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Abstract. In this paper, we develop semantic foundations for precise
cost analyses of programs running on architectures with multi-scalar pi-
pelines and in-order execution with branch prediction. This model is then
used to prove the correction of an automatic cost analysis we designed.
The analysis is implemented and evaluated in an extant framework for
high-assurance cryptography. In this field, developers aggressively hand-
optimize their code to take maximal advantage of micro-architectural
features while looking for provable semantic guarantees.

1 Introduction

Provable cost analysis, such as [28,22], provides a rich palette of methods and
tools for estimating (generally in the form of upper bounds) execution time with
respect to a mathematical operational and cost model. However, operational and
cost models commonly used in provable cost analysis elude micro-architectural
features, such as caches, predictors, and pipelines, which are performance-critical
and carefully exploited in high-performance implementations. As a consequence,
the upper bounds computed by existing cost analyses are overly coarse. In par-
ticular, they cannot be used to guide carefully crafted manual optimizations, for
instance the instruction scheduling of the program, since a typical provable cost
analysis will be oblivious to instruction scheduling.

Specific areas of computer science require high-performance and maximal
reliability. It is for example the case of cryptographic engineers who develop
high-speed implementations of common cryptographic algorithms. Increasingly,
cryptographic engineering is adopting high-assurance techniques [5] to deliver
provable guarantees that implementations are correct with respect to their high-
level specification (expressed mathematically or as pseudo-code), cryptographi-
cally secure, and protected against side-channels. Unfortunately, high-assurance
cryptography still relies on simulation or benchmarking for measuring the ef-
ficiency of implementations, largely ignoring the line of work in provable cost
analysis.
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1 r = 0; //1
2 t = [A + 0]; //1
3 r += t; //3
4 t = [A + 4]; //3
5 r += t; //5
6 t = [A + 8]; //5
7 r += t; //7
8 t = [A + 12]; //7
9 r += t; //9

10 t = [A + 16]; //9
11 r += t; //11
12 t = [A + 20]; //11
13 r += t; //13
14 t = [A + 24]; //13
15 r += t; //15
16 t = [A + 28]; //15
17 r += t; //17
18

19

Listing 1.1: Straightforward

r0 = 0; //1
r1 = 0; //1
t0 = [A + 0]; //1
t1 = [A + 4]; //2
t2 = [A + 8]; //2
r0 += t0; //3
t0 = [A + 12]; //3
r1 += t1; //4
t1 = [A + 16]; //4
r0 += t2; //4
t2 = [A + 20]; //5
r1 += t0; //5
t0 = [A + 24]; //5
r0 += t1; //6
t1 = [A + 28]; //6
r1 += t2; //7
r0 += t0; //7
r1 += t1; //8
r = r0+r1; //9

Listing 1.2: Optimized

Fig. 1: Two different approaches to scheduling instructions for code that accumu-
lates 8 consecutive 32-bit integers from memory. Comments indicate execution
cycles on the microarchitecture described in Fig. 2.

Listing 1.1 provide a classic example of an array sum program that can be
aggressively optimized in order to take advantage of modern micro-architectural
mechanisms. The program computes (in variable r) the sum of the elements
of an array A. An optimized version of this program is given in Listing 1.2,
which exploits the architecture capability to perform loads in parallel, avoiding
the two cycles penalty for each element occurring in Listing 1.1. It thus uses
more registers to store the pending results. A standard cost analysis would con-
clude, wrongly, that the optimized program has a worst execution time than
the original: indeed, both programs executed the same amount of loads, but the
optimized program performs an additional assignment and addition. Summing
the delay of each instruction, as a naive cost analysis would do, concludes that
the optimized version is worse than the original. To understand the benefit of
this optimization, the programmer has to reason on the model of instruction
parallelism.

This paper develops semantic foundations for cost analysis of pipelined-
optimized programs. We focus on the instruction pipeline mechanism and do
not model caches in this work. Our work is intended for the programmer who
wants to formally check the cost impact of manual optimizations. Such program-
mers are usually happy to assume that all program code and all data is in L1
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cache, in order to focus on careful instruction selection, scheduling, and regis-
ter allocation. Cryptographic primitives fall into this case. We focus on in-order
processors, as out-of-order processors will change the scheduling imagined by the
programmer. Although out-of-order processors are more common due to their
efficiency, manual optimizations are still particularly relevant for in-order em-
bedded systems. Indeed, embedded systems cannot handle the complexity and
energy cost of out-of-order processors.

Our work makes the following contributions.

– We provide a detailed semantic model, presented in Section 3, which is a
small-step semantics precisely modeling the execution cost (in processor cy-
cles) of instruction parallelism and branch prediction inside an in-order pro-
cessor.

– We then design in Section 4 a provably correct static analysis that computes
safe relational bounds on this cost. The analysis is a mix of a standard
relational numerical analysis, a standard may/must static analysis and a new
block symbolic execution that extracts a tight range for the execution time
of an instruction block. The static analysis is proven sound with respect to
the small-step semantics (Theorem 3). The full proof of correctness is given
in the companion report [1].

– We have implemented our approach into Jasmin [3,4], an existing framework
for high-performance and high-assurance cryptography. We use our analysis
to obtain relational cost bounds for scalar and vectorized implementations
of popular cryptographic algorithms. These experiments show that our esti-
mates are precise (in particular the difference between the upper and lower
bounds is tight), and significantly improve on the bounds delivered by tra-
ditional cost analyses which ignore instruction parallelism.

2 Processor Behavior on an Example

We consider a low-level language (inspired from Jasmin [3,4] internal representa-
tion), with memory load/store, and scalar operations. Programs in our language
are executed on a multi-scalar pipelined processor. A pipelined processor decom-
poses the execution of an atomic instruction into several stages such that the
next instruction can enter the first stage as soon as the previous instruction
leaves it. A sequence of stages constitutes a pipeline, and the latency of a pi-
peline is the number of stages it comprises. A multi-scalar pipelined processor
has several pipelines in parallel, allowing it to execute simultaneously several
instructions, by loading them into different pipelines. All pipelines are not iden-
tical: each pipeline can have a different latency, and supports a different set of
instructions. The latency of a pipeline depends on the instructions supported,
where basic instructions, such as additions, will be executed quickly, while more
complex operations (e.g. multiplications and floating-point operations) will take
a longer time.

Fig. 2 describes an example of a processor with five pipelines (A, L, S, M
and J) and the instructions each pipeline can handle: for example, multiplication
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A L S M J
Add/Sub (1) X X

Comp (1) X X X
Load (2) X X
Store (2) X
Mult (5) X
Jump (4) X

Fig. 2: Instructions handled by each pipeline of our processor, with their latencies
in parenthesis

has a latency of 5, and is only supported by the pipelineM . This is a simple pro-
cessor, real processors have more pipelines and can handle a larger instruction
set. Note that the method presented in this paper is not specific to this proces-
sor: the number of pipelines, the instructions supported and their latencies are
parameters of the cost semantics and of the analysis.

Instruction Fetching We now give a high-level overview of how a processor
fetches an instruction, which is done in three steps. First, the processor checks
that the instruction has no data-dependency conflict with other instructions al-
ready in the pipelines. Then, the processor resolves the instruction by evaluating
the registers read by the instruction into values – which are either integers or
memory addresses. Finally, the resolved instruction, called a transient instruc-
tion, is placed in a pipeline supporting it.

