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Abstract—Computational indistinguishability is a key property
in cryptography and verification of security protocols. Current
tools for proving it rely on cryptographic game transformations.

We follow Bana and Comon’s approach [1], [2], axiomatizing
what an adversary cannot distinguish. We prove the decidability
of a set of first-order axioms which are computationally sound,
though incomplete, for protocols with a bounded number of
sessions whose security is based on an IND-CCA2 encryption
scheme. Alternatively, our result can be viewed as the decidability
of a family of cryptographic game transformations. Our proof
relies on term rewriting and automated deduction techniques.

Index Terms—Security Protocols, Automated Deduction, Deci-
sion Procedure, Computational Indistinguishability

I. INTRODUCTION

Designing security protocols is notoriously hard. For exam-
ple, the TLS protocol used to secure most of the Internet con-
nections was successfully attacked several times at the protocol
level, e.g. the LOGJAM attack [3] or the TRIPLEHANDSHAKE
attack [4]. This shows that, even for high visibility protocols,
and years after their design, attacks are still found.

Using formal methods to prove a security property is the
best way to get a strong confidence. However, there is a diffi-
culty, which is not present in standard program verification: we
need not only to specify formally the program and the security
property, but also the attacker. Several attacker models have
been considered in the literature.

A popular attacker model, the Dolev-Yao attacker, grants the
attacker the complete control of the network: he can intercept
and re-route all messages. Besides, the adversary is allowed
to modify messages using a fixed set of rules (e.g. given a
cipher-text and its decryption key, he can retrieve the plain-
text message). Formally, messages are terms in a term algebra
and the rules are given through a set of rewrite rules. This
model is very amenable to automatic verification of security
properties. There are several automated tools, such as, e.g.,
ProVerif [5], Tamarin [6] and Deepsec [7].

Another attacker model, closer to a real world attacker, is the
computational attacker model. This adversary also controls the
network, but this model does not restrict the attacker to a fixed
set of operations: the adversary can perform any probabilistic
polynomial time computation. More formally, messages are
bit-strings, random numbers are sampled uniformly among
bit-strings in {0, 1}η (where η is the security parameter)
and the attacker is any probabilistic polynomial-time Turing
machine (PPTM). This model offers stronger guarantees than

the Dolev-Yao model (DY model), but formal proofs are harder
to complete and more error-prone. There exist several formal
verification tools in this model: for example, EASYCRYPT [8]
which relies on pRHL, and CRYPTOVERIF [9] which performs
game transformations. As expected, such tools are less auto-
matic than the verification tools in the DY model. Moreover,
the failure to find a proof in such tools, either because the
proof search failed or did not terminate, or because the user
could not manually find a proof, does not give any indication
on the actual security of the protocol.

There is an alternative approach, the Bana-Comon model
(BC model), introduced in [2]. In this model, we express the
security of a protocol as the unsatisfiability of a set of formulas
in first-order logic. The formulas contain the negation of the
security property and axioms, which reflect implementation
assumptions, such as functional correctness and cryptographic
hypotheses on the security primitives. This method has several
advantages over pRHL and game transformations. First, it is
simpler, as there is no security game and no probabilities,
only a first-order formula. Then, carrying out a proof of
unsatisfiability in this logic entails the security of the protocol
in the computational model. Finally, the absence of such
a proof implies the existence of a model of the formula,
i.e. an attack, albeit not necessarily a computational one;
nonetheless, we know that the security of the protocol cannot
be obtained without extra assumptions. Note that the Bana-
Comon approach is only valid for protocols with a finite
number of sessions (there is no unbounded replication). Since
this is the model we use, we inherit this restriction.

There is another input to security proofs that we did
not discuss yet: the class of security properties considered.
Roughly, there are two categories. Reachability properties
state that some bad state is unreachable. This includes, for
example, authentication or (weak) secrecy. Indistinguishability
properties state that an adversary cannot distinguish between
the executions of two protocols. This allows for more complex
properties, such as strong secrecy and unlinkability.

a) Deciding Security: When trying to prove a protocol,
there are three possible outcomes: either we find a proof,
which gives security guarantees corresponding to the attacker
model; or we find an attack, meaning that the protocol is
insecure; or the tool or the user (for interactive provers) could
not carry out the proof and failed to find an attack. The latter
case may happen for two different reasons. First, we could
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neither find a proof nor an attack because the proof method
used is incomplete. In that case, we need either to make new
assumptions and try again, or to use another proof technique.
Second, the tool may not terminate on the protocol considered.
This is problematic, as we do not know if we should continue
waiting, and consume more resources and memory, or try
another method.

