-time
(PTIME) Turing machines. As an illustration, nonces are
modelled in the computational model as long bitstrings that
are drawn uniformly at random. Two nonces correspond to the
same probability distribution, and are thus indistinguishable,

but the probability that two distinct nonces take the same value
is negligible. The attacker may guess a bit of a nonce but
has a negligible probability of guessing the whole nonce. In
the symbolic model, distinct names are indistinguishable and
are not equal modulo E, but the partial guessing of a nonce
cannot be modelled: a name is either known or unknown to the
attacker. Significant research efforts have been done to get the
best of both worlds through the development of computational
soundness results, but unfortunately they only apply under
strong hypotheses, and have modularity issues [3], [33], [34].

In [10], [11], Bana and Comon have proposed a new
approach to security proofs, which they call computationally
complete symbolic attacker (CCSA). It relies on the sym-
bolic setting of first-order logic, but avoids the limitations of
the symbolic models mentioned above. Instead of modelling
attacker capabilities using rules stating what the adversary
can do, their method relies on the specification of what the
attacker cannot do. Starting from the security properties of
cryptographic primitives, they derive some axioms expressing
which pairs of sequences of messages are indistinguishable.
They show that their axioms are sound w.r.t. the interpretation
of terms as probabilistic PTIME Turing machines. Therefore, a
proof of a security property from these axioms implies security
in the computational model under the initial cryptographic
assumptions. This approach has been demonstrated on various
protocols to obtain formal proofs of security [8], [9], [28],
[41], [49]. Going back to our example, authentication would
be expressed more abstractly as:

EQ(att(frame), id0 ⊕ H(n0, k0)) ∼ false, where
frame

def
= 〈n1, idi1 ⊕ H(n1, ki1), n2, idi2 ⊕ H(n2, ki2), . . .〉.

Here, the binary function symbol EQ is interpreted as bitstring
equality, and ∼ as indistinguishability. The function symbol
att stands for an arbitrary probabilistic PTIME computation
performed by the attacker, taking past messages as input.

Intuitively, the overall statement expresses that there is a
negligible probability that att(frame) yields a message that the
reader would accept. It can be proved using just two axioms:
first, we use the properties of XOR to obtain an equality
between H(n0, k0) and id0 ⊕ att(frame); second, assuming
that the keyed hash function satisfies existential unforgeability
under chosen message attack (EUF-CMA), we conclude that
this equality is false with overwhelming probability given that
the message n0 is fresh and has thus not been hashed in frame.

In contrast with the treatment of our example in the
symbolic model, the CCSA approach yields a proof that is
immediately relevant in the standard model of probabilistic
PTIME machines and which relies on explicit and standard
cryptographic assumptions. Finally, applying the axioms did
not require complex rewriting techniques: we only had to
verify a simple equality involving XOR, and never had to
consider all possible contexts as in the symbolic model.

Two problems prevent a more widespread use of the CCSA
approach. First, it is limited to bounded executions: given
a protocol and a bound on its execution traces, one can

derive a series of indistinguishability goals that need to be
(separately) proved to guarantee the security of the protocol.
Second, proofs are manual: proving a non-trivial goal in
detail is tedious; proving all the goals resulting from all
possible executions is not manageable. Works on decision
procedures remain of limited use so far, as they are limited
to trace properties [29] (e.g. secrecy, authentication) or a very
restrictive set of axioms [42].

Contributions: In this paper, we elaborate on the CCSA
approach to solve these two problems. Our first contribution,
presented in Sections III and IV, is a meta-logic over the base
logic of Bana and Comon [11]. In the base logic, one has
to separately prove a family of indistinguishability goals, one
for each possible protocol execution within a given bound.
Formulas of our meta-logic express properties of all execution
traces of a protocol, which allows to capture the family of base
logic goals as a single formula. Security properties expressed
in our meta-logic have the standard computational meaning,
and provide guarantees for an arbitrary number of sessions that
does not depend on the security parameter (this is discussed
in detail in Section IV-C).

We then design proof systems for deriving security prop-
erties expressed as meta-logic formulas, in part by lifting
base logic axioms. We consider both trace properties, which
are useful to model authentication properties, and equivalence
properties, which allow to express privacy properties such as
anonymity and unlinkability. Our meta-logic enables useful
interaction between the two kinds of properties. For instance,
in several of our case studies, we establish unlinkability by
proving en passant an authentication property. This second
contribution is developed in Sections V and VI.

Our third contribution is the implementation of the interac-
tive prover SQUIRREL [50], which allows to reason on proto-
cols specified in an applied pi-calculus using our framework.
Thanks to basic automation techniques coming from first-order
logic, we have been able to carry out several case studies
using this tool. These results, presented in Section VII, cover a
variety of primitives (hashes, signatures, Diffie-Hellman expo-
nentiation, encryption) and security properties (authentication,
strong secrecy, unlinkability). Although this is not our primary
goal, some of the proofs obtained here are firsts.

Related Work: We have already discussed the limitations
that are inherent to symbolic models, and now focus on
tools which provide guarantees in the computational model.
Several such systems exist, based on different approaches.
For instance, CRYPTOVERIF [21] proofs are based on high-
level game transformations, EASYCRYPT [13] is built on
a general-purpose probabilistic relational Hoare logic which
can be used to formalize most pen-and-paper cryptographic
proofs, and CRYPTHOL [17] goes even further by embedding
the computational model in the proof assistant Isabelle/HOL.
Finally, F? [19] is a general-purpose program verification
framework which can be used (via external arguments) to
provide computational security guarantees. The various ap-
proaches can be compared on several criteria [12]; we mention

a few to highlight differences with our tool.
Like CRYPTOVERIF, our protocol specifications are given

in the applied pi-calculus, although our language is less
detailed and does not provide a link with implementations.
The strongest tools for verifying implementations remain
EASYCRYPT and, chiefly, F?.

Unlike EASYCRYPT and CRYPTOVERIF, we only provide
asymptotic security bounds. Our approach hides from the user
all quantitative aspects such as probabilities and the security
parameter and, on the surface, our tool is as simple as symbolic
verification frameworks. In contrast, EASYCRYPT users often
have to carry out probabilistic reasoning, and come up with
complex security bounds, which can result in long proofs.
Such aspects are automated in CRYPTOVERIF. In general, the
current level of automation of our tool sits somewhere between
EASYCRYPT and CRYPTOVERIF.

The most important difference between our tool and earlier
ones is the associated proof methodology: CRYPTOVERIF
relies on game transformations and EASYCRYPT performs
Hoare-style proofs of programs, while we reason over exe-
cution traces of protocols. Our proofs are akin to TAMARIN’s
backward reachability analysis, driven e.g. by our unforgeabil-
ity tactic. We give in Appendix E an in-depth comparison with
EASYCRYPT and CRYPTOVERIF, based on the analysis of the
Basic Hash protocol in the three tools.

II. OVERVIEW

In this section, we give an overview of our framework and
tool, using as a running example the Basic Hash protocol. The
SQUIRREL prover and our case studies can be found in [50].

Example 1. We consider the Basic Hash protocol as described
in [23], which is an RFID protocol involving multiple tags and
readers. Each tag stores a secret key that is never updated,
and the readers have access to a shared database containing
all these keys. The protocol is as follows:

T → R : 〈n,H(n, key)〉.
Here, n is a fresh name and key is the secret key. When

receiving a message, the reader checks that it is a pair whose
second component is a hash of the first component using one
of the keys from the database.

hash H
abstract ok : message
abstract error : message
name key : index → message
channel c
process tag(i,j:index) =
new n; out(c, 〈 n, H(n,key[i])〉)

process reader(j:index) =
in(c,x);
try find i such that snd(x)=H(fst(x),key[i])
in out(c,ok)
else out(c,error)

system (!j R: reader(j) | !i !j T: tag(i,j)).

Listing 1. Basic Hash protocol in SQUIRREL

Listing 1 shows a formal description of the Basic Hash
protocol written in the input language of our tool, which is
close to the classical applied pi-calculus. More specifically,
we consider a scenario featuring several reader sessions with
access to the database, and several tags where each tag can
play multiple sessions. The try find instruction encodes the
database lookup performed by the reader: the then branch
is executed with some value of i for which the required
condition holds, if any such i exists, otherwise the else branch
is executed.

We now describe informally how to instantiate our frame-
work to analyze this protocol — in practice, our tool performs
this instantiation automatically from the applied pi-calculus
specification. We consider a set of actions representing each
step of the protocol: T[i, j] is the action performed by the
jth session of tag i, R[j, i] represents the action of a reader
session j when it has found a value i for which the second
component of its input is a hash of its first component with
key[i], and R1[j] represents the action of a reader session j
when no such i can be found.

Using the user syntax, we now express an authentication
property on the Basic Hash protocol.

goal auth :
forall (i:index, j:index),

cond@R(j,i) ⇒
exists (j':index), T(i,j') < R(j,i)
&& fst(input@R(j,i)) = fst(output@T(i,j'))
&& snd(input@R(j,i)) = snd(output@T(i,j')).

Listing 2. Reachability goal in SQUIRREL

Here cond@R[j, i] is a macro which stands for the exe-
cutability condition of action R[j, i], where the reader recog-
nizes a valid input message w.r.t. some key key[i]. Our au-
thentication goal expresses that, whenever this condition holds,
there must be some session j′ of tag i (the one using key[i])
that has been executed before R[j, i]. Moreover, the output
of the tag’s action coincides with the input of the reader’s
action. We may note that we express this correspondence
on each projection. Indeed, for some implementations of the
pairing primitive, the equality of projections does not imply
the equality of pairs.

This authentication goal can be proved in our tool using a
succession of four tactics:
simpl. expand cond@R(j,i). euf M0. exists j1.

The first tactic simply introduces variables i and j and the
assumption cond@R[j, i] identified by M0. The second tactic
expands this macro into its meaning, i.e.

snd(input@R[j, i]) = H(fst(input@R[j, i]), key[i]).

We then use the EUF-CMA assumption: the condi-
tion states that if snd(input@R[j, i]) is a valid hash of
fst(input@R[j, i]), thus the term fst(input@R[j, i]) must be
equal to a message that has previously been hashed, i.e.
some m such that H(m, key[i]) appears in snd(input@R[j, i])
or fst(input@R[j, i]). Actually, input@R[j, i] refers to all
messages outputted so far in the execution, and the only

hashed messages outputted by the protocol with the key
key[i] are the names n[i, j] (note that n is parametrized by i
and j since it has been generated below the replications
indexed by i and j). Therefore we deduce that there exists
a tag’s session j1 occurring before the action R[j, i] such that
n[i, j1] = fst(input@R[j, i]). We conclude by instantiating the
existential quantification over j′ by j1.

Our framework does not only provide a proof system for
trace properties, but also allows to prove equivalence prop-
erties. For illustration purposes, let us consider the following
unlinkability property for the Basic Hash protocol: we want to
prove that a scenario where a tag with identity i can play many
sessions is indistinguishable to a scenario where each tag with
identity i can play only one session. To this end, we make use
of bi-processes with diff terms (as done e.g. in PROVERIF [22]
or TAMARIN [16]), and we replace in the protocol specification
given in Listing 1 every key[i] with diff(key[i], key′[i, j]). On
the left side of the bi-process, the key is the same for all
sessions of the tag with identity i, whereas on the right side
each session j of the tag with identity i uses a new key.