Data-dependencies Before starting executing an instruction – i.e. loading it in
the first stage of a pipeline – the processor must check that this instruction has no
conflict with other instructions being currently executed. For example, consider
the execution of lines 1 through 3 of Listing 1.1 on the processor of Fig. 2. The
resulting state of the processor can be found in Fig. 3a. The first instruction can
be placed in stage A1 (the first stage of the A pipeline), while simultaneously
loading the second instruction into stage L1. However, the instruction of the
third line cannot be loaded during the same cycle, because it depends on the
values of registers r and t, which will be written by the previous instructions:
the processor must wait for their executions to finish before fetching l.3.

Essentially, an instruction can be executed if: i) there is a pipeline available
(i.e. whose first stage is empty) supporting it; and ii), none of its variables
(a.k.a. registers or memory locations such as @A) have data-dependencies with
instructions currently in the pipelines. More precisely, an instruction atom cannot
be executed if:

– any variable it reads is written by another instruction currently in a pipeline
(read-after-write dependency);

– any variable it writes is read or written by another instruction in the pipeline
(write-after-read and write-after-write).
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A r:=0
L t:=[@A+0]
S
M
J

(a) State of the pipelines after line 5 and
6 of the first iteration of Listing 1.1

A
L
S
M a:=4*8
J jump

(b) State of the pipelines after fetching a
jump

Fig. 3: Example of pipeline states for the processor of Fig. 2. Each cell represents
a pipeline stage, e.g. stage J4 in the second state contains a jump.

We refer to these dependencies using the acronyms RaW, WaR and WaW. Com-
ing back to our example, the instruction l.3 needs to wait for two cycles – the
latency of the load – to be fetched after l.2 because of a RaW dependency on t.

Instruction Resolution Before being placed in the first stage of a pipeline sup-
porting it, the instruction is resolved, by replacing the registers it reads by their
current value. We illustrate this mechanism on the array sum (Listing 1.1). Let us
suppose that the first cell of A contains value 32, stored in t after the execution
of l.2. The instruction l.3 r := r + t is resolved into the transient instruction
r := 0 + 32. Note that a transient instruction no longer reads any register,
which allows to avoid some data-dependency conflicts. After the instruction l.2
has been fetched, we can expect the pipelines to be in the state of Fig. 3a, where
@A designates the address stored in A.

Branch Prediction When the processor executes a sequence, it simply incre-
ments its program counter to find the next instruction to execute. But in the
case of a conditional jump, the next instruction to execute is harder to infer. In
that case, a jump must be resolved: if the jump is taken, then its destination
is computed and used to update the program counter. Otherwise, the processor
continues its execution with an incremented program pointer. The jump must go
through all the stages of its pipeline to affect the program counter. Not fetching
any instruction during its processing would severely impact the performances of
the processor. It is more interesting to start fetching and executing one of the
two branches as soon as a jump is encountered, without waiting for the jump
to be fully processed. The branch predictor (BP) is in charge of deciding which
branch will be speculatively executed. It typically uses a history, usually in the
form of a buffer, to remember the previous branches taken and bases its decisions
upon it. When the jump has been fully processed, the prediction is checked. In
case of a correct prediction, the execution of the speculated branch continues.
Otherwise, all the modifications made by the speculated branch must be roll
backed, and the correct branch starts its execution. The roll-back requires to
buffer the speculated instructions when they are retired from their pipeline and
to identify which instructions in the pipelines are speculation.
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The content of the pipelines, i.e. the instructions already loaded, is not suf-
ficient to roll back the pipelines. For example, consider the following two code
snippets. The instruction jmp(c) : T is a conditional jump: the program contin-
ues with the instruction at address T – further in the code – if c holds, or goes
to the next instruction otherwise. So the then branch of this conditional is not
displayed here, only its else branch. In the first code snippet, the else branch
contains only l.3, while it contains l.2-3 in the second.

1 a := 4 * 8;
2 jump (c) : T;
3 b := 2 + 6;

1 jump (c) : T;
2 a := 4 * 8;
3 b := 2 + 6;

These two programs are executed from empty pipelines and we assume here
that the else branch is speculatively executed. Let us take a snapshot of the pro-
cessor state after the three instructions have been fetched and after the processor
has executed three cycles to make the instructions progress in their pipelines. For
both executions, the pipelines should be in the state of Fig. 3b. Notice that the
speculated addition b := 2 + 6 has been fully executed and has left the pipe-
line. Also, in both cases, the multiplication is at the same depth (4) as the jump,
and there is no way of telling if it was speculatively executed, or if it was fetched
before the jump. Hence it is not possible to determine if the multiplication must
be removed simply by inspecting the pipelines.

Therefore, to be able to perform roll backs, the processor: (i) buffers the
effects of the retired instructions (here the addition); and (ii), timestamps the
instructions to track their dependencies. Any instruction that has been fully
executed is placed into a buffer, called the speculation buffer, before acting on
the memory. Once it is guaranteed that no previous jump can roll it back, it
is committed, effectively modifying the memory. When a roll back is performed,
any instruction in the buffer or the pipelines with an higher timestamp than the
jump is removed. These mechanisms are inspired from [10].

3 Concrete Small-step Pipeline Semantics

In this section we define the concrete small-step semantics of a multi-pipelined
processor where the cost in cycles is tracked. This semantics precisely models a
pipelined processor with branch prediction. It includes a speculation buffer in
order to model the roll back mechanism used after branch misprediction. In the
next section, we will present an approximation of this semantics w.r.t. the cost,
which we use to build a sound static analysis. Fig. 5 summarizes the notations
used by our semantics rules in Fig. 7, 8 and 9.

Language The syntax of our language is given in Fig. 4. Atomic instructions
atom ∈ Atoms can be basic arithmetic operations, memory loads/stores and jump
instructions. The instructions operate on registers in Reg, which can contain
integer values in Z or memory locations in MemLocs. Finally, programs are built
using sequential composition of atomic instructions, conditionals and while loops.
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Operands:
o ::= r ∈ Reg Register

| n ∈ Z Integer

Atomic instructions Atoms:
atom ::= r := o1 + o2 Addition

| r := o1 − o2 Subtraction
| r := o1 ≤ o2 Comparison
| r := o1 × o2 Multiplication
| r1 := [r2 + o] Load
| [r + o1] := o2 Store
| jmp(o) Conditional jump

Labels:
` ∈ L

Statements:
s ::= atom Atomic

| s1; s2 Sequence
| ` : if o

then s1
else s2 Conditional

| ` : while o
do s
done Loop

| skip Skip

Fig. 4: Syntax of the language

The jump instruction is not meant to be directly written by the programmer.
Its role will be explained in the semantic rules for conditionals. Conditionals
and loops are annotated with distinct labels ` in the set of labels L. The branch
predictor uses them to distinguish the different conditional jumps and to build
its history of past jumps.

The syntax is inspired from the Jasmin language [3,4], which features pre-
cisely such a combination of low-level atomic instructions that translate directly
to assembly and high-level structures consisting of while loops and conditionals.