This can be avoided for decidable classes of protocols and
properties. Of course, such classes depend on both the attacker
model and the security properties considered. We give here a
non-exhaustive survey of such results. In the symbolic model,
[10] shows decidability of secrecy (a reachability property) for
a bounded number of sessions. In [11], the authors show the
decidability of a secrecy property for depth-bounded protocols,
with an unbounded number of sessions, using Well-Structured
Transition Systems [12]. Chrétien et al [13] show the decid-
ability of indistinguishability properties for a restricted class
of protocols. E.g., they consider processes communicating
on distinct channels and without else branches. The authors
of [14] show the decidability of symbolic equivalence for a
bounded number of sessions, but with conditional branching.

In the computational model, we are aware of only one direct
result. In [15], the authors show the decidability of the security
of a formula in the BC model, for reachability properties, for
a bounded number of sessions. But there is an indirect way
of getting decidability in the computational model, through a
computational soundness theorem (e.g. [16]). A computational
soundness theorem states that, for some given classes of pro-
tocols and properties, symbolic security implies computational
security. These results usually make strong implementation
assumptions (e.g. parsing assumptions, or the absence of
dishonest keys), and require that the security primitives satisfy
strong cryptographic hypothesis. By combining a decidability
result in the symbolic model with a computational soundness
theorem, which applies to the considered classes of protocols
and properties (e.g. [17] for reachability properties, or [18] for
indistinguishability properties), we obtain a decidability result
in the computational model.

We discuss further related works later, in Section VIII.
b) Contributions: In this paper, we consider the BC

model for indistinguishability properties [1]. This is a first-
order logic in which we design a set of axioms Ax which
includes, in particular, axioms for the IND-CCA2 cryptographic
assumption [19]. Given a protocol and a security property, we
can build, using a folding technique described in [1], a ground
atomic formula ψ expressing the security of the protocol.
Showing the unsatisfiability of the conjunction of the axioms
Ax and the negation of ψ entails the security of the protocol in
the computational model, assuming that the encryption scheme
is IND-CCA2 secure.

Our main result is the decidability of the problem:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

That is, we show the decidability of a sound, though incom-
plete, axiomatization of computational indistinguishability.

All the formulas in Ax are Horn clauses, therefore to show
the unsatisfiability of Ax ∧ ~u 6∼ ~v we use resolution with
a negative strategy: we see axioms in Ax as inference rules
and look for a derivation of the goal ~u ∼ ~v. We prove the
decidability of the corresponding satisfiability problem.

The main difficulty lies in dealing with equalities (de-
fined through a term rewriting system R). First we show
the completeness of an ordered strategy by commuting rule
applications. This allows us to have only one rewriting modulo
R at the beginning of the proof. We then bound the size of
the terms after this rewriting as follows: we identify a class of
proof cuts introducing arbitrary subterms; we give proof cut
eliminations to remove them; and finally, we show that cut-free
proofs are of bounded size w.r.t. the size of the conclusion.

c) Game Transformations: Our result can be reinter-
preted as the decidability of the problem of determining
whether there exits a sequence of game transformations [20],
[21] that allows to prove the security of a protocol. Indeed,
one can associate to every axiom in Ax either a cryptographic
assumption or a game transformation.