We can then prove that the two projections of this bi-
process are observationally equivalent. The proof proceeds by
induction: we show that indistinguishability holds between the
left and right-hand side’s frames at any point of any trace,
assuming that the same holds for the previous points. We then
consider the three possible actions of the processes. For an
action T[i, j], we use the PRF assumption on the hash function
to replace the hashes of the fresh messages H(n[i, j], . . .) by
fresh names; we can then conclude since indistinguishability
is preserved by the addition of fresh names on both sides. For
a reader’s action R[j, i], we must show the equivalence (up-
to negligible probability) between the conditions of the action
for the two projections of our bi-process. This is an immediate
consequence of the previous authentication property (and its
obvious converse) which holds for our two projections. The
case of actions R1[j] is handled similarly.

III. MODELLING PROTOCOLS – SYNTAX

In this section, we introduce the syntax of our meta-
logic, which is an extension of the base logic of [11] with
timestamps, indices and macros, before describing how to use
it to model protocols. Along this section, we illustrate our
notions using the Basic Hash protocol introduced in Section II.

A. Meta-Logic

Syntactically, our meta-logic is a many-sorted first-order
logic. Terms of the meta-logic (meta-terms) are of three
possible sorts:
• terms of sort message represent bitstrings manipulated

and exchanged by protocol’s participants;
• terms of sort timestamp represent time points in an

execution trace of a protocol;
• terms of sort index are used to identify unbounded

collections of objects, e.g. sessions of a role or items
in a database.

T := τ | init | a[i1, . . . , ik] | pred(T)

t := x | n[i1, . . . , ik] | f[i1, . . . , ik](t1, . . . , tn)
| input@T | output@T | frame@T
| if φ then t else t′

| find~i suchthat φ in t else t′

A := t = t′ | i = i′

| T = T ′ | T ≤ T ′ | cond@T | exec@T

φ := A | > | ⊥ | φ ∧ φ′ | φ ∨ φ′ | φ⇒ φ′ | ¬φ
| ∀i.φ | ∃i.φ | ∀τ.φ | ∃τ.φ

Fig. 1. Syntax of meta-terms and meta-formulas

We assume three infinite sets of variables: X (whose el-
ements are noted x, y, z) for message variables; I (whose
elements are noted i, j) for index variables; T (whose elements
are noted τ) for timestamp variables.

We assume a set F of indexed function symbols (used to
model encryptions, pairs, . . .). Each of these symbols comes
with an index arity as well as a message arity: if f ∈ F
has index arity k and message arity n, then for all index
variables i1, . . . , ik and meta-terms t1, . . . , tn, we have that
f[i1, . . . , ik](t1, . . . , tn) is a meta-term.

Example 2. Function symbols representing cryptographic
primitives will have index arity 0, and a message arity
depending on the kind of primitive. For instance, we use H
of message arity 2 to model a keyed hash, 〈·, ·〉 of message
arity 2 to model concatenation, and fst (resp. snd) of message
arity 1 to model the first (resp. second) projection. Function
symbols representing identities (for example, a constant value
associated to each tag) have 0 as message arity and 1 (or
even more) as index arity.

We assume a set N of indexed name symbols (modelling
random samplings of length η, the security parameter) and a
set of indexed action symbols A (modelling specific times-
tamps). These indexed symbols only have an index arity: they
cannot be applied to meta-terms.

Example 3. To model the Basic Hash protocol in our frame-
work, we consider two names key, n ∈ N : key has index
arity 1, and key[i] models the key associated to the tag i;
n has index arity 2, and n[i, j] represents the name used by
the session j of the tag i. Regarding actions symbols we let
A be the set of three indexed action symbols: aT and aR of
index arity 2 and aR1 of index arity 1. These action symbols
correspond to what is called T,R,R1 in Section II.

Definition 1. Given a meta-logic signature Σ = (F ,N ,A)
and some sets of variables X , I and T , we give in Fig. 1 the
syntax of meta-terms of sort message (noted t) and timestamp
(noted T), and the syntax of meta-formulas (noted φ). The
only meta-terms of sort index are index variables.

For any meta-term t, we let st(t) and fv(t) be, resp., the set

of subterms of t and the free variables of t of any sort.

Note that meta-terms and meta-formulas are mutually in-
ductive, due to conditional and lookup constructs in terms.
Lookups generalize conditionals: find~i suchthat φ in t else t′

evaluates to t where indices ~i are bound to values such that φ
holds if such values exist, and t′ otherwise. Again, this lookup
construct can be computed thanks to the finiteness of the
domain of interpretation of indices. The special timestamp
constant init stands for the initial time point.

A key ingredient of our meta-logic are macros, which are
used to refer to protocol executions. We have message macros
input@T and output@T to refer to the input and output mes-
sages of the action executed at time T . The macro frame@T
represents all the information available to the attacker at that
time: essentially, it is the sequence of all output messages from
the start of the protocol until time T . We also have boolean
macros cond@T and exec@T which respectively encode the
execution condition of the action at time T and the conjunction
of all such conditions until time T .

B. Protocols as Sets of Actions

We model a protocol as a finite set of actions. Each action
represents a basic step of the protocol where the attacker
provides an input, a condition is checked, and finally an output
is emitted. Formally, an action is defined by an action symbol
identifying it, and an action description giving its semantics.
Actions are indexed, allowing for unbounded executions.

Definition 2. An action a[i1, . . . , ik].(φ, o) is formed from an
action symbol a of index arity k, distinct indices i1, . . . , ik,
a meta-logic formula φ and a meta-logic term o of sort
message such that fv(φ, o) ⊆ {i1, . . . , ik}. The formula φ is
the condition of the action, and o its output.

An action a[i1, . . . , ik].(φ, o) models that o will be emitted
provided that φ holds, but does not specify a failure case.
Conditional branching may be modelled using two actions:
one with the condition for the positive branch, and one
with the negation of the condition for the negative branch.
Alternatively, a single action with a trivial condition may
be used, and an output term that performs the conditional
branching. As we shall see, actions are chosen by the attacker,
hence the second option gives less power to the attacker.

A protocol is a set of actions equipped with a dependency
relation, which constrains the order of execution of actions.

Definition 3. Given a finite set A of action symbols, a protocol
P = (PA, <) over A is a finite set PA of actions, one for each
action symbol, equipped with a partial order < over terms of
the form a[~i] with a ∈ A. We require that:
• < is insensitive to the choice of specific index variables:

a[i1, . . . , ik] < a′[j1, . . . , jk′] iff a[σ(i1), . . . , σ(ik)] <
a′[σ(j1), . . . , σ(jk′)] for any a,a′,~i and ~j and for any
bijective variable renaming σ : I → I;

• actions only refer to information about previously exe-
cuted actions; for every a[~i].(φ, o) ∈ PA, each subterm
of φ and o of sort timestamp:

(i) either appears in an input macro input@a[~i],
(ii) or is of the form a′[~j] where a′[~j] < a[~i].

Intuitively, an action can refer to its own input, and can
otherwise only refer to timestamps corresponding to actions
that occur strictly before it. We derive ≤ from < as usual:
α ≤ β when α < β or α = β.

Example 4. For illustration purposes, we consider a protocol
made of two actions

a[i].(>, ok) and b[i].(>, 〈input@a[i], input@b[i]〉)

with a[i] < b[i]. Intuitively, this corresponds to multiple
sessions indexed by i, where each session inputs an arbitrary
message, outputs ok, then inputs another message before
outputting the pair of the two messages it has received. Note
that action b[i] is well-formed because a[i] < b[i] and b[i]
only occurs in the action’s components through input@b[i].

Example 5. We model the Basic Hash protocol in our frame-
work using a set of three actions with an empty dependency
relation:

aT [i, j].
(
>, 〈n[i, j],H(n[i, j], key[i])〉

)
aR[j, i].

(
snd(input@aR[j, i]) = H(fst(input@aR[j, i]), key[i]),
ok
)

aR1[j].
(

∀i. snd(input@aR1[j]) 6= H(fst(input@aR1[j]), key[i])
)
,

error
)

We can instantiate the indices of an action by concrete
values to yield concrete actions, which represent distinct
copies of the original action.

Definition 4. Given a set A of action symbols, a concrete
action is an action symbol a ∈ A applied to k integers
(where k is the index arity of a). The partial order of a protocol
P = (PA, <) is lifted to concrete actions in the natural
way: for any mapping σ : I → N, a[σ(i1), . . . , σ(ik)] <
b[σ(j1), . . . , σ(jl)] holds when a[i1, . . . , ik] < b[j1, . . . , jl].

Finally, for a given protocol, we can consider its possible
interleavings, e.g. the possible sequences of actions that are
compatible with its dependency relation.

Definition 5. Given a protocol P = (PA, <), an interleaving
is a sequence of concrete actions α1 . . . αn in which no con-
crete action occurs twice, and such that, for every 1 ≤ i ≤ n,
for every concrete action β such that β < αi, there exists
1 ≤ j < i such that β = αj .

The constraints on interleavings are necessary but insuf-
ficient conditions for a sequence of concrete actions to be
executable. The actual executability of an interleaving will be
a probabilistic notion, and will depend on the implementation
of cryptographic primitives. It is addressed in the next section.

Example 6. Going back to the simple protocol introduced
in Example 4, we have concrete actions a[1], b[1], a[2],

b[2], . . . with a[1] < b[1], a[2] < b[2], . . . indicating that,
in each session, b has to occur after a. The sequence
a[2] a[1] b[1] b[2] is an interleaving, but a[2] a[1] b[1] b[2] a[2],
and b[2] a[1] b[1] a[2] are not.

Note that our notion of dependency ordering can be used to
impose phase constraints: declaring a[i] < b[j] imposes that,
in all interleavings, any concrete actions a[k1] is executed
before all concrete actions b[k2]. In the tool, such extra
constraints can be specified with an axiom, as follows:
axiom phase: forall(i,j:index), a(i) < b(j).

Example 7. Continuing our running example, aT [1, 1],
aT [1, 2], aT [2, 1], aR[3, 1], and aR1[3] are concrete actions
with no dependency. Some possible interleavings are:

1) aT [1, 2] aR[3, 1];
2) aT [1, 2] aR[3, 1] aR1[3];
3) aR[3, 1] aT [1, 2] aT [1, 3].
The first interleaving corresponds to an honest execution.

First, a tag (with id 1) executes its action (for session id 2).
Then, the reader (session id 3) executes its first action for
i = 1, i.e. it recognizes a valid input w.r.t. key[1] of the tag
with id 1.

The second interleaving does not correspond to any real
execution since the conditions of actions aR[3, 1] and aR1[3]
could not be satisfied simulatenously.

The third interleaving is also not executable: it represents
an execution in which the reader (session id 3) recognizes a
valid input from tag 1 before any output from tag 1.

As mentioned before, our tool takes as input a protocol spec-
ification expressed in a fragment of the applied pi-calculus,
and automatically translates it to a protocol according to
Definition 3. The translation is rather straightforward but its
description and the study of its semantic properties are outside
the scope of this paper.

IV. SEMANTICS

The semantics of our meta-logic is given through a transla-
tion from the meta-logic to the base logic of [11]. We recall
the semantics of the base logic in Section IV-A before defining
the translation in Section IV-B.

A. Base Logic

We briefly recall the key definitions of [11], considering
only the sort message, and a single attacker symbol att. We do
not rely on the way [11] encodes protocol equivalence into the
logic (using a so-called folding operation) but only need the
core logic for reasoning about computational indistinguisha-
bility of sequences of messages.