Memory State Values are stored at locations, Location = Reg ∪ MemLocs,
comprising registers and memory locations. A memory state σ : Location 7→ Val is
a map from locations to values, which are either integers or memory locations (see
Fig. 5). For any atomic instruction atom and memory state σ, we let SJatomKσ be
the memory state obtained when evaluating atom in σ. This atomic instruction
semantics is defined as usual — we omit the details.

Pipeline State Our semantics is parametric in the processor’s architecture,
i.e. the number of pipelines, the instructions they support, and the instructions’
latencies. For simplicity, the jump instruction is handled by a single pipeline J .
This is the usual settings for branch predictors as it simplifies the design of the
processor. Formally, we assume a fixed set of pipelines Pips. For every pipeline
X ∈ Pips, we note Xi the i-th stage of X. For any atomic instruction atom, its
latency characterizes the number of stages required to execute the instruction
before it can leave the pipeline. We note |atom| its latency, and we writeX ∈ atom
if the pipeline X handles the instruction atom. We also confuse atom with the
set of all pipelines that handle atom. Then, the latency of a pipeline |X| is the
maximal latency of the instructions it supports. The pipelines are ordered so
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Latency
|atom| ∈ N

Values (Val) :
v ::= l ∈ MemLocs Memory location

| n ∈ Z Number
Locations (Location):

x ::= l ∈ MemLocs Memory location
| r ∈ Reg Register

Memory state (S):
σ ∈ Location→ Val

Pipelines:
X ∈ Pips Pipeline
X1, X2, . . . ∈ Stages Stage
ε Empty stage content

Transient instructions (Atomst):
atomt ::= r := v1 ./ v2 Scalar operations (./∈ {+,−,×,≤})

| r := [l + n] Load
| [l + n] := v Store
| jmp(v) Jump

Pipeline state:
Cells = ((N× Atomst) ∪ ε) Cells
π ∈ Stages→ Cells Pipeline state
π[j : j ≤ i] Roll back of instructions older than i

Branch prediction (BP):
h Branch prediction history
BP-predict (h, `) BP prediction on jump `
BP-update (h, `, taken) Update the BP history with jump

results
Speculation buffer:

β ∈ P (N× Atomst) Speculation buffer
min(β, π) ∈ N Minimal index in β and π

( = 0 if empty)
max(β, π) ∈ N Maximal index in β and π

( = 0 if empty)
β(σ) = ( ©

(j,atomt)∈β
SJatomtK)(σ) Application of all instructions of β

β[j : j ≤ i] ∈ P (N× Atomst) All instructions more recent than i
Processor state:

ω = 〈σ, π, h, β〉 Processor state

Fig. 5: Concrete pipelined processor

that given an instruction handled by several pipelines, these pipelines will be
checked in a fixed order. For instance on our processor, for a comparison, the
pipelines will be checked in the order A, then L, then S. As a shorthand, we
write X = min{Y ∈ atom} to get the first pipeline handling atom.
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A
L
S
M 1, a:=4*8
J 2, jump

(a) The jump has been fetched after the
assignment

A
L
S
M 2, a:=4*8
J 1, jump

(b) The jump has been fetched before the
assignment, and thus depends on its pre-
diction

Fig. 6: The timestamps associated to the instructions records prediction depen-
dencies, and allow to perform roll backs if necessary.

Each stage of a pipeline is either empty (denoted ε), or contains a transient
instruction – obtained by resolving an atomic instruction – ready to be processed.
The set of transient instructions is denoted Atomst. As explained in Section 2, we
need to annotate the instructions in the pipelines to know if they are speculation
and depend on a jump retiring. Each transient instruction in a pipeline stage is
associated to a timestamp, which orders it w.r.t. the other instructions in the
pipelines. A smaller timestamp denotes an older instruction. The timestamp is
incremented each time we fetch a new instruction. Therefore, a pipeline state π
is a function from pipeline stages Stages to pairs of an integer and a transient
instruction ((i, atomt) ∈ (N×Atomst)), or to the empty slot ε. To be able to roll
back a jump with index i, we use the pipeline state π[j : j ≤ i], which is the state
π where only instructions older than i in π have been kept. Newer instructions of
π (i.e. such that π(Xk) = (j, atomt) with j > i) are replaced with ε. We illustrate
this in Fig. 6, using the branch prediction example of Section 2. Recall that the
two programs had the same pipelines state (described in Fig. 3b). But when
adding the timestamps, we obtain two distinct states. In the first case (Fig. 6a),
the multiplication has been fetched before the jump, and thus its timestamps
(1) is smaller than the one of the jump (2). Hence, in case of rollback due to a
misprediction of the jump, the multiplication will not be evinced. In the second
case (Fig. 6b), the multiplication is speculatively executed, and fetched after the
jump: its timestamps (2) is greater than the one of the jump (1), and will thus
be evinced if the jump destination was mispredicted.

Speculation Buffer After it has been executed, an instruction is stored in the
speculation buffer β. The instruction will be committed, i.e. its effect will be
applied on the memory σ, only when the processor is guaranteed that it was
not an incorrect speculation. Similarly to the pipeline state π, the speculation
buffer β keeps track of the index of the instructions to check the sequential de-
pendencies. Hence β is a set of pairs (i, atomt) ∈ (N×Atomst). We let min(β, π)
be the minimal index associated to an instruction in β and π (we define sim-
ilarly max(β, π)). Similarly to π, β[j : j ≤ i] is the buffer β where only the
instructions older than i in β have been kept. The effect of the instructions in
the speculation buffer should be taken into account as if it was already applied
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Lock RaW
x ∈ read(atom, σ) x ∈ write(atom′)

locks(atom, atom′, σ)

Lock WaW
x ∈ write(atom, σ) x ∈ write(atom′)

locks(atom, atom′, σ)

Lock WaR
x ∈ write(atom, σ) x ∈ read(atom′)

locks(atom, atom′, σ)

Jump lock

locks(jmp(_), jmp(_),_)

Fig. 7: Rules of data dependency locks

on the memory state σ. The notation β(σ) corresponds to the application on σ
of these instructions, from the oldest to the most recent.

Branch Prediction History The branch predictor is guided by a history of
previous jumps. Usually, it is a buffer associating a boolean taken or not taken
to each jump label `, but this can change depending on the processor. Therefore,
we chose to keep its precise implementation abstract in our model. We note h
this history and assume two operators: BP-predict(h, `) holds if the BP predicts
that the jump at ` will be taken; and h′ = BP-update(h, `, taken) updates the
history depending on whether or not the jump was actually taken. We suppose
that these operations are deterministic and that the history is not modified
by external sources. However, we make no assumption on the quality of the
prediction: it can mispredict every time for instance.

Directives The processor behaves greedily, and tries to fetch as many instruc-
tions as possible per cycle. If no pipeline is available for the next instruction
atom, or if atom has a data-dependency conflict with the instructions already
in the pipelines, then the processor cannot fetch the instruction atom and must
execute a cycle. Executing a cycle makes all instructions progress one stage fur-
ther in their pipeline. When an instruction atom has been through |atom| stages,
then it is retired and it is placed in the speculation buffer β. At each cycle, β
tries to commit its oldest instructions.