Each unitary axiom in Ax (an atomic formula) corresponds
to an instantiation of the IND-CCA2 game. For instance, in
the simpler case of IND-CPA security of an encryption {_}n

pk,
no polynomial-time adversary can distinguish between two
cipher-texts, even if it chooses the two corresponding plain-
texts (here, n is the explicit encryption randomness). Initially,
the public key pk is given to the adversary, who computes a
pair of plain-texts g(pk): g is interpreted as the adversary’s
computation. Then the two cipher-texts, corresponding to the
encryptions of the first and second components of g(pk),
should be indistinguishable. This yields the unitary axiom:

{π1(g(pk))}n
pk ∼ {π2(g(pk))}n

pk

Similarly, non-unitary axioms correspond to cryptographic
game transformations. E.g., the function application axiom:

~u ∼ ~v → f(~u) ∼ f(~v)

states that if no adversary can distinguish between the argu-
ments of a function call, then no adversary can distinguish
between the images. As for a cryptographic game transforma-
tion, the soundness of this axiom is shown by reduction. Given
a winning adversary A against the conclusion f(~u) ∼ f(~v),
we build a winning adversary B against ~u ∼ ~v: the adversary
B, on input ~w (which was sampled from ~u or ~v), computes
f(~w) and then gives the result to the distinguisher A. The
advantage of B against ~u ∼ ~v is then the advantage of A
against f(~u) ∼ f(~v), which is (by hypothesis) non negligible.

By interpreting every axiom in Ax as a cryptographic
assumption or a game transformation, and the goal formula
~u ∼ ~v as the initial game, our result can be reformulated as
showing the decidability of the following problem:

Input: An initial game ~u ∼ ~v.
Question: Is there a sequence of game transformations in Ax

showing that ~u ∼ ~v is secure?
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From this point of view, our result guarantees a kind of
sub-formula property for the intermediate games appearing
in the game transformation proof. We may only consider
intermediate games that are in a finite set computable from the
original protocol: the other games are provably unnecessary
detours. To our knowledge, our result is the first showing the
decidability of a class of game transformations.

d) Scope and Limitations: To achieve decidability, we
had to remove or restrict some axioms. The most important
restriction is arguably that we do not include the transitivity
axiom. The transitivity axiom states that to show that ~u ∼ ~v,
it is sufficient to find a ~w such that ~u ∼ ~w and ~w ∼ ~v.
Obviously, this axiom is problematic for decidability, as the
vector of term ~w must be guessed, and may be arbitrarily
large. Therefore, instead of directly including transitivity, we
push it inside the CCA2 axiom schema, by allowing instances
of the CCA2 axiom to deal simultaneously with multiple keys
and interleaved encryptions. Of course, this is at the cost of a
more complex axiom. We do not know if our problem remains
decidable when we include the transitivity axiom.

e) Applications: The BC indistinguishability model has
been used to analyse RFID protocols [22], a key-wrapping
API [23] and an e-voting protocol [24]. Ideally, we would like
future case studies to be carried out automatically and machine
checked. Because our procedure has a high complexity, it
is unclear whether it can be used directly for this. Still,
our procedure could be a building block in a tool doing an
incomplete but faster heuristic exploration of the proof space.

CRYPTOVERIF and EASYCRYPT are based on game trans-
formations, directly in the former and through the pRHL logic
in the latter. Therefore, our result could be used to bring
automation to these tools. Of course, both tools allow for more
rules. Still, we could identify which game transformations or
rules correspond to our axioms, and apply our result to obtain
decidability for this subset of game transformations.

f) Outline: We introduce the logic and the axioms in
Section II and III. We then state the main result in Section IV,
and depict the difficulties of the proof. Finally we sketch the
proof: in Section V we show the rule commutations and some
cut eliminations; in Section VI we show a normal form for
proofs and its properties; and in Section VII we give more cut
eliminations and the decision procedure. We discuss in details
the related works in Section VIII. For space reasons, most of
the proofs are sketched or omitted. The full proofs can be
found in the long version of this paper [25].

II. THE LOGIC

We recall here the logic introduced in [1]. In this logic,
terms represent messages of the protocol sent over the net-
work, including the adversary’s inputs, which are specified
using additional function symbols. Formulas are built using
the usual Boolean connectives and FO quantifiers, and a
single predicate, ∼, which stands for indistinguishability. The
semantics of the logic is the usual first-order semantics, though
we are particularly interested in computational models, in

which terms are interpreted as PPTMs, and ∼ is interpreted
as computational indistinguishability.

This logic is then used as follows: given a protocol and
a security property, we can build (automatically) a single
formula ~u ∼ ~v expressing the security of the protocol. We
specify, through a (recursive) set of axioms, what the adversary
cannot do. This