Syntax: The base logic is a first-order logic, in which
terms represent probabilistic PTIME Turing machines produc-
ing bitstrings, and a single predicate ∼ represents computa-
tional indistinguishability. A key idea of the CCSA approach
is to use a special attacker function symbol att to represent the
attacker’s computations, which is left unspecified to model the
fact that the attacker may perform any arbitrary probabilistic

PTIME computation. The logic is parameterized by a set NB
of name symbols, a set of variables XB , and a set of function
symbols FB . Terms are generated from XB and NB using the
unary function symbol att and the function symbols of FB .
We assume that FB contains at least the following symbols,
with the expected arities and usual notations:
• pairing 〈_, _〉, equality EQ(_, _);
• constants empty, true and false;
• conditionals if _ then _ else _.

We do not use a predicate symbol for equality in the base
logic: EQ(u, v) is a term and we may write, for instance,
EQ(true,EQ(u, v)). We allow ourselves to use the same
notations for some constructs in the meta-logic and base logic,
because our translation is homomorphic w.r.t. them.

Atomic formulas are of the form u1, . . . , un ∼ v1, . . . , vn
where n ≥ 0 and u1, . . . , un, v1, . . . , vn are terms, and
represent indistinguishabilities between two experiments.

Semantics: We are interested in the interpretation of
formulas of the base logic in a specific class of first-order
interpretations, called computational models. The domain of a
computational model M is the set of PTIME Turing machines
receiving as inputs the security parameter η in unary (1η) and
a pair ρ = (ρs, ρr) of random tapes (the complexity is w.r.t.
the security parameter, not the random tapes). The tape ρs is
used to draw honestly generated random values, and is not
directly accessible by the attacker, and ρr is used for random
values drawn by the attacker. The interpretation [[t]] of a term
as a Turing machine is defined as follows.
• Each name n ∈ NB is interpreted as a machine that

extracts a word of length η from ρs, such that different
names extract disjoint parts of the tape.

• The symbols empty, true, false, EQ and if _ then _ else _
are interpreted in the expected way. E.g., for any terms
t1, t2, [[EQ(t1, t2)]] is the Turing machine that, on input
(1η, ρ), returns 1 if [[t1]] and [[t2]] return the same result:

[[EQ(t1, t2)]](1η, ρ) =

{
1 if [[t1]](1η, ρ) = [[t2]](1η, ρ)

0 otherwise

• The other function symbols in FB are interpreted as
arbitrary PTIME Turing machines that do not access the
random tapes. When studying a specific protocol, we re-
strict computational models according to the assumptions
the protocol relies on: e.g. we may assume that a binary
function symbol ⊕ is interpreted as exclusive or, that a
binary function symbol H is interpreted as a PRF keyed
hash function, . . .

• The symbol att is interpreted as a PTIME Turing Ma-
chine that does not access the random tape ρs, but has
access to ρr.

Finally, the predicate ∼ is interpreted as computational in-
distinguishability (noted ≈), where d1, . . . , dn ≈ d′1, . . . , d

′
n

when for any PTIME Turing machine A,

| Pr(ρ : A(d1(1η, ρ), . . . , dn(1η, ρ), ρr) = 1)−
Pr(ρ : A(d′1(1η, ρ), . . . , d′n(1η, ρ), ρr) = 1) |

is negligible in η.
We write M |= φ when the base formula φ is satisfied in

the computational model M, and we say that φ is valid if it
is satisfied in any computational model.

Example 8. Assume that n and m are two distinct names.
The formulas n ∼ m and EQ(n,m) ∼ false are valid: indeed,
the attacker cannot distinguish between two random samplings
with the same distribution, and there is a negligible probability
that two independent uniform samplings of length η coincide.

The if _ then _ else _ function symbol allows to define other
boolean constructs. We write u

.
∧ v for if u then v else false,

and define similarly u
.
∨ v and u .⇒ v. Finally, we write u .

= v
for EQ(u, v).

Example 9. Consider the following base logic formulas:

(u ∼ true)⇒ (v ∼ true) (a)
(u

.⇒ v) ∼ true (b)

Formula (a) is a logical consequence of (b): if both u
.⇒ v

and u are true with overwhelming probability, then it must
also be the case for v.

However, (a) does not generally imply (b). Consider a unary
function symbol f and a model M where f is interpreted as
the machine that returns the first bit of its argument. Then,
for any arbitrary name n, the term f(n) is interpreted as the
probabilistic computation returning 1 with probability 1

2 , and
0 otherwise. We have M 6|= (f(n) ∼ true) hence formula (a)
is satisfied in M when u := f(n), regardless of v. However,
M 6|= (f(n)

.⇒ false) ∼ true. In other words, f(n) is not true
with overwhelming probability, but it is also not false with
overwhelming probability.

B. Translation

Our translation from the meta-logic to the base logic, is pa-
rameterized by the protocol that the meta-logic is meant to de-
scribe. From now on, we assume some protocol P = (PA, <)
built upon a set of actions A using function and name symbols
from F and N . Therefore, we consider meta-logic terms and
formulas over Σ = (F ,N ,A).

Definition 6. Given a finite set D of integers, the base logic
signature ΣD = (FB ,NB) contains exactly:
• a name symbol nk1,...,kp for every n ∈ N of index arity p,

and every k1, . . . , kp ∈ D;
• a function symbol fk1,...,kp of arity n for every f ∈
F of index arity p and message arity n, and every
k1, . . . , kp ∈ D.

Example 10. In the Basic Hash protocol, n ∈ N is a name
symbol of our meta-logic, of index arity 2. Let D = {1, 2}. We
have ΣD = (FB ,NB) with NB = {n1,1, n1,2, n2,1, n2,2}. In
other words, for this choice of concrete indices, we consider
four different names in the base logic. Function symbols used
to model primitives are all of index arity 0, thus we have a
one to one correspondence between function symbols in F and
those in FB , and we still write H, 〈_, _〉, fst, and snd.

We now define the structure that allows us to interpret meta-
terms and meta-formulas. The idea is that for each possible
interleaving of the protocol, we can define a structure such
that the macros at each timestamp correspond to their expected
value for that interleaving.

Definition 7. A trace model T (associated to a protocol P)
is a tuple (DI ,DT , <T , σI , σT) such that:
• DI ⊆ N is a finite index domain;
• <T is a total ordering on
DT := {init}]{a[k1, . . . , kn] | a ∈ A, k1, . . . , kn ∈ DI}
such that init is minimal, and such that the sequence of
elements of DT ordered by <T is an interleaving of P;

• σI : I → DI and σT : T → DT are mappings that
interpret index and timestamp variables as elements of
their respective domains.

We include σI and σT to ease the presentation, which
means that trace models provide an interpretation for all index
and timestamp variables. This information is often irrelevant:
when interpreting a formula, only the interpretation of its free
variables will matter.

The total ordering <T yields a predecessor function predT :
DT → DT which maps init to itself and all other elements
v ∈ DT to the largest v′ ∈ DT such that v′ < v.

Example 11. Continuing our running example, we consider
DI = {1}, and the following total ordering:

init < aT [1, 1] < aR[1, 1] < aR1[1]

Therefore, we have that predT (aR[1, 1]) = aT [1, 1]. The
notion of trace model forces us to include both aR1[1] and
aR[1, 1] even though their conditions are mutually exclusive.
It is not a concern: what matters is that all real executions of
the protocol are accounted for by some prefix of the complete
interleaving induced by some trace model.

When T = (DI ,DT , <T , σI , σT) is a trace model and
k ∈ DI , T{i 7→ k} is the trace model identical to T in
which σI is updated to map i to k. We similarly define
T{τ 7→ v} when v ∈ DT .

We can now define, for each meta-term t and trace model T,
the base logic term (t)T, and similarly for formulas. The
complete definition is given in Appendix A, and we only
present here its general principle. It is defined inductively
on the structure of meta-terms and meta-formulas, translating
each meta-logic construct by its counterpart in the base logic
when it is available. Indexed function symbols are translated
to their counterpart in ΣDI . For instance, names are translated
as follows:

(n[i1, . . . , ip])
T def

= nσI(i1),...,σI(ip).

Boolean constructs are translated to their dotted counterparts.
Finally, lookup constructs are translated to nested conditionals:

(find~i suchthat φ in t else t′)T
def
=

if (φ)T{
~i7→~k1} then (t)T{

~i7→~k1} else

if (φ)T{
~i7→~k2} then (t)T{

~i7→~k2} else
. . .

if (φ)T{
~i7→~kp} then (t)T{

~i 7→~kp} else (t′)T

condinit = execinit = true

inputinit = frameinit = outputinit = empty

outputa[~i]
= o

conda[~i]
= φ

execa[~i]
= cond@a[~i] ∧ exec@pred(a[~i])

framea[~i]
= 〈exec@a[~i],

〈if exec@a[~i] then output@a[~i] else empty,

frame@pred(a[~i])〉〉
inputa[~i]

= att
(
frame@pred(a[~i])

)
Fig. 2. Interpretation of macros, where a[~i].(φ, o) is an action of PA.

where ~k1, . . . ,~kp is a complete enumeration of D|~i|I .
Regarding meta-formulas, quantifications over index and

timestamp variables do not have a direct counterpart in the
base logic. They are translated to finite boolean expressions
through nested conditionals relying on

.
∧ and

.
∨ introduced

previously:
(∀i.φ)T

def
=

.
∧k∈DI (φ)T{i 7→k}

(∀τ.φ)T
def
=

.
∧v∈DT (φ)T{τ 7→v}

and similarly for existential quantifications.
Finally, we also have to give a meaning to the macros

input, output, frame, cond, and exec used in the meta-logic.
We define in Fig. 2 the terms minit and {m

a[~i]
| a[~i] ∈ PA}

for each of these macro symbols, and then have:

(m@T)T
def
=

{
(minit)

T if (T)T = init

(m
a[~i]

)T{
~i7→~k} if (T)T = a[~k] and a[~i] ∈ PA

Roughly, an output macro is replaced by the meta-term
as specified by the protocol and it is then interpreted in the
trace model to get a base term. The cond macro has a similar
treatment and produces a base formula corresponding to the
conditional of the action. The exec macro simply corresponds
to the conjunction of all past conditions.

The translation of the frame gathers (using nested pairs)
all the information available to the attacker at some execution
point: for each past action, the attacker observes if the execu-
tion continues and, if that is the case, they obtain the output.
Finally, in order to model the attacker’s capabilities, the input
macro is interpreted using the attacker symbol att, to which
we pass the current frame.

Example 12. Considering the trace model T given in Ex-
ample 11 with σI(i) = σI(j) = 1, we give below the
interpretation of several meta-terms:

(output@aT [i, j])T = 〈n1,1,H(n1,1, key1)〉 def
= tout

(fst(output@aT [i, j]))T = fst(tout)

(input@aR[j, i])T =

att(〈true, 〈if true then tout else empty, empty〉〉) def
= tin

Therefore the meta-formula expressing an authentication
property in Listing 2 translates as follows in T:

snd(tin)
.
= H(fst(tin), key1)

.⇒(
true

.
∧ fst(tin)

.
= fst(tout)

.
∧ snd(tin)

.
= snd(tout)

)
Note that the atom aT [i, j′] ≤ aR[j, i] has been replaced by

true because it holds in T when i, j and j′ are (necessarily)
interpreted as 1. If we had had aT [1, 1] > aR[1, 1] in T
we would have obtained false, making the conclusion of the
implication unsatisfiable.

The base formula of the previous example corresponds to
the translation of the meta-formula expressing authentication
considering a single and very simple trace model. To provide
a proof of our authentication property, we have to verify the
validity of the base formula obtained with any trace model.