These three actions, fetching an instruction, executing a cycle and commit-
ting from the speculation buffer, are called directives. The fetch atom directive
loads the instruction atom in the first stage of an available pipeline. The commit
directive removes the oldest instruction of the speculation buffer if it does not
depend on a jump in π. Finally the cycle directive executes a processor cycle,
which makes instructions progress in their pipelines, then calls directive commit.
All those directives are defined by the rules in Fig. 8, and described below. No-
tice that the fetch directive does no need the speculation buffer β because it will
always be applied on a memory state β(σ).

Data-Dependencies An instruction is fetched only if the variables it reads or
writes are available. This is checked by the locks(atom, atom′, σ) statement (de-
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next(π,Xi) =

{
ε if i = 1 or |π(Xi−1)|= i− 1
π(Xi−1) otherwise

retired(π) = {(k, atomt) | ∃Xi ∈ Stages, π(Xi) = (k, atomt) ∧ |atomt|= i}

Fetch
X = min{Y ∈ atom | π(Y1) = ε}
π′ = π[X1 7→ (i, resolve(atom, σ))]

(σ, π) ↪−−−−−−−−→
fetch (i,atom)

π′

Ready
∀Yi, π(Yi) 6= ε⇒ ¬ locks(atom, π(Yi), σ)

X ∈ atom π(X1) = ε

ready(atom, σ, π)

Commit
i = min(β, π)

(i, atomt) ∈ β β′ = β \ (i, atomt)
(σ, π, β) ↪−−−−→

commit
(SJatomtKσ, β

′)

One-Cycle
π′ = π[∀Xi, Xi 7→ next(π,Xi)]

(σ, π′, β ∪ retired(π)) ↪−−−−→
commit

∗(σ′, β′)

i = min(β′, π′) min(β′) 6= i

(σ, π, β) ↪→ (σ′, π′, β′)

Fig. 8: Directives in a speculative context

fined in Fig. 7), which holds whenever the instruction atom has a data depen-
dency with the transient instruction atom′ in the memory state σ. There are
three rules — for the WaW, WaR and RaW dependencies — which are defined
using the variables used by atom. These rules rely on the auxiliary functions
read(atom, σ) and write(atom, σ) which return, respectively, the variables read
and written by atom in σ — the state σ is used to check if memory accesses are
in conflict. For instance, the atomic instruction a := [b + n] reads the value in
the memory location pointed by b + n, that is the memory location σ(b) + n.
The functions read and write are overloaded to also compute the variables read
and written by transient instructions such as atom′: read(atom′). In that case,
we do not need the memory state because transient instructions have already
been resolved.

Jumps are interdependent, and we cannot fetch a jump if one is already being
processed. This is captured by the Jump lock rule.

Fetch The Fetch rule in Fig. 8 defines the judgment (σ, π) ↪−−−−−−−−→
fetch (i,atom)

π′,

which places an instruction in the pipelines. First, it resolves the instruction
using resolve(atom, σ), and then places it into the first stage of a pipeline sup-
porting it. This fetch directive will only be applied on a state (σ, π) which
does not violate the data-dependencies. This condition will be checked using
the statement ready(atom, σ, π) defined by the Ready rule, which verifies that:
1) the state (σ, π) is ready to fetch the instruction atom, by checking that
¬ locks(atom, atom′, σ) for any atom′ in the pipelines (i.e. there are no data-
dependencies); and 2), that there is an available pipeline X supporting the in-
struction. Notice that the fetch directive does not check ready itself.
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Commit The buffer β prevents mis-speculated instructions from being applied
on the memory state σ. Instructions in β are committed only if they are the
oldest, i.e. have the smallest timestamp, ensuring that they do not depend on a
jump, which would then have a smaller timestamp while still being in π. This is
captured by the judgment (σ, π, β) ↪−−−−→

commit
(σ′, β′), which is defined by the Com-

mit rule. This rule allows to commit an instruction (i, atomt) in the speculation
buffer β if it is the oldest instruction in both the buffer and the pipeline state.
Since timestamps record how old instructions are – where smaller indices de-
note older instructions – and since all instructions have distinct timestamps, we
check that (i, atomt) is the oldest instruction by verifying that i is the smallest
timestamp in both β and π.

Executing Cycles (σ, π, β) ↪→ (σ′, π′, β′) represents the execution of one cycle
and is defined by the One-Cycle rule. It makes all the instructions progress
one stage further in their pipeline, and relies on next(π,Xi) to get the new
content of the stage Xi, according to the previous stage Xi−1. The operator
next makes all instructions advance by one stage if they have not yet reached
the end of their executions. Then, all the instructions that are retired, obtained
by the operator retired, are added to β to be validated. Finally, we commit as
many instructions from β as possible — we check that we no longer commit any
instructions by verifying that the oldest instruction, with timestamp i, is not in
the new speculation buffer β′.

Small-step Given a statement s and an initial processor state ω, the judgment
(s, ω)→t (s′, ω′) states that after t cycles of fetching and executing instructions
from s, the processor ends in state ω′, and it still has to fetch and execute s′. The
statements s is always a sequence of the form s1; s2, and our rules are defined
inductively on the syntax of s1 — s2 is the continuation, which is essential for
the branch predictor. We describe the most important rules below, which are
given in Fig. 9 — the full semantics is in the companion report [1].

Atomic The rules for s1 = atom are Atomic and Cycle. In the Atomic rule,
we test whether the current state of the processor is ready to fetch atom using
ready(atom, β(σ), π). We use the state β(σ), since an instruction to be fetched
must consider the pending instructions in the speculation buffer β for its memory
state, to be consistent with the speculation it might be in. The fetched instruction
atom is timestamped using a timestamp greater than all the timestamps in both β
and π. Finally, the fetch (i, atom) directive places the instruction in the pipelines.
Here, no new cycle is necessary, hence t = 0, and the continuation s remains to
be fetched and executed. The second rule, Cycle, is used when the state is not
ready for atom. In that case, a cycle is executed, and the processor still has to
fetch and execute atom; s.

Conditional The rules Spec-Cond-True-Correct and Spec-Cond-True-
Incorrect define the behavior of the processor when encountering a conditional
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(s, ω)→t (s′, ω′)
execute t cycles and fetch
as much instructions of

s 6= skip as possible before
each cycle

Atomic
i = max(β, π) + 1 ready(atom, β(σ), π)

(β(σ), π) ↪−−−−−−−−→
fetch (i,atom)

π′

(atom; s, 〈σ, π, h, β〉)→0 (s, 〈σ, π′, h, β〉)

Cycle
¬ ready(atom, β(σ), π) (σ, π, β) ↪→ (σ′, π′, β′)

(atom; s, 〈σ, π, h, β〉)→1 (atom; s, 〈σ′, π′, h, β′〉)

Spec-Cond-True-Correct
(jmp(b); skip, ω)→t (skip, 〈σ2, π2, h, β2〉) π2(J1) = (_, jmp : v) v 6= 0

¬BP-predict(`, h) h′ = BP-update(`, h, false)

(s1; s3, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (s′, 〈σ3, π3, h, β3〉)

(` : if b then s1 else s2; s3, ω)→t+|jmp| (s′, 〈σ3, π3, h
′, β3〉)

Spec-Cond-True-Incorrect
(jmp(b); skip, ω)→t (skip, 〈σ2, π2, h, β2〉) π2(J1) = (k, jmp : v) v 6= 0

BP-predict(`, h) h′ = BP-update(`, h, false)

(s2; s3, 〈σ2, π2, h, β2〉)
=−−→ |jmp| (_, 〈σ3, π3, h, β3〉)

(` : if b then s1 else s2; s3, ω)→t+|jmp| (s1; s3, 〈σ3, π3[j : j ≤ k], h′, β3[j : j ≤ k]〉)

Fig. 9: Selected small-step semantics rules with explicit speculation

and the then-branch must be taken (i.e. when b 6= 0 in our language). The two
rules presented can be decomposed into three steps: first the processor fetches the
jmp; then executes it with the speculative execution of one of the branches; and
finally, either continues normally the execution if the speculation was correct, or
it rolls back if it mis-speculated.