C. Validity
We say that a meta-formula φ is satisfied in T, M, written

T,M |=P φ, or simply T,M |= φ when P is clear from the
context, whenever M |= (φ)T ∼ true. Intuitively, it means
that the formula φ is true with overwhelming probability on the
trace T. Then, we say that φ is valid if it is satisfied in every T
and M: intuitively, the formula φ is true with overwhelming
probability for every executions of the associated protocol P .

In practice, this notion of validity is too strong: for instance,
the authentication property of the Basic Hash protocol only
holds if the hash satisfies some unforgeability assumption.
Thus, we are interested in verifying the validity of meta-
formulas for restricted classes C of models. We will con-
sider two types of restrictions. First, we may make some
security assumptions on the interpretation of cryptographic
primitives in M: e.g., when a hash function is declared in
our prover, we assume that its interpretation satisfies the PRF
assumption. Second, further assumptions can be made by
adding axioms expressed as meta-formulas. An axiom φ will
restrict the considered class C to those T and M such that
M, σ |= (φ)T ∼ true for all semantic assignments σ mapping
free message variables occurring in φ to probabilistic PTIME
machines. Axioms are used, for example, to express properties
of message lengths: len(〈x, y〉) = plus(len(x), len(y)).

Note that our notion of validity differs from standard notion
of security in the computational model. In our logic, if a
formula φ is valid, it means that for any given trace and for any
attacker interacting with the protocol along this trace, φ is false
with negligible probability. In the computational model, one
would rather expect that for any attacker interacting with the
protocol and choosing a polynomial number of actions to exe-
cute, φ is false with negligible probability. In the former case,
the advantage of the attacker may grow super-polynomially
w.r.t. to the number of sessions, but not in the latter. We
provide a contrived example showing the difference between
the two notions in Appendix D. While weaker than concrete
security bounds, we stress that this guarantee is stronger than
symbolic guarantees for unbounded sessions. Furthermore, this
limitation can be lifted using the composition result of [27],
as done in some of our case studies (cf. Section VII).

NAMEINDEP
n 6= m

Γ, n[~i] = m[~j] ` φ

NAMEEQ
Γ, i1 = j1, . . . , ik = jk ` φ

Γ, n[i1, . . . , ik] = n[j1, . . . , jk] ` φ

ACTDEP
when a[~j] < b[~i]

Γ, b[~i] ≤ a[~j] ` φ

ACTINDEP
when a 6= b

Γ, a[~i] = b[~j] ` φ
ACTEQ

Γ, i1 = j1, . . . , ik = jk ` φ
Γ, a[i1, . . . , ik] = b[j1, . . . , jk] ` φ

EXEC
Γ, ∀τ ′ ≤ τ.cond@τ ′ ` φ

Γ, exec@τ ` φ

INIT

Γ, τ 6= init ∧ τ ≤ pred(τ) ` φ

PRED
Γ, τ ′ = pred(τ) ∨ τ ′ = τ ` φ

Γ, pred(τ) ≤ τ ′ ≤ τ ` φ

Fig. 3. Some rules of our sequent calculus for reachability.

Meta-formulas express properties of all execution traces
of a protocol. Some security properties (e.g. strong secrecy,
unlinkability) are better expressed as equivalences between
two protocols. We accomodate such notions naturally in our
framework since it is based on an indistinguishability predi-
cate: this is presented in Section VI. Before that, we design
in the next section a proof system that allows to derive valid
meta-formulas (relatively to some classes of models).

V. REACHABILITY RULES

We now present our reachability sequent calculus, for some
protocol P = (PA, <) fixed throughout the section.

Definition 8. A sequent Γ ` φ is formed from a set of meta-
formulas Γ and a meta-formula φ, both without message vari-
ables. The sequent Γ ` φ is valid w.r.t. a class of models C if
(∧Γ)⇒ φ is valid w.r.t. C.

Definition 9. An inference rule
Γ1 ` φ1 . . . Γn ` φn

Γ ` φ
is

sound w.r.t. a class C when the conclusion is valid w.r.t. C
whenever the premises are valid w.r.t. C.

We now give our meta-logic reachability sequent calculus
rules, and prove their soundness. We talk of validity (resp.
soundness) without specifying the class C when it holds w.r.t.
all models.

A. Basic Rules

Although our sequents have a probabilistic semantics, all
rules of classical first-order sequent calculus are sound.

We give in Fig. 3 the rules we designed which are specific
to security protocol analysis, and describe them below. Two
different names are almost never equal (i.e. they are not equal
except for a negligible number of samplings). This can be
the case either because they have different head symbols (rule
NAMEINDEP) or because they have the same head symbols
but different indices (rule NAMEEQ). The rule ACTDEP states
that actions must occur in the order imposed by the protocol,
and ACTINDEP and ACTEQ express that two different actions
cannot occur at the same instant. The PRED rule states that

⊕-NIL

Γ ` t⊕ t = 0

⊕-SYM

Γ ` t⊕ t′ = t′ ⊕ t
⊕-ASSOC

Γ ` t⊕ (t′ ⊕ t′′) = (t⊕ t′)⊕ t′′

Fig. 4. Some XOR rules of our sequent calculus for reachability.

there is no timestamp between pred(τ) and τ , and EXEC
states that if the trace is executable up to τ then the protocol
conditions hold for any instant before τ . INIT says that if τ
is not the initial timestamp, then τ cannot occur before the
action preceding it.

We also have rules for expanding macros into their meaning.
For instance, if PA contains the action a[~i].(φ, o), we can
derive Γ ` output@a[~i] = o and Γ ` cond@a[~i] ⇔ φ. All
these rules are sound.

Some of our rules are sound only under some computational
assumptions. These assumptions can either be cryptographic
assumptions (we give examples in the next section), or func-
tional properties of the primitives. E.g, the rules ⊕-NIL,
⊕-SYM and ⊕-ASSOC of Fig. 4 state functional properties
that ⊕ satisfies whenever it is interpreted as the XOR operator:
these rules are obviously sound in any computational model
where ⊕ is interpreted as XOR.

B. Advanced Rules

We now describe how we designed the most advanced
rules of our reachability sequent calculus, which deal with
cryptographic assumptions and probabilistic independence. We
present here the rule for the EUF-CMA axiom.

a) Base logic rule: We recall the base logic EUF-CMA
rule from [41]. Before starting, we introduce notations we use
to describe syntactic side-conditions of rules.

Definition 10. A template C[[]1, . . . , []n, •] is a syntactic
expression built using the hole variables ([]i)1≤i≤n, the special
variable •, and applications of function symbols f ∈ FB (with
the correct arity) such that • occurs exactly once in C.

For any base terms t1, . . . , tn, t, we let C[t1, . . . , tn, t] be
the base term obtained by substituting the hole variables and •
by the terms t1, . . . , tn, t.

When possible, we omit the hole variables and write C[_, •].

Definition 11. Let C[_, •] be a template, u a ground base
term and n a name. Then n vC u holds whenever n appears
in u only in subterms of the form C[~w , n] for some ~w .

Example 13. We give two examples:
• n 6v• u states that n does not appear in u.
• k vH(_,•) u states that k appears only as a hash key in u.

Roughly, the EUF-CMA rule states that if s is a valid hash
of m, then m must be equal to some honestly hashed message
appearing in s or m. We formally define it next, as a simple
elaboration of the rule EUF-MAC of [41] (a base logic sequent
Γ ` φ is valid when ((

.
∧ Γ)

.⇒ φ) ∼ true is valid).

Definition 12. For any ground base terms s, u,m and name k,
we let EUF-CMA be the rule:

Γ,
.∨
H(u,k)∈st(s,m) m

.
= u ` φ

Γ, s
.
= H(m, k) ` φ

when k vH(_,•) s,m

Example 14. If u is the term 〈H(t1, k), 〈H(t2, k),H(t3, k′)〉〉
where k, k′ are names and s, t0, t1 and t2 are ground terms
that do not use k and k′, then we have an EUF-CMA instance:

Γ, (att(u)
.
= t1)

.
∨ (att(u)

.
= t2) ` φ

Γ, s
.
= H(att(u), k) ` φ

Indeed, k appears only in hash positions in s and att(u), hence
k vH(_,•) s, att(u). Moreover, t1 and t2 are the only messages
hashed by k (note that t3 is hashed by a different key k′).

b) Meta-logic rule: We now explain how to lift the base
logic rule EUF-CMA to the meta-logic. We need to find a
rule such that its translation in any trace model yields a
valid instance of the base logic EUF-CMA rule. There are
two obstacles to this. Assume our meta-logic rule is of the
following form:

Γ,
.∨
H(u,k[~i])∈ST(s,m) m

.
= u ` φ

Γ, s
.
= H(m, k[~i]) ` φ

when SSCk[~i](s,m) (1)

Soundness requires that:
• if the meta-logic side-condition SSCk[~i](s,m) holds,

then all translations of s and m must satisfy the base
logic side-condition:

∀T, (k[~i])T vH(_,•) (s)T, (m)T (2)

• the set of meta-terms ST(s,m) must be such that its
translation in any trace model contains all hashes of the
translation of s and m. That is, for every T:{

H(u, (k[~i])T) ∈ st((s)T, (m)T)
}
⊆ (ST(s,m))T (3)

Note that both obstacles are of the same nature, though
there is an additional difficulty in the second condition: since
the set on the left of (3) can be arbitrarily large (because the
trace in T can be arbitrarily long), the set (ST(s,m))T may
be infinite (because of this, our final rule will slightly differ
from the form proposed in (1)).

We start by focusing on the occurrence side condition
vH(_,•). First, we naturally lift it to meta-terms, by requiring
that the side-condition holds for the translation of the meta-
terms in any trace model.

Definition 13. Let C be a template and u a meta-term with
no message variables. For any name symbol n, we let n vPC u
hold whenever n~k vC (u)TP holds for any trace model T and
~k ⊆ DI (of length arity of n).

The base logic side-condition vC is fully syntactic, and
can easily be implemented. This is no longer the case with
n vPC u, as it requires to check a property on all translations
of u. Therefore, instead of checking directly n vPC u, we are
going to check the property on the direct occurrences of n in u

(i.e. n vC u), and on the occurrences of n in any action of
the protocol. The idea is that this must over-approximate all
occurrences of n in any translation of u in a trace model T.

First, we adapt Definition 11 to meta-terms (base logic
function symbols in a template C are seen as function symbols
of index arity 0 of the meta-logic).

Definition 14. Let C be a template, u a meta-term without
message variables, and n be a name symbol. Then n vC u
holds whenever n appears in u only in subterms of the form
C[~w , n[~i]] for some ~w and indices ~i .

Definition 15. Let C be a template, and n be a name symbol.
We write n vC P when n vC {φ, o | a[~i].(φ, o) ∈ PA}.

We give a sufficient condition to check that n vPC u.

Proposition 1. Let C be a template. For any name symbol n
and meta-term u, if n vC u and n vC P then n vPC u.

Next, we need to over-approximate the (possibly infinite)
set of all honest hashes that can appear in the translation of
a meta-term, as stated in (3). As for vPC , we look for all
possible occurrences of H(u, k) either directly in (s,m), or in
an action of P . In the latter case, we also construct a formula
of the logic that characterizes the fact that the action must
have happened before the moment where u was computed,
which improves the precision. We capture this through some
set s̄tP(s,m), which is formally defined in [6]. Essentially,
s̄tP(s,m) is a set of triples (u,~i, c) such that, for any T, any
subterm of (s,m)T that is a hash is the interpretation of some
(u)T{

~i 7→~k} such that c holds in T{~i 7→ ~k}. Moreover,~i are the
new indices in u and c: fv(u, c) ⊆ fv(s,m) ∪ {~i}.

We can now state the meta-logic version of the EUF-CMA
rule given in Definition 12.

Proposition 2. The following rule is sound whenever H is
interpreted as an EUF-CMA keyed hash-function:

Γ,
∨

(H(u,k[~j0]),~i ,c)∈s̄tP(s,m) ∃~i .(~j0 = ~j ∧ c ∧m = u) ` φ

Γ, s = H(m, k[~j]) ` φ

when k vH(_,•) P and k vH(_,•) s,m.

Proof (sketch). It suffices to show that, for any trace model T,
the translation of the rule in T is (up to some minor details)
an instance of the base logic EUF-CMA rule.

Using Proposition 1, we know that k vPH(_,•) t,m, hence
k~k vH(_,•) (t,m)T for any ~k ⊆ DI : this guarantees that the
side-condition of the base logic rule holds. Then, we show
that the translation in T of the disjunction in the premise of
the meta-rule covers all cases of the premise of the base logic
EUF-CMA rule, using the fact that s̄tP(s,m) correctly over-
approximates the hashes in st((s,m)T).

Example 15. We illustrate our rule on an example in the
context of the Basic Hash protocol, as described in Example 5

(we factorize the quantification and the equality atom, which
are shared by all three cases):

Γ, ∃i0, j0. i0 = i ∧(
(aT [i0, j0] < τ ∧ n[i, j] = n[i0, j0])

∨ (aR[j0, i0] < τ ∧ n[i, j] = fst(input@aR[j0, i0]))

∨ (aR1[j0] < τ ∧ n[i, j] = fst(input@aR1[j0]))
)
` φ

Γ, snd(input@τ) = H(n[i, j], key[i]) ` φ

The rule does express that if a hash of n[i, j] has been
obtained, this message must have been previously hashed.
The three possible hashed messages detected by s̄tP(s,m) are
restricted to plausible situations: equalities i0 = i ensure that
the hashing key is key[i] and inequalities over timestamps (e.g.
aT [i0, j0] < τ) ensure that the situation comes from an action
that has been previously executed.

VI. EQUIVALENCE RULES

We now turn to proving equivalences. Ultimately, we are
interested in proving observational equivalence between two
protocols, as this allows to model several security properties
such as strong secrecy, anonymity, or unlinkability. We first
define the notion of observational equivalence, then define
what are our equivalence sequents, and finally present our
equivalence sequent calculus.

Intuitively, two protocols P1 and P2 are observationally
equivalent when they offer the same set of actions for the
attacker to execute and, for any sequence of actions that the
attacker may decide to execute, the resulting frames with P1

and P2 are indistinguishable. In particular, the actions execute
with the same probability on both sides, and the sequences of
messages that are outputted are indistinguishable. We start by
defining the notion of compatible protocols, capturing the idea
that they offer the same set of actions.

Definition 16. Protocols P1 = (P1
A, <1) and P2 = (P2

A, <2)
are compatible if they are based on the same set A of action
names and have the same partial orders, i.e.

α <1 α
′ if, and only if, α <2 α

′ for all α and α′.

Since the notion of trace model only depends on the
underlying set of names and partial order, and not on the actual
semantics of the protocol given by PA, we immediately have
that two compatible protocols have the same trace models.

Definition 17. Two protocols P1 and P2 are observationally
equivalent if they are compatible and, for any trace model T,
the base logic formula (frame@τ)TP1

∼ (frame@τ)TP2
is valid.

We need a notion of sequent for equivalences that allows
us to express observational equivalences. More generally, we
want to reason about indistinguishabilities between sequences
of meta-level terms and formulas interpreted w.r.t. different
protocols on each side of the equivalence.

Definition 18. Let P1 and P2 be two compatible protocols.
A meta-equivalence is an element of the form ~u ∼ ~v where ~u
and ~v are sequences of meta-terms and meta-formulas of the

same length and without message variables. The interpretation
of a meta-equivalence in a trace model w.r.t. P1 and P2 is:

(~u ∼ ~v)TP1,P2

def
= (~u)TP1

∼ (~v)TP2
.

An equivalence sequent for P1 and P2 is a judgment of the
form ∆ `P1,P2

E where E is a meta-equivalence and ∆ is a
set of meta-equivalences. We may note ∆ ` E when P1,P2

is clear from the context.
The sequent ∆ `P1,P2 E is valid when T,M |= (E)TP1,P2

for all T and M such that T,M |= (E′)TP1,P2
for each E′ ∈ ∆.

We now present our equivalent calculus, for some compat-
ible protocols P1 and P2, fixed for the rest of this section.

A. Basic Rules

We present in Fig. 5 some basic inference rules for deriv-
ing equivalences, whose soundness does not depend on any
cryptographic assumption. In these rules, we use the meta-
variable ξ to denote either a meta-term or a meta-formula.

All the rules but INDUCTION are obvious liftings of known
axioms for deriving equivalences in the base logic (see
e.g. [11]). E.g., for the REFL rule: if ~u is macro-free then
its interpretations w.r.t. P1 and P2 are the same, thus our rule
is, for each possible trace interpretation, an instance of the
reflexivity rule of the base logic. It is also the case of rules
ENRICH, DUP and FA. Our proof system allows variants of
the FA rule, such as FA-♦, which are still liftings of the base
logic FA rule. Finally, rule EQUIV-TERM allows to replace
some occurrences of a meta-term t by t′ on the left side of
the equivalence provided that `P1

t = t′ is derivable. We can
similarly replace a meta-formula by an equivalent one using
EQUIV-FORM. Obviously, the variants of these rules working
on the right side of equivalences are also allowed.

The INDUCTION rule allows to prove an equivalence for
any arbitrary timestamp τ by proving the equivalence when τ
is init and, for each action a[~i] of the protocol, when τ is a[~i]
assuming that the equivalence holds for pred([~i]). Proofs of
observational equivalence almost always start with this rule.

B. Advanced Rules

We now present some more advanced rules. The soundness
arguments for these rules are postponed to Appendix C.

We show in Fig. 6 our rule FRESH. It is based on the base
logic rule which states that adding fresh names on each side of
an equivalence preserves its validity: indeed, these independent
uniform random samplings do not bring any new informa-
tion to the attacker. We lift this at the meta-level by over-
approximating the freshness condition as meta-formulas: we
have (n[~i])TP1

6∈ st((~u)TP1
) whenever (Fresh

n[~i]
P1

(~u))TP1
is true.

Our proof system also features a rule expressing the
information hiding capabilities of XOR, as well as rules
corresponding to the cryptographic assumptions PRF, CCA1,
ENC-KP, and DDH shown in [6].

Finally, our proof system includes a rule FA-DUP which
allows to handle some cases where meta-formulas or meta-
terms could be dropped from an equivalence, but where this
cannot be done using the FA and DUP rules because the

REFL
~u is macro-free

∆ ` ~u ∼ ~u

ENRICH
∆ ` ~u, ξ ∼ ~v , ξ′

∆ ` ~u ∼ ~v

DUP
∆ ` ~u, ξ ∼ ~v , ξ′

∆ ` ~u, ξ, ξ ∼ ~v , ξ′, ξ′
AXIOM

∆, ~u ∼ ~v ` ~u ∼ ~v

FA
∆ ` ~u, t1, . . . , tn ∼ ~v , t′1, . . . , t′n

∆ ` ~u, f[~i](t1, . . . , tn) ∼ ~v , f[~i](t′1, . . . , t′n)

FA-♦
∆ ` ~u, φ, φ′ ∼ ~v , ψ, ψ′

∆ ` ~u, φ♦φ′ ∼ ~v , ψ♦ψ′ where ♦ ∈ {∧,∨,⇒}

EQUIV-TERM
`P1 t = t′ ∆ ` ~u{t 7→ t′} ∼ ~v

∆ ` ~u ∼ ~v

EQUIV-FORM
`P1 φ⇔ φ′ ∆ ` ~u{φ 7→ φ′} ∼ ~v

∆ ` ~u ∼ ~v
INDUCTION
∆ `

(
~u ∼ ~v

)
{τ 7→ init}

{
∆,
(
~u ∼ ~v

)
{τ 7→ pred(a[~i])} `

(
~u ∼ ~v

)
{τ 7→ a[~i]}

}
a∈A,~i 6∈fv(∆,~u,~v)

∆ ` ~u ∼ ~v τ 6∈ fv(∆)

Fig. 5. Generic inference rules for equivalences

Base logic rule:

∆ ` ~u ∼ ~v
∆ ` ~u, n ∼ ~v ,m

where n 6∈ st(~u), m 6∈ st(~v)

Meta-logic rule:

∆ ` ~u, if Fresh
n[~i]
P1

(~u) then empty else n[~i]

∼ ~v , if Fresh
m[~j]
P2

(~v) then empty else m[~j]

∆ ` ~u, n[~i] ∼ ~v ,m[~j]

where Fresh
n[~i]
P (~t)

def
=
∧

(n[~i0],~j ,c)∈s̄tP(~t) ∀~j .
(
c⇒~i 6=~i0

)
Fig. 6. Rule FRESH.

justification for dropping the elements is not immediately
apparent in the meta-logic. Formally, we define in [6] a set of
honest meta-formulas Honest{T} for any timestamp T . The
rule is then as follows:

FA-DUP
∆ ` ~u, frame@T ∼ ~v , frame@T

∆ ` ~u, frame@T, exec@T ∧ φ
∼ ~v , frame@T, exec@T ∧ φ

φ ∈ Honest{T}

Intuitively, we can remove φ when it can be computed by
the attacker using the information they obtained from a past
execution. Our set HonestS captures a fragment that has
this property. Typically, FA-DUP can be used on formulas
describing honest interactions between protocol participants,
such as the right-hand side of the implication of Listing 2
which does belong to Honest{aR[j,i]}.

C. Implementation Details

Since we are interested in proving observational equivalence
between protocols that are compatible and whose terms only
differ in a few positions, we use the common technique of
describing two protocols as a single bi-protocol using a special
binary function symbol diff(·, ·). Similarly, meta-equivalences
are presented as bi-frames, i.e. as a single sequence of meta-
terms and formulas featuring the diff(·, ·) symbol. We have

derived tactics from the rules presented before, adapting them
to work conveniently using this presentation.

VII. CASE STUDIES

We have implemented the meta-logic inside an interactive
protocol prover: SQUIRREL. This tool consists of about 10,000
lines of OCaml code, and is available at [50].

SQUIRREL accepts models written in a variant of the applied
pi-calculus, as depicted in Listing 1, and allows to prove reach-
ability and equivalence properties of the specified protocol.
Proofs are interactive, using tactics. Automated tactics are
available to reason over equalities and disequalities over terms
(modulo e.g. the equations of XOR). Some tactics performing
basic proof search and automated reasoning are implicitly
applied at each step of the proof to simplify goals and close
absurd ones. A strength of the tool is its modularity: extending
the tool with new cryptographic primitives does not impact the
core of the tool. It only requires to add new tactics and to prove
their soundness inside the meta-logic.

We have used our tool to perform a number of case
studies, proving different kind of properties (authentication,
strong secrecy, anonymity, unlinkability) under various crypto-
graphic assumptions (PRF, EUF-CMA, XOR, CCA1, ENC-KP,
INT-CTXT, DDH). They are summarized in Table I.