The cost t is exactly the number of cycles needed to fetch the atomic jump
(since the continuation is skip). Because the continuation is skip, no more rules
can be applied, and the last rule applied is Atomic to fetch jmp(b). Hence the
jump is now in stage J1, and we can consult the pipeline state to find which
branch to take. We also obtain the timestamp k of the jump for the roll back.

In both rules, the predicted branch is then executed. The speculation lasts
exactly |jmp| cycles, which is checked by the Enforce-Cycle-* rules defined in
Fig. 10: in case the branch and continuation are too short, we let the processor
execute cycles on an empty program with judgment (s, ω)

=−−→ t (s′, ω′). After
processing the jump, the history h is updated. The processor behavior after the
speculation ends depends on the correctness of the prediction. If the processor
correctly predicted the branch, then the continuation s′ obtained after the spec-
ulation is used (rule Spec-Cond-True-Correct). Otherwise, the continuation
and all instructions in π and β that were speculated are discarded (rule Spec-
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(s, ω)
=−−→ t (s′, ω′)

execute t cycles and fetch
as much instructions of s as
possible before each cycle

Enforce-Cycle
(s, ω)→t (s′, ω′)

(s, ω)
=−−→ t (s′, ω′)

Enforce-Cycle-Exact
(s, ω)→k (skip, ω′′)

ω′′ ↪→t−k ω′

(s, ω)
=−−→ t (skip, ω′)

Fig. 10: Small-step semantics to enforce arbitrary cycle execution

(p, σ, h) ⇓t σ′
executes the program p

from σ in t cycles

Done
(p; skip, 〈σ, πε, h, ∅〉)→t (skip, 〈σ′′, π,_, β〉)

(σ′′, π, β) ↪→t′ (σ′, πε, ∅)
(p, σ, h) ⇓t+t′ σ′

Fig. 11: Execution cost for small-step semantics

Cond-True-Incorrect). We keep the state σ3 since committed instructions
were necessarily older than the jump which was in J during the speculation.
Finally, the processor restarts its execution from the correct branch s1.

Remark that the history h does not change during the speculation. This
is because the processor does not fetch another jump while there is already
a jump in the pipeline. Therefore, two predictions cannot be interlaced: the
branch history cannot change between the prediction of rule Spec-Cond-* and
its update at the end of the rule.

Fetch and Execution Cost For any program p and processor state ω, the judgment
(p; skip, ω)→t (skip, ω′) states that all instructions of p have been fetched in
t cycles. If ω has empty an pipeline state πε and an empty speculation buffer,
then t is the fetch cost of p. But not all instructions have been executed and
committed after t cycles: some instructions may still be in π or β. To obtain the
full execution cost, we need to keep executing cycles until we reach a pipeline
state πε, where all the stages are empty (i.e. ∀Xi, πε(Xi) = ε), and an empty
speculation buffer. This is captured by the judgment (p, σ, h) ⇓t σ′, which gives
the execution cost t of a program p starting with memory state σ and a branch
predictor history h — see the Done rule in Fig. 11.

4 Static Analysis

We now present the static analysis technique we designed, which allows to obtain
provable relational bounds of the execution cost of a program. To do this, we first
instrument the original program s by adding a cost variable cost, such that the
set of possible run-time values of cost in the instrumented program contains the
exact value of the execution cost of s. We then perform a standard relational nu-
merical static analysis on this instrumented program to obtain relational bounds
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Alias analysis notations:
σ] ∈ S]a Abstract alias memory states
JatomK]a ∈ S]a → S]a Abstract alias semantics for

an atomic instruction
./]May, ./

]
Must ∈ Atoms× Atoms× S]a → bool No data-dependency test

ι]a[s] ∈ S]a Initial abstract alias memory
state for the given statement s

γa ∈ S]a → P (S) Concretization function
Abstract states:

π] ∈ P] = Stages→ (Atoms ∪ ε) Abstract pipeline state
π]ε ∈ P] The empty abstract pipeline state

Numerical analysis notations:
σ] ∈ S]n Abstract numerical memory states
JsK]n ∈ S]n → S]n Abstract numerical analysis of

statement s
ι]n[s] ∈ S]n Initial abstract memory

state for the given statement s
γn ∈ S]n → P (S× S) Concretization function returning

pre and post states
projR ∈ S]n → S]n Projects an invariant on registers R

Instrumentation notations:
(π], σ], n) ∈ I] = P] × S]a × N Abstract processor state
JsK./] ∈ I] → I] Abstract semantics of a statement s

(parameterized by a
no data-dependency test ./])

T ∈ (Stmt× S]a)→ (Stmt× S]a) Instrumentation of a statement
JblkK] ∈ S]a → (N× N× S]a) Cost analysis

(lower and upper bounds)
of a block with alias information

Fig. 12: Static analysis notation

between the original program cost and input variables (for instance the length of
an input array). The instrumentation is performed using a standard may/must
static analysis and a symbolic execution of instruction blocks.

The analysis algorithm is presented in Section 4.1, illustrated on an example
and with the soundness theorem guaranteed. The soundness proof is detailed in
Section 4.2.

4.1 Instrumentation for a Numerical Analysis

The instrumentation of each statement is defined by induction in Fig. 13 and the
notations of the analyses are summarized in Fig. 12. For blocks — a sequence
of atomic instructions atom1; . . . ; atomn without control-flow structure — the
instrumentation relies on a block cost approximations JblkK] which outputs the
bounds [u, o] of the cost to execute blk. The instrumentation relies on an alias
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Block Instrumentation:

JaK./](π], σ], n) =


(π][X1 7→ a], JaK]σ], n) If ∃X ∈ min{Y ∈ a | Y1 = ε}

and ∀a′, ./] (a, a′, σ]) holds
(cycle(π]), σ], n+ 1) Otherwise

Ja1; . . . ; anK./]σ
] = JanK./] ◦ . . . ◦ Ja1K./](π]ε, σ

], 0)

JblkK]σ]1 = (u, o+ max(π]), σ]2) with
JblkK

./
]
Must

σ]1 = (_, σ]2, u)

JblkK
./

]
May

σ]1 = (π],_, o)

Program Instrumentation:
T(blk, σ]1) = (blk; cost += [u, o], σ]2) if JblkK]σ]1 = (u, o, σ]2)

T(s1; s2, σ
]
1) = (s′1; s′2, σ

]
3) if (s′1, σ

]
2) = T(s1, σ

]
1) and (s′2, σ

]
3) = T(s2, σ

]
2)

If (s′1, σ
]
2) = T(s1, JbK]aσ

]
1) and (s′2, σ

]
3) = T(s2, J¬bK]aσ]1):

T(if b then s1 else s2, σ]1) = (cost += [0, L]; if b then s′1 else s′2, σ
]
2 t σ

]
3)

If σ] = lfp(λΣ→ σ]0 t JsK]a ◦ JbK]aΣ) and T(s, JbK]aσ]) = (s′,_):

T(while b do s done, σ]0) =

(while b do (cost += [0, L]; s′) done; cost += [0, L], J¬bK]aσ])

Fig. 13: Instrumentation of a program (L = |jmp|)

analysis — whose purpose is explained later — and is thus parameterized by
an abstract memory state σ] from the alias analysis. The instrumentation adds
non-deterministic increment cost += [u, o] to the cost variable.