For each protocol, we provide the number of lines of code
(LoC), the cryptographic assumptions used, and the security
properties studied. In all cases, SQUIRREL is able to conclude
in less than one minute. Interestingly, most proofs follow the
intuition of the pen-and-paper proofs, while some low-level
reasoning is successfully abstracted away or automated.

A. RFID based protocols

Those case studies (Basic Hash [23], Hash Lock [40],
LAK with pairs instead of XOR as in [39], MW [47] and
Feldhofer [38]) are authentication protocols between identity-
specific tags and a generic reader (having access to a shared
database with authorized tags credentials). We used our tool
to establish proofs of unlinkability using the notion defined
in [4], [7]: an outside observer must not be able to distinguish

Protocol LoC Assumptions Security properties
Basic Hash [23] 100 PRF, EUF-CMA Authentication & Unlinkability
Hash Lock [40] 130 PRF, EUF-CMA Authentication & Unlinkability
LAK (with pairs) [39] 250 PRF, EUF-CMA Authentication & Unlinkability
MW [47] 300 PRF, EUF-CMA,XOR Authentication & Unlinkability
Feldhofer [38] 270 ENC-KP, INT-CTXT Authentication & Unlinkability
Private Authentication [11] 100 CCA1, ENC-KP Anonymity
Signed DDH [1, ISO 9798-3] 240 EUF-CMA,DDH Authentication & Strong Secrecy

Additional case studies, using the composition framework from [27]
Signed DDH [1, ISO 9798-3] 200 EUF-CMA,DDH Authentication & Strong Secrecy
SSH (with forwarding agent) [51] 700 EUF-CMA, INT-CTXT,DDH Authentication & Strong Secrecy

TABLE I
CASE STUDIES

between a system where each tag can play many sessions from
a system where each tag can play at most one session.

These proofs follow the same global pattern: we use the
induction tactic to reason on an arbitrary number of sessions,
then at some point we use the equivalent tactic to transform
the conditional of an action into an equivalent formula that
can be removed with FA-DUP. The systematic use of authen-
tication to establish unlinkability is reminiscent of the well-
authentication condition of [7], [39].

In our framework, equivalence requires synchronized ex-
ecutions of the two protocols, but their databases need not
have similar structures, as would be the case with the diff-
equivalence notions of PROVERIF or TAMARIN. This has
allowed us to obtain proofs of unlinkability that are out-of-
scope of these tools, cf. discussion about Basic Hash in [7].

For LAK, MW and Feldhofer protocols, the last conditional
of the protocol is not modelled. We managed to partially
overcome this limitation for the MW protocol: in this proof,
we enrich the frame with infinite sequences of messages that
over-approximate what the attacker may learn during protocol
executions, which eases the proof process. We cannot yet
prove the indistinguishability of these sequences in the tool,
because we lack a notion of induction over sequences of
messages. This is left for future work.

B. Private authentication

We study the Private Authentication protocol as presented
in [11], where the authors give a (manual) proof of anonymity
in the computational model for one session of the protocol. A
protocol preserves anonymity if an attacker cannot tell whether
a session is initiated by one identity or by another. Using our
tool, we established a mechanized proof of anonymity for this
protocol, for an arbitrary number of sessions.

C. DDH based protocols

We first study a proof of strong secrecy of the shared key
for the signed DDH protocol [1, ISO 9798-3]. Similarly to
RFID based protocols, we rely on the proof of authentication
properties in the reachability prover to perform our proof of
strong secrecy in the indistinguishability prover.

We also present two additional case studies for the signed
DDH protocol [1, ISO 9798-3] and the SSH protocol [51],

where proofs are performed through the use of the composition
framework developed for the CCSA model in [27]. The authors
outline how to decompose a proof for those protocols into
single session proofs, which consists in slightly modifying
the hash function by giving more capacities to the attacker
using oracles. With our tool, we were able to mechanize those
proofs. Compared to the other case studies presented so far,
those two hold for an unbounded number of sessions that may
depend on the security parameter (this is given by the result
in [27]), and not just for an arbitrary number of sessions.

VIII. CONCLUSION

We have designed a meta-logic on top of the CCSA logic
of [11], and proof systems for establishing reachability and
equivalence properties in that language. We have shown that
it yields a simple, high-level methodology for carrying out
computer-assisted proofs of cryptographic protocols, providing
asymptotic security guarantees in the computational model.
This is supported by the implementation of the interactive
prover SQUIRREL, and its use on various case studies.

As future work, we plan to enrich and optimize the proof
automation, for instance by borrowing from the SMT tech-
niques and tools. Our proof systems could also be enriched
to benefit from equivalence reasoning in reachability goals,
e.g. the PRF equivalence rule should allow to replace hashes
by fresh names in reachability goals. We would like also
to extend our framework to deal with protocols with states.
Whereas handling protocols with states seems to be difficult
in CRYPTOVERIF, our approach based on a reasoning over
execution traces of protocols seems to be more suitable for this
extension. A first application would be, e.g., the mechanization
of the modified AKA protocol of [41]. On a more theoretical
level, we plan to address the formal semantics of our applied
pi-calculus protocols, and the study of their translations to our
internal representation as sets of actions. Finally, we plan to
elaborate on our approach to provide truly unbounded security
guarantees, instead of asymptotic security guarantees for each
trace (with an asymptotic bound that may depend on the trace).

ACKNOWLEDGMENT

We would like to thank Bruno Blanchet and Benjamin
Grégoire for their interactions and helpful guidance.

REFERENCES

[1] ISO/IEC 9798-3:2019, IT Security techniques – Entity authentication –
Part 3: Mechanisms using digital signature techniques.

[2] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi
calculus: Mobile values, new names, and secure communication. J.
ACM, 65(1):1:1–1:41, 2018.

[3] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptogra-
phy (the computational soundness of formal encryption). J. Cryptology,
15(2):103–127, 2002.

[4] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing
unlinkability and anonymity using the applied pi calculus. In CSF, pages
107–121. IEEE Computer Society, 2010.

[5] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier,
Luca Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille
Héam, Olga Kouchnarenko, Jacopo Mantovani, et al. The AVISPA
tool for the automated validation of internet security protocols and
applications. In CAV, pages 281–285. Springer, 2005.

[6] David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos,
and Solène Moreau. An interactive prover for protocol verification in
the computational model. https://hal.archives-ouvertes.fr/hal-03172119.
Technical report.

[7] David Baelde, Stéphanie Delaune, and Solène Moreau. A method for
proving unlinkability of stateful protocols. In CSF, pages 169–183.
IEEE, 2020.

[8] Gergei Bana, Pedro Adão, and Hideki Sakurada. Computationally
complete symbolic attacker in action. In FSTTCS, volume 18 of LIPIcs,
pages 546–560. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2012.

[9] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. Formal analysis
of vote privacy using computationally complete symbolic attacker. In
ESORICS (2), volume 11099 of LNCS, pages 350–372. Springer, 2018.

[10] Gergei Bana and Hubert Comon-Lundh. Towards unconditional sound-
ness: Computationally complete symbolic attacker. In POST, volume
7215 of Lecture Notes in Computer Science, pages 189–208. Springer,
2012.

[11] Gergei Bana and Hubert Comon-Lundh. A computationally complete
symbolic attacker for equivalence properties. In CCS, pages 609–620.
ACM, 2014.

[12] Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno
Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-
aided cryptography. IACR Cryptol. ePrint Arch., 2019:1393, 2019.

[13] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptogra-
pher. In CRYPTO, volume 6841 of Lecture Notes in Computer Science,
pages 71–90. Springer, 2011.

[14] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf
Sasse, and Vincent Stettler. A formal analysis of 5G authentication.
In CCS, pages 1383–1396, 2018.

[15] David A. Basin, Cas J. F. Cremers, and Simon Meier. Provably repairing
the ISO/IEC 9798 standard for entity authentication. In POST, volume
7215 of Lecture Notes in Computer Science, pages 129–148. Springer,
2012.

[16] David A. Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic
proofs of observational equivalence. In CCS, pages 1144–1155. ACM,
2015.

[17] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. CryptHOL:
Game-based proofs in higher-order logic. J. Cryptology, 33(2):494–566,
2020.

[18] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the TLS 1.3 standard candi-
date. In 2017 IEEE Symposium on Security and Privacy, pages 483–502.
IEEE, 2017.

[19] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-
dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, Rustan Leino, Jay R. Lorch, Kenji Maillard, Jianyang Pan,
Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,
Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santi-
ago Zanella Béguelin, and Jean Karim Zinzindohoue. Everest: Towards
a verified, drop-in replacement of HTTPS. In SNAPL, volume 71
of LIPIcs, pages 1:1–1:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

[20] Bruno Blanchet. An efficient cryptographic protocol verifier based on
prolog rules. In CSFW, pages 82–96. IEEE Computer Society, 2001.

[21] Bruno Blanchet. A computationally sound mechanized prover for
security protocols. In IEEE Symposium on Security and Privacy, pages
140–154. IEEE Computer Society, 2006.

[22] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verifi-
cation of selected equivalences for security protocols. In LICS, pages
331–340. IEEE Computer Society, 2005.

[23] Mayla Brusò, Konstantinos Chatzikokolakis, and Jerry den Hartog.
Formal verification of privacy for RFID systems. In CSF, pages 75–
88. IEEE Computer Society, 2010.

[24] Ran Canetti, Alley Stoughton, and Mayank Varia. Easyuc: Using
easycrypt to mechanize proofs of universally composable security. In
CSF, pages 167–183. IEEE, 2019.

[25] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. Auto-
mated verification of equivalence properties of cryptographic protocols.
TOCL, 17(4):1–32, 2016.

[26] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. The DEEPSEC
prover. In CAV, volume 10982 of Lecture Notes in Computer Science,
pages 28–36. Springer, 2018.

[27] Hubert Comon, Charlie Jacomme, and Guillaume Scerri. Oracle simula-
tion: a technique for protocol composition with long term shared secrets.
In CCS, pages 1427–1444, 2020.

[28] Hubert Comon and Adrien Koutsos. Formal computational unlinkability
proofs of RFID protocols. In CSF, pages 100–114. IEEE Computer
Society, 2017.

[29] Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri.
Tractable inference systems: An extension with a deducibility predicate.
In CADE, volume 7898 of Lecture Notes in Computer Science, pages
91–108. Springer, 2013.

[30] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant
property: How to get rid of some algebraic properties. In RTA, volume
3467 of Lecture Notes in Computer Science, pages 294–307. Springer,
2005.

[31] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir,
Benedikt Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-
checked proofs of privacy for electronic voting protocols. In IEEE
Symposium on Security and Privacy, pages 993–1008. IEEE Computer
Society, 2017.

[32] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo
Maffei. Equivalence properties by typing in cryptographic branching
protocols. In International Conference on Principles of Security and
Trust, pages 160–187. Springer, Cham, 2018.

[33] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of
symbolic methods in computational analysis of cryptographic systems.
J. Autom. Reasoning, 46(3-4):225–259, 2011.

[34] Véronique Cortier and Bogdan Warinschi. A composable computational
soundness notion. In CCS, pages 63–74. ACM, 2011.

[35] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In
CCS, pages 1773–1788, 2017.

[36] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols (extended abstract). In FOCS, pages 350–357. IEEE Computer
Society, 1981.

[37] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-
NPA: Cryptographic protocol analysis modulo equational properties. In
Foundations of Security Analysis and Design V, pages 1–50. Springer,
2009.

[38] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer.
Strong authentication for RFID systems using the AES algorithm. In
CHES, volume 3156 of Lecture Notes in Computer Science, pages 357–
370. Springer, 2004.

[39] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for
unbounded verification of privacy-type properties. J. Comput. Secur.,
27(3):277–342, 2019.

[40] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ACM
Trans. Inf. Syst. Secur., 13(1):7:1–7:23, 2009.

[41] Adrien Koutsos. The 5G-AKA authentication protocol privacy. In
EuroS&P, pages 464–479. IEEE, 2019.

[42] Adrien Koutsos. Decidability of a sound set of inference rules for
computational indistinguishability. In CSF, pages 48–61. IEEE, 2019.

[43] Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. A mech-
anised cryptographic proof of the wireguard virtual private network
protocol. In EuroS&P, pages 231–246. IEEE, 2019.

[44] Gavin Lowe. An attack on the Needham-Schroeder public-key authen-
tication protocol. Inf. Process. Lett., 56(3):131–133, 1995.

https://hal.archives-ouvertes.fr/hal-03172119

[45] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The
TAMARIN prover for the symbolic analysis of security protocols. In
CAV, volume 8044 of Lecture Notes in Computer Science, pages 696–
701. Springer, 2013.

[46] John C. Mitchell. Multiset rewriting and security protocol analysis. In
RTA, volume 2378 of Lecture Notes in Computer Science, pages 19–22.
Springer, 2002.

[47] David Molnar and David A. Wagner. Privacy and security in library
RFID: issues, practices, and architectures. In CCS, pages 210–219.
ACM, 2004.

[48] John Alan Robinson and Andrei Voronkov, editors. Handbook of
Automated Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[49] Guillaume Scerri and Ryan Stanley-Oakes. Analysis of key wrapping
APIs: Generic policies, computational security. In CSF, pages 281–295.
IEEE Computer Society, 2016.

[50] The Squirrel Prover repository. https://github.com/squirrel-prover/
squirrel-prover/.

[51] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Transport
Layer Protocol.

APPENDIX A
SEMANTICS OF OUR META-LOGIC

Our translation from the meta-logic to the base logic, is
parametrized by the protocol P = (PA, <) that the meta-
logic is meant to describe, as well as the trace model T under
study. The general principle of this translation is presented
in Section IV-B and we give below the complete definition of
this translation. We start with the interpretation of meta-terms
of sort index and timestamp:

(i)TP = σI(i) (τ)TP = σT (τ) (init)TP = init

(a[i1, . . . , ip])
T
P = aσI(i1),...,σI(ip)

(pred(T))TP = predT ((T)TP)

The interpretation of the macro terms minit and {m
a[~i]
|

a[~i] ∈ PA} is already given in Fig. 2. Then, we give the
interpretation of meta-terms of sort message:

(n[i1, . . . , ip])
T
P = nσI(i1),...,σI(ip)

(x)TP = x

(f[i1, . . . , ip](t1, . . . , tn))TP =

fσI(i1),...,σI(ip)

(
(t1)TP , . . . , (tn)TP

)
(m@T)T =

(minit)
T if (T)T = init

(ma[~i]
)T{

~i 7→~k} if (T)T = a[~k] and a[~i] ∈ PA

(if φ then t else t′)TP = if (φ)TP then (t)TP else (t′)TP

(find~i suchthat φ in t else t′)TP =

if (φ)
T{~i7→~k1}
P then (t)

T{~i 7→~k1}
P else

. . .

if (φ)
T{~i7→~kp}
P then (t)

T{~i 7→~kp}
P else (t′)TP

where ~k1, . . . ,~kn is a complete enumeration of D|~i|I in lexico-
graphic order1.

The interpretation of meta-formulas is quite straightforward.
For instance, we have that:

(φ ∧ φ′)TP = (φ)TP
.
∧ (φ′)TP

1This is important to establish the soundness of some tactics, e.g. the one
used to remove useless indices of the try find command.

Other boolean connectives are translated similarly. We let:

(i = i′)TP =

{
true if σI(i) = σI(i′)
false otherwise

(T = T ′)TP =

{
true if (T)TP = (T ′)TP
false otherwise

(T ≤ T ′)TP =

{
true if (T)TP ≤ (T ′)TP
false otherwise

(t = t′)TP = (t)TP
.
= (t′)TP

Finally, as already explained, quantifications over indices
and timestamps are translated to finite boolean expressions:

(∀i. φ)TP =
.
∧k∈DI (φ)

T{i 7→k}
P

(∃i. φ)TP =
.
∨k∈DI (φ)

T{i 7→k}
P

(∀τ. φ)TP =
.
∧v∈DT (φ)

T{τ 7→v}
P

(∃τ. φ)TP =
.
∨v∈DT (φ)

T{τ 7→v}
P

Overall, this translation is well-defined because our notion
of protocol imposes that the condition and output message
of an action α only refer to actions β < α, or to input@α
(which itself can only refer to actions β < α). For instance,
the translation of (output@T)T is defined as the translation
of a potentially large term (the output message at (T)T) but
its translation can only rely on translations (m@T ′)T for
(T ′)T < (T)T or m = input and (T ′)T = (T)T.

APPENDIX B
REACHABILITY SEQUENT CALCULUS

We present in this section the soundness proof for the
reachability rules of Fig. 3. More complex reachability rules
(e.g. INT-CTXT), along with the formal definition of s̄tP(_)
and their soundness proof, are provided in the long version [6].

Proposition 3. The rules of Fig. 3 are sound.

Proof. To prove the rules soundness, we only need to show
that, if the premises are valid, then the conclusion is valid.
We only show two rules here. The full soundness proof is in
the long version [6].
• For NAMEINDEP, this is because names of the meta-

logic with different head symbols are always translated as
different names of the base logic. We conclude by using
the base logic rule which states that EQ(n,m) ∼ false
whenever n and m are distinct names (this is the rule
EQINDEP of [28]).

• For NAMEEQ, if one of the equalities i1 = j1, ..., ik = jk
does not hold in T, then we know that (n[i1, . . . , ik])T

and (n[j1, . . . , jk])T are distinct names of the base logic.
Again, we conclude using the EQINDEP rule of [28].

APPENDIX C
EQUIVALENCE RULES

We present in this section the XOR-FRESH rule, and its
soundness proof along with the one for the FRESH rule. More
advanced rules (CCA1, DDH and ENC-KP) and their soundness
proofs are provided in the long version [6].

https://github.com/squirrel-prover/squirrel-prover/
https://github.com/squirrel-prover/squirrel-prover/

Base logic rule:

∆ ` ~u ∼ ~v ,
(
if len(t) = len(n) then n else t⊕ n

)
∆ ` ~u ∼ ~v , t⊕ n

where n 6∈ st(~v , t)

Meta-logic rule:

∆ ` ~u ∼ ~v ,
(
if len(t) = len(n[~i]) ∧ Fresh

n[~i]
P2

(~v , t)

then n[~i] else t⊕ n[~i]
)

∆ ` ~u ∼ ~v , t⊕ n[~i]

Fig. 7. Rule XOR-FRESH (base and meta logic).

a) XOR equivalence rule: The Fig. 7 defines our
XOR-FRESH rule, which expresses the information hiding
capabilities of XOR. Together with the rules of Section V,
these are the only rules that we need to reason about protocols
involving XOR. In a nutshell, the rule expresses that t⊕ n[~i]
and n[~i] are interpreted as the same probability distribution
provided that n[~i] is fresh (this guarantees the independence
of distributions) and that the distributions yield messages of
the same length. In details, we rely on a base logic rule that
differs from the one of [28]. We first establish its soundness
(see Proposition 5), and then lift it using the same over-
approximation of the freshness condition as for FRESH.

b) Soundness: We now prove the soundness of our rules.

Proposition 4. Rule FRESH is sound.

Proof sketch. Consider an instance of the rule with a valid
premise, and conclusion φ. Let us show that, for any T
and M satisfying ∆, we also have T,M |= φ. Note that
(Fresh

n[~i]
P1

(~u))TP1
is a boolean combination of constants true

and false, and similarly for the other freshness formula.
It cannot be that the interpretation of one formula is equiv-

alent to true and the other to false, as this would contradict
the validity of the premise. If the two interpretations are false,
the premise is equivalent to the conclusion, so we conclude
trivially.

Otherwise, the two freshness formulas interpret to true. This
implies that nσI(~i) is not a subterm of (~u)TP1

, and correspond-
ingly for mσI(~j) and ~v . The validity of the premise gives
us T,M |= (~u)TP1

, empty ∼ (~v)TP2
, empty, which implies

T,M |= (~u)TP1
∼ (~v)TP2

. We can finally apply the FRESH
rule of the base logic to obtain T,M |= φ as expected.

Proposition 5. Rule XOR-FRESH is sound in all computa-
tional models where ⊕ is interpreted as XOR.

Proof. It suffices to show that the base logic rule is sound, then
the lifting works as for FRESH. We express the advantage of
an attacker on the indistinguishability game of the conclusion,
where L is the random variable Jlen(t) = len(n)K and t′ is

if len(t) = len(n) then n else t⊕ n:

Adv(A)
= |Pr[A(J~uK)]−Pr[A

(
J~v, t⊕ nK

)
]|

= |Pr[L]×
(
Pr[A(J~uK) | L]−Pr[A

(
J~v, t⊕ nK

)
| L]
)
+

Pr[¬L]×
(
Pr[A(J~uK) | ¬L]−Pr[A

(
J~v, t⊕ nK

)
| ¬L]

)
|

The freshness condition n 6∈ st(~u, t) implies that the distri-
butions J~v , t ⊕ nK and J~v , nK are the same, provided that L
holds. Moreover, when ¬L, the terms t⊕ n and t′ evaluate to
the same result. We can thus rewrite our advantage as follows:

Adv(A)
= |Pr[L]×

(
Pr[A(J~uK) | L]−Pr[A

(
J~v, t′K

)
| L]
)
+

Pr[¬L]×
(
Pr[A(J~uK) | ¬L]−Pr[A

(
J~v, t′K

)
| ¬L]

)
|

= |Pr[A(J~uK)]−Pr[A
(
J~v, t′K

)
]|

In other words the advantage is the same for the premise and
conclusion, thus the rule is sound.

APPENDIX D
NUMBER OF SESSIONS DEPENDING ON η

We give here an example of two protocols P and PI that
can be distinguished by an adversary which can interact q(η)
times with the protocol, where q is a polynomial, but cannot
be distinguished by an adversary which interacts k times with
the protocol (where k is an arbitrary fixed integer, independent
of η). The construction of P is as follows. First, the protocol
samples uniformly at random a bitstring n of length η. Then,
when queried with an integer input i, the protocol leaks bit(n, i)
– the ith bit of the nonce n. Finally, the adversary wins the
game if they can find n. The idealised protocol PI is identical
to P , except that the adversary never wins:

Pbit(n) := ! (in(c1, i); out(c2,bit(n, i)))

P :=new n;
(Pbit(n) | in(c3, x); if n = x then out(c4, true)

else out(c4, false)

)
PI :=new n;

(
Pbit(n) | in(c3, x); out(c4, false

)
Clearly, there exists an adversary A that can distinguish
between P and PI by interacting η+1 times with the protocol:
this adversary queries all bits of n using η queries, and then
sends n to the protocol. In that scenario, P returns true while
PI returns false, which are trivial to distinguish.