Instrumented programs are analyzed using a numerical analysis J·K]n. We let
R0 be the input registers of our programs, and denote by ι]n[s] the initial abstract
memory state of the program s. Let s′ be the instrumentation of a program s.
To obtain the cost (invariant) C of s, we project the abstract numerical invariant
of s′ on the input registers R0 and the cost variable:

C(s) = projR0∪{cost}(Js
′K]n(ι

]
n[s])) where (s′,_) = T(s, ι]a[s]))

Block Instrumentation The block instrumentation computes the cost with JblkK].
It performs two simulations JblkK./]Must

and JblkK./]May
of the block to obtain

under and over approximations of the execution cost. To simulate the execution
of a block, the analysis takes the instructions of the block in order and tries to
fetch them. If no instruction can be fetched, e.g. because the first stage of all
pipelines are full, or because of a data-dependency, it increments its cycle counter
and updates its abstract pipeline state π] with a function cycle — which makes
instructions advance on stage forward in their pipelines. In these simulations,
the pipeline abstract state π] is a function from stages to unresolved instructions
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(the abstract simulation cannot resolve instructions, as this require a concrete
memory state).

The simulation relies on an abstract memory state σ] from an auxiliary alias
analysis conducted in parallel to the instrumentation. This alias analysis is used
to determine if there may be data-dependencies between the current instruc-
tion and any instruction in the pipelines, using an alias operator ./]. The alias
operator ./] used depends on how data-dependencies should be handled, which
depends on whether we are computing the lower or upper-bound. When comput-
ing the lower bound, we are in the best-case scenario, and assume that there is a
data-dependency — hence a delay — only if the memory location must always
alias. Hence we require that the must-alias operator ./]Must satisfies:

¬ ./]Must (atom, atom
′, σ]) =⇒ ∀σ ∈ γ(σ]), locks(atom, atom′, σ)

On the other hand, the upper bound corresponds to the worst-case scenario, and
relies on a may alias analysis to detect instructions that may induce a delay: if an
instruction is known never to alias with any instruction already in the pipeline,
no data-dependency delay needs to be added. We require that the may-alias
operator ./]May satisfies:

./]May (atom, atom′, σ]) =⇒ ∀σ ∈ γ(σ]),¬ locks(atom, atom′, σ)

If there is no data-dependency, then the simulation finds an empty stage for
atom and updates the alias analysis.

Example Consider the instrumentation of the program below. This program
computes in register p the scalar product of two vectors stored in arrays A and
B. We suppose that A and B do not alias at the beginning, and that the may
and must alias analyses are able to determine that there is no aliasing between
the address read l.14 and l.18. Each instruction is commented with the cycle at
which it is fetched in its block, starting from an empty pipeline.

1 // Initialization
2 cost := 0;
3 p := 0; // 1
4 i := 0; // 1
5 r0 := n-i; // 2
6 // Block ’s cost
7 cost += [1, 2] ;
8 while (r0 > 0) do
9 // Backtrack penalty

10 cost += [0, 4];
11 r1 := i*8; // 1
12 a := [A + r1]; // 6

17 r2 := i*8; // 6
18 b := [B + r2]; // 11
19 c := a*b; // 13
20 p := p+c; // 18
21 i := i+1; // 18
22 r0 := n-i; // 19
23 // Block ’s cost
24 cost += [18, 19];
25 done;
26 // Backtrack penalty
27 cost += [0, 4];

Finally, we use a numerical static analysis to obtain the final value of the
cost variable. On the example above, we assume that the inputs A and B are
of size n ≥ 0, and we select R0 = {n} as input register. Once projected, the
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relation between cost and the initial value of n gives a cost of the program in
the interval [1 + 18n; 6 + 23n].

The soundness of the static analysis is formalized in the following theorem
where we used the concretization function γn to link the initial and final states.

Definition 1 (Initial states). A memory state σ0 is initial if it satisfies

(σ0, σ0) ∈ γn(ι]n[s]) ∧ σ0 ∈ γa(ι]a[s])

Theorem 1 (Static analysis soundness). Let s be a program and σ0 an
initial state. Then, the computed numerical relation is a sound approximation of
the execution cost of s from σ0:

∀h, t, (s, σ0, h) ⇓t _ =⇒ (σ0, {cost 7→ t}) ∈ γn ◦ C(s)

4.2 Proof of Soundness

To prove Theorem 1, we need to prove that: (i) the block approximation is sound;
and (ii), the program instrumentation is sound.

The following theorem states the soundness of our block instrumentation.

Theorem 2 (Block approximation correction). For any block blk and ab-
stract memory state σ]:

JblkK]σ] = (u, o,_) ⇒ ∀σ ∈ γ(σ]), t, h, ((blk, σ, h) ⇓t _⇒ t ∈ [u, o])

The theorem is proved by bi-simulation, by induction on the number of instruc-
tions of blk. For the lower bound, if the concrete semantics fetches an instruction,
the correction of the must analysis ensures that the simulation will fetch it too.
However, the abstract simulation of the pipeline state may fetch instruction ear-
lier than the concrete semantics, e.g. when the must alias analysis does not detect
that an aliasing always occurs. Thus the under-approximation cost is smaller or
equal to the concrete cost.

For the upper bound, the converse reasoning applies. If the concrete semantics
executes a cycle, because of a conflict, then the correction of the may alias
analysis guarantees that the over-approximation also executes a cycle. The may
analysis may not be able to statically prove that some instruction cannot alias
with an instruction already in the pipeline, which can result in more cycles in
the abstract semantics. Thus the over-approximation cost is larger or equal to
the concrete cost.