Of course, an adversary interacting at most k times with
the protocol cannot learn more than k bits of n, and has a
winning probability of at most 2k−η . Such an adversary has a
negligible probability of winning (w.r.t. η).

APPENDIX E
COMPARISON WITH EXISTING TOOLS

To deepen the comparison between SQUIRREL, CRYP-
TOVERIF and EASYCRYPT, we conducted a security analysis
of the same protocol in the three tools.2 More precisely,
we modelled the Basic Hash protocol, and proved that it

2Of course, we also used existing case studies in the literature (e.g. [28],
[31], [43]), albeit not of the same protocol, to build a detailed description of
how each tool operates.

provides authentication and unlinkability. The corresponding
SQUIRREL, CRYPTOVERIF and EASYCRYPT files can be
found in the repository [50].3

We start by presenting the summary of the key findings
of our comparison in Appendix E-A. This summary is based
on the basic quantitative comparison of the three approaches
in Appendix E-B, and an in-depth qualitative comparison
conducted in Appendices E-C, to E-F, where we compare the
three approaches on how protocols, security properties and
cryptographic assumptions are modelled, and on how security
proofs are carried out.

A. Summary of key findings
Generally, we conclude that CRYPTOVERIF and SQUIRREL

operates at a similar level of details and expressivity, though
they use different approaches, and proofs developments. On
the other hand, EASYCRYPT is more expressive, at the cost
of a higher level of details and modelling overhead.

a) Protocols: Protocols are modelled in very similar
fashion in CRYPTOVERIF and SQUIRREL. Writing a protocol
in EASYCRYPT may require a more involved modelling –
because it does not support directly protocols with sequences
of inputs/outputs.

We note that CRYPTOVERIF does not support stateful
protocols, while EASYCRYPT does. The CCSA approach on
which SQUIRREL is based upon can naturally model stateful
protocols [41] – such an extension is left as future work.

b) Security properties: From our case study, the three
tools appeared equally capable of expressing all usual security
properties, albeit using different approaches. However, we note
that: i) native support for events or timestamps in CRYP-
TOVERIF and SQUIRREL allows for more direct and simpler
statements of correspondence properties; and ii) EASYCRYPT
logic is more expressive, and allows to formalize more
complex relational properties of protocols, and to internalize
composition results and reasoning (though we did not much
exploit this in our case study).

c) Cryptographic assumptions: Adding new crypto-
graphic assumptions in EASYCRYPT is easy, as it uses a very
expressive logic. While CRYPTOVERIF provides a way to add
new assumptions, doing it in a way that can be efficiently
used by the tool probably requires a deep understanding of the
tool. On the other side of the spectrum, we have SQUIRREL,
where adding new hypotheses is not possible without in-depth
knowledge of the tool.

d) Proofs: Proofs in CRYPTOVERIF and SQUIRREL
mostly focus on the security aspects, thanks to native sup-
port for cryptographic reasoning, although using different ap-
proaches: the former uses cryptographic game transformation,
while the latter operates on the protocol traces. On the other
hand, EASYCRYPT does not have rules dedicated to cryp-
tographic reasoning, but allows to carry out such reasoning
using its lower-level, very expressive logics. As a direct con-
sequence, proofs are considerably shorter in CRYPTOVERIF
and SQUIRREL than in EASYCRYPT.

3See examples/{README.md, cryptoverif/, easycrypt/}

SQUIRREL CRYPTOVERIF EASYCRYPT

Authentication
- modelling 30 LoC 40 LoC 220 LoC
- proof 10 LoC 0 LoC 60 LoC
Unlinkability
- modelling 20 LoC 60 LoC 330 LoC
- proof 40 LoC 10 LoC 630 LoC

TABLE II
TOOLS COMPARISON: BASIC HASH PROTOCOL

B. Quantitative Comparison

As a basic quantitative metric, we give in Table II the lines
of code (LoC) needed to prove the authentication and un-
linkability properties of the Basic Hash protocol in each tool,
distinguishing the modelling and proof parts. We notice that
SQUIRREL and CRYPTOVERIF have similar LoC values, with
the difference that CRYPTOVERIF concludes automatically for
the authentication proof. The EASYCRYPT development is
sensibly longer, which was expected considering the fact that
it is a general purpose proof assistant, relying on an expressive
high-order logic.

We stress the fact that the LoC metric only gives a very
rough idea of the modelling and proof efforts required to
perform our case study analysis. For example, a large part
of the EASYCRYPT development are low-level Hoare-logic
proofs which, while being protracted, are elementary.

C. Qualitative comparison: modelling protocols

In CRYPTOVERIF, protocols are modelled using a variant
of the applied-pi calculus. This language is similar to the input
language of SQUIRREL. We note however that SQUIRREL
can model trace restrictions, which can be used, for example,
to model protocol phases (see Example 6). Phases and trace
restrictions are not supported by CRYPTOVERIF.

EASYCRYPT has been mostly used for security analysis of
cryptographic primitives. These are modelled using modules,
which are simply lists of procedures. These procedures operate
on a global memory and can perform random samplings –
they are stateful probabilistic programs. A key feature of the
module system is its composability: a module F – a functor
– can be parameterized by other modules by taking them as
arguments. For example, an encryption schema can be defined
w.r.t. an unspecified block permutation. The same mechanism
can be used for protocols, modelling an input/output pair as
a module procedure. Note however that when modelling a
protocol in which an agent performs sequentially multiple
pairs of input/output, the modelling becomes more complex,
as we need to maintain in a global state the position of the
agent in this sequence (this problem does not appear in Basic
Hash, as each agent comprises only one input/output pair).

D. Qualitative Comparison: modelling security properties

a) Correspondence Properties: In CRYPTOVERIF, the
processes of the protocol agents can be annotated by events.
Crucially, events do not modify the agents behavior: they are

only added to the execution trace of the protocol, where they
can be used to express properties of the protocol.

Modelling correspondence properties in SQUIRREL is very
similar, though we do not use events: we directly refer to the
values of components of the protocol (e.g. nonces, messages)
at various points of the protocol execution using timestamps.

Expressing correspondence properties in EASYCRYPT re-
quires more work. For the Basic Hash protocol, we had
to modify the protocol agents to add some bookkeeping of
the events: essentially, events are manually logged into some
global tables. Security properties are then expressed in the
same way as in CRYPTOVERIF or SQUIRREL.

Contrarily to our timestamp approach where nothing is
added, and to CRYPTOVERIF events that are just annotations
leaving the protocol behavior unchanged, the EASYCRYPT
modelling of correspondence properties has the drawback that
it requires to modify the protocol to add the global tables of
events: the protocol shown secure is not the original protocol.
Of course, this problem can be solved by doing the modelling
in several steps: i) define the original protocol; ii) define the
protocol with events; and iii) show that the two protocols have
the same behavior (except for the global tables). Nonetheless,
this requires some additional work from the user.

Arguably, a minor advantage of our approach compared to
CRYPTOVERIF is that it allows to have more concise protocol
descriptions, as we do not need to modify the protocol specifi-
cation itself. For example, new correspondence properties can
be added to a development without changing the protocol.

b) Equivalence properties: CRYPTOVERIF models
equivalence properties as the indistinguishability of two
protocols (given as two distinct processes), whereas in
SQUIRREL the two protocols have to be given in a bi-process.

EASYCRYPT models equivalences using relational proba-
bilistic Hoare logic formulas (pRHL), which state that, as-
suming that the initial memories of the left and right programs
satisfy some relational property (the pre-condition), the final
memories satisfy some other relational property (the post-
condition). This is a very expressive logic, which goes beyond
bare equivalence: e.g., we can write a pRHL formula that
(roughly) states that an event happened on the left program
less often than on the right program.

E. Modelling: cryptographic assumptions

The analyses have been carried out using the same cryp-
tographic assumptions: the keyed hash function is assumed
EUF-CMA and PRF. Although the cryptographic assumptions
are the same, their modelling differs.

CRYPTOVERIF offers a large panel of predefined crypto-
graphic primitives: when modelling a protocol, a user has
to import the appropriate cryptographic primitives and as-
sumptions they need. Notably, these are modelled using a
specification language, which let the user declares sets of
indistinguishable oracles available to the adversary. While an
experienced user can theoretically use this system to define
their own cryptographic assumptions, we remark that some

of the default assumptions have been modified in non-trivial
ways, probably to use alternative equivalent formulations that
are more powerful and can be used automatically by the tool.
Consequently, adding complex new assumptions may be out-
of-reach of most users.

In EASYCRYPT, cryptographic assumptions are expressed
through games, using the same programming language and
module system than for protocols, and the user can define
new cryptographic hypotheses if needed. Moreover, this can
be done easily, as the language used to express assumptions is
very close to the pseudo-code language used by cryptographers
for paper proofs.

SQUIRREL cryptographic hypotheses are hard-coded in
the prover, and adding now cryptographic hypothesis is not
straightforward: it requires to do non-trivial syntactic checks,
and to compute complex sets of subterms. E.g., for the EUF-
CMA, we must compute the set of hashes appearing in a
protocol execution for a given key, and the condition on the
trace under which each of these hashes appears.

F. Security proofs

The main differences between CRYPTOVERIF and SQUIR-
REL lie in the way proofs are handled. Each step of the proof is
a transformation of a cryptographic game in CRYPTOVERIF,
while in SQUIRREL the transformation is applied to formu-
las and frames. As a first consequence of this difference,
CRYPTOVERIF does not handle states, while we are confident
that SQUIRREL will be able to support stateful protocols.4

Both tools have basic proof steps dedicated to cryptographic
reasoning: CRYPTOVERIF applies cryptographic assumptions
by replacing a set of oracles by an indistinguishable set of
oracles, while SQUIRREL has specialized inference rules.

EASYCRYPT proofs are done at two levels. First, the
equivalence between two protocols (modelled as modules) can
be shown using a probabilistic relational Hoare logic (pRHL).
To complete such proofs, the user often has to come up with
(relational) invariants of the programs, and to perform precise
probabilistic reasoning. Then, such results can be composed
using its ambient higher-order logic (e.g. a property shown for
an arbitrary block permutation can be instantiated to a precise
permutation, say AES). Among these three tools, EASYCRYPT
is the only one that allows to prove high-level composition
results (e.g. the Universal Composability framework has been
formalized in EASYCRYPT [24]). On the other hand, and in
contrast with CRYPTOVERIF and SQUIRREL, EASYCRYPT
does not have rules dedicated to cryptographic reasoning.
Instead, its pRHL and higher-order logic are expressive enough
to carry out cryptographic proofs directly – often at the cost
of more details and work.

4The CCSA approach can be naturally adapted to model and prove secure
stateful protocols (e.g. see the manual case study of [41]).

	Introduction
	Overview
	Modelling protocols – Syntax
	Meta-Logic
	Protocols as Sets of Actions

	Semantics
	Base Logic
	Translation
	Validity

	Reachability Rules
	Basic Rules
	Advanced Rules

	Equivalence Rules
	Basic Rules
	Advanced Rules
	Implementation Details

	Case Studies
	RFID based protocols
	Private authentication
	DDH based protocols

	Conclusion
	References
	Appendix A: Semantics of our meta-logic
	Appendix B: Reachability Sequent Calculus
	Appendix C: Equivalence Rules
	Appendix D: Number of sessions depending on
	Appendix E: Comparison with existing tools
	Summary of key findings
	Quantitative Comparison
	Qualitative comparison: modelling protocols
	Qualitative Comparison: modelling security properties
	Modelling: cryptographic assumptions
	Security proofs