Soundness of the Program Instrumentation We rely on an approximate program
semantics to prove the soundness of our program instrumentation. This big-step
semantics is defined inductively on the syntax, with a special case for blocks,
and computes bounds for each statement. It abstracts away the reorder buffer
and the branch prediction history, keeping only the memory state σ and the
abstract state σ] computed by the alias analyses. Its rules are in Fig. 14 and
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Block
s a block

JblkK]σ]1 = (u, o, σ2
]) σ2 ∈ SJsKσ1

(s, σ1, σ
]
1) ⇓[u,o] (σ2, σ2

])

Seq-No-Block
s1; s2 not a block

(s1, σ1, σ
]
1) ⇓[u,o] (σ2, σ2

])

(s2, σ2, σ2
]) ⇓[u′,o′] (σ3, σ3

])

(s1; s2, σ1, σ
]
1) ⇓[u+u′,o+o′] (σ3, σ3

])

Cond-True
JbKσ1 6= 0 (jmp(b); s1, σ1, σ

]
1) ⇓[u,_] (σ2, σ2

]) (s1, σ1, σ
]
1) ⇓[_,o] (σ2, σ

]
2)

(if b then s1 else s2, σ1, σ
]
1) ⇓[u,o+|jmp|] (σ2, σ2

])

Cond-True
JbKσ1 = 0 (jmp(b); s2, σ1, σ

]
1) ⇓[u,_] (σ2, σ2

]) (s1, σ2, σ
]
1) ⇓[_,o] (σ2, σ

]
2)

(if b then s1 else s2, σ1, σ
]
1) ⇓[u,o+|jmp|] (σ2, σ2

])

While
(if b then (s; while b do s done), σ1, σ

]
1) ⇓[u,o] (σ2, σ2

])

(while b do s done, σ, σ]) ⇓[u,o] (σ2, σ2
])

Fig. 14: The big-step approximate semantics computes the cost bounds of state-
ments, with the help of an alias abstract memory state σ]

follows the scheme of the instrumentation. It is straightforward to show that the
cost-approximate semantics computes the same bounds than the ones of the cost
variable in the instrumented program.

The cost-approximate semantics is sound w.r.t. the small-step semantics.

Theorem 3 (Cost-approximate soundness). Let s be a program, σ1 a mem-
ory state, σ]1 an abstract alias state such that σ1 ∈ γa(σ]1), and s′ the instrumen-
tation of s (i.e. (s′,_) = T(s, σ]1)), then

∀t, h, u, o, σ2,
(

(s, σ1, h) ⇓t σ2
∧ (s, σ1, σ

]
1) ⇓[u,o] (σ2,_)

)
=⇒

(
σ2[cost 7→ t] ∈ SJs′Kσ1
∧ u ≤ t ≤ o

)
Also, the existence of an execution in the small-step semantics is enough to

guarantee the existence of bounds for the cost-approximate semantics.

Theorem 4 (Cost-approximate existence). Let s be a program and σ1 a
memory state and σ]1 an abstract alias state such that σ1 ∈ γa(σ]1)

∀t, h, σ2, (s, σ1, h) ⇓t σ2 =⇒ (∃o, u, (s, σ1, σ]1) ⇓[u,o] (σ2,_))

For Theorem 3, only the second component of the conjunction requires a de-
tailed proof — the other is a trivial property of the instrumentation. The proof of
this theorem is given in the companion report [1], and relies on several interme-
diate semantics, until we obtain a big-step semantics with immediate application
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of instructions on the memory state (i.e. where the effects of an instruction are
applied immediately, and not when it is committed) and with approximations
due to dropping the branch prediction history and concrete memory state in the
block analysis.

Cost from a Non-Empty Pipeline State The difficulty of Theorem 3’s proof is that
the intermediate processor states in the small-step semantics do not necessarily
have an empty pipeline state and empty speculation buffer, while Theorem 2
consider the execution cost of a block from an empty pipeline state.

Assume that we have two blocks blk1 and blk2 that are executed one after the
other (e.g. blk1 and blk2 can be the body of a while loop). Then, blk2 is executed
starting from the processor state ω1 resulting from blk1’s execution.

(blk1, 〈σ1, πε, h, ∅〉)→t1 ω1, (blk2, ω1)→t2 (skip, ω2) and ω2 ↪→t′2 〈σ′, πε, h′, ∅〉

Here, we need to show that t1 + t2 + t′2 ≤ o1 + o2, where:

(blk1, σ1, σ
]
1) ⇓[_,o1] (σ2, σ

]
2) and (blk2, σ2, σ

]
2) ⇓[_,o2] (σ

′, σ′
]
)

The fetch cost t1 of blk1 is smaller than its execution cost t′1. Hence using The-
orem 2:

(blk1, σ1, h) ⇓t′1 σ2 and t1 ≤ t′1 ≤ o1
But we cannot bound the execution cost of blk2 by o2, because Theorem 2 only
bounds the cost of executing blk2 starting from an empty pipeline and speculation
buffer state. Since it starts from a (potentially) non-empty state ω1, t2 may be
strictly larger than o2.

Intuitively, the cost approximation t1 + t2 + t′2 ≤ o1 + o2 holds because the
additional cost incurred when starting from an non-empty pipeline state has
already been accounted by the previous block, i.e. in o1. To formalize this, let
max(π) be the maximum delay of all resources in π:

max (π) = max
(

max
Xi∈Stages,π(Xi) 6=∅

(|π(X)|−i+ 1)︸ ︷︷ ︸
delays on locations

, max
X∈Pips

1X1 6=∅︸ ︷︷ ︸
delay for first stages

)

where 1C evaluates to 1 if the predicate C is true, 0 otherwise.
The following lemma guarantees that we do bound the cost of a statement

by computing its cost from an empty pipeline.

Lemma 1. Let 〈σ, π, h, β〉 be a processor state and s a program. Consider the
following two executions starting from the pipeline and buffer states, resp., π, β
and πε, ∅.

(s; skip, 〈σ, π, h, β〉)→t (skip, 〈_, π′,_,_〉)

and (s; skip, 〈σ, πε, h, ∅〉)→t′ (skip, 〈_, π′′,_,_〉)

Then t′ ≤ t and t+max(π′) ≤ max(π) + t′ +max(π′′)
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The proof, given in the companion report [1], is not straightforward, and requires
some care. Indeed, the two executions may not execute cycles synchronously:
there is no guarantee that the execution which started with non-empty pipelines
will execute a cycle when the other execution, which started from πε, does. To
tackle this issue, we introduce the notion of lateness, a partial order relation on
pipeline states that captures the fact that a pipeline state has already executed
more cycles than another one. We prove that this partial ordering is preserved
by our semantics.

Proof of Theorem 1 To conclude the proof of Theorem 1, let us take s a program,
σ0 an initial memory state, h a branch predictor history, such that the execution
cost of s is t in the small-step semantics: (s, σ0, h) ⇓t σ1. Recall that C(s) =
projR0∪{cost}(Js

′K]n(ι]n[s])) with T(s, ι]a[s]) = (s′,_). By Theorem 4, there exists o
and u such that (s, σ0, σ

]
0) ⇓[u,o] (σ1,_). By Theorem 3, σ1[cost 7→ t] ∈ SJs′K(σ0).

Using the soundness of the numerical abstraction J·K]n, we have

∀σ],∀(σ0, σ) ∈ γn(σ]), {σ0} × SJsKσ ⊆ γn(JsK]nσ])

and in particular {σ0}×SJs′Kσ0 ⊆ γn(Js′K]nι]n[s]). After projecting on R0 and
cost, we obtain (σ0, {cost 7→ t}) ∈ γn ◦ C(s) which concludes this proof.

5 Implementation

We implemented our instrumentation technique on top of Jasmin [3,4]. This
framework allows to build high-assurance and high-speed cryptographic imple-
mentations by: i) combining low-level assembly instructions (e.g. flags and vec-
torized instructions) and high-level structured control flow; ii) using a verified
compiler, with a mechanized Coq proof of behavior preservation; iii) verifica-
tion tools for proving properties of Jasmin programs, including an embedding of
Jasmin in the Easycrypt proof assistant [6], and a static analyzer to check the
memory safety of Jasmin programs. The Jasmin compiler performs several com-
pilation passes, such as dead-code elimination, function call inlining, and sharing
of stack variables. All these compilation passes are proven correct in Coq (i.e.
they preserve the semantics of programs)6.

We have integrated our cost analysis late enough in the compilation chain
in order to avoid change of the cost between the intermediate representation
that is analyzed and the final assembly code that is generated by the compiler.
Our analysis is implemented in OCaml and currently not verified in Coq. The
analysis is parameterized by a user-given processor specification file, listing the
instructions, their latency and the pipelines supporting them.

By default, the instrumentation respects the approximation semantics by
making no assumption on the branch predictor. In the worst-case scenario the
instrumentation thus considers that the branching always mis-predicts. We also
6 Currently, Jasmin only supports x86 architectures. Note however that our method
is not specific to x86, and can be applied to other architectures.
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Programs Lower bound Upper bound Naive upper bound
scalar prod (ref) 44 len 44 len + 8 46 len + 11
scalar prod (opt) 17.5 len - 23.5 17.5 len + 33 20 len + 39
poly1305 (ref) 7 len + 25 7.1 len + 150 7.5 len + 177
poly1305 (opt) 2.1 len + 25 2.2 len + 1410 3.9 len + 1098
aes 44.8 len + 446 44.9 len + 1115 50.7 len + 1946
chacha (ref) 16.2 len + 23 16.4 len + 1052 17.6 len + 1040
chacha (opt) 4 len + 27 4.1 len + 2130 5.7 len + 3035
fe25519_mul 427 427 464

Fig. 15: Experimental results.

provide an option that lets the user assume a basic branch predictor for the
processor, which always tries to take the same branch as previously taken. Such
a branch predictor can only mis-predict twice on a given while loop execution:
when it enters and when it leaves.

The alias and numerical static analyzer (mentioned in Section 4) have been
obtained by modifying the Jasmin static analyzer. This analyzer, which uses
abstract interpretation techniques [12], was initially introduced in [4] to prove
safety, and was executed before any compilation pass. Our cost analysis is run
later in the compilation chain and it has been necessary to enhance the Jasmin
relational numerical analysis with a dynamic packing technique, which handles
the same variable with different degrees of precision at different program points.
This a slight variation of the packing technique introduced in [13] where packs
of variable where fixed at the level of block/function.

6 Experiments

We evaluate our cost analysis on different implementations of cryptographic
primitives written in Jasmin. Examples include Poly1305 [7], a lookup-table-
based implementation of AES [15], ChaCha20 [9] and multiplication in the finite
field Fp with p = 2255 − 19. The latter is a core routine of the Curve25519
key exchange [8]. We report our experiments in Fig. 15. For some examples we
report results for both a reference (“ref”) and a hand-optimized (“opt”) imple-
mentation. When cost depends on the (length of) inputs, our tool computes
a symbolic cost w.r.t. to a variable len; for AES and ChaCha encryption and
Poly1305 authentication this variable is the length of the input message. In the
invariant computed by the numerical analysis, we only keep the best asymptotic
constraint when several bounds were available. The tests were done assuming a
basic branch predictor. The only target architecture currently supported by Jas-
min is AMD64 (also known as x86-64 or x64). There are only very few in-order
AMD64 CPUs; for our experiments we decided to approximate one of them,
namely the Intel Atom 330. The pipeline structure and instruction latencies are
modeled according to the documentation in Fog’s CPU manuals [17,18].
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We compare our results with a reference naive analysis (last column in
Fig. 15) that over-approximates the cost of any block of atomic instructions by
the sum of the latencies of each instruction. This approach hence coincides with
state-of-the-art cost analyzer that do not take into account instruction pipelin-
ing. We also compare the reference programs to their hand-optimized variant,
if available. For all programs we obtain a smaller upper-bound than the naive
analysis. It shows that our bound computation is likely to improve precision over
cost analyzers that ignore instruction pipelining. Our lower and upper-bounds
are asymptotically very close, which shows that our cost analysis is asymptoti-
cally precise. For programs with hand-optimized version, the upper bound of the
optimized program is asymptotically smaller than the lower bound of the original
program. This shows our tool usefulness in proving the impact of programmer
optimizations.

7 Related Work

Starting from the seminal work of Wegbreit [28], there has been a large body of
work for analyzing the cost of programs using recurrence relations [2], program
logics [25], type systems [26,21,14,23], and static analysis [19]. These approaches
rely on sophisticated methods for computing numerical invariants and inferring
iterations bounds for loops or recursive computations. Our method allows to
leverage these powerful methods in a more realistic cost model that accommo-
dates cost-critical micro-architectural features.

Cost analysis is also useful for reasoning about side-channel leakage. Ngo
et al [24] define the constant-resource policy, an observational information flow
policy which guarantees that the execution cost of a program does not depend
on its secret inputs. Their analysis is an instance of a relational cost analysis [11],
a variant of cost analysis that computes lower and upper bounds for the relative
cost of two programs. These works are carried in the setting of a simple cost
model; applying our cost model and methodology to side-channel analysis is an
interesting direction for future work.

An alternative is to carry dynamic analyses with cycle-accurate cost models.
For instance, Yourst [30] develops a model for a x86-64 processor. Dynamic
approaches trade off precision for generality — bounds are for specific inputs.
However, it would be interesting to explore if cycle-accurate cost models could
be used for refining instrumentation.

An even simpler approach is to measure execution time for a large number of
inputs. When combined with a statistical analysis, this approach yields a useful
heuristic for analyzing if cryptographic implementations leak [27]. However, this
approach does not provide any guarantee.

Worst Case Execution Time (WCET) analysis is a well-known industrial
success in cost analysis. Using Abstract Interpretation, state-of-the-art analyz-
ers are able to predict a safe upper-bound for embedded micro-architectures
with strict real-time constraints. They take into account several advanced archi-
tectural optimizations, including pipelines and caches [16,29,20]. Our approach
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differs in scope, precision and semantic foundations. We focus our reasoning on
instruction scheduling and provide feedback to programmer who want to hand-
optimize their program, like in cryptographic implementation. Our abstraction is
more coarse (e.g., we do not try to merge symbolic pipelines on junction points),
but already precise enough for the cryptographic application area. WCET tools
are clearly more ambitious in term of cost model and precision but they do not
ground their work on a semantic model with the same level of mathematical
rigour than us. We consider our work as an attempt to reconcile cost precision
and rigorous semantic proofs. We also believe that our instrumentation approach
can be more easily connected to previous foundational cost analysis works [22]
by reusing off-the-shelf cost analyzers.

8 Conclusion

We developed a precise cost semantics for pipelined-optimized softwares executed
on in-order processors. The semantics is suitable for automatic cost analysis and
formal semantic proofs of soundness. Preliminary experiments demonstrate that
our automatic analysis is more accurate than a naive cost analysis.

One direction for future work would be to extend our cost semantics with a
cache model and extend our analysis with a may/must tracking of cache misses.
An other perspective is to formalize in Coq the soundness of our cost analysis
in order to integrate it with the Jasmin high-assurance Coq framework.
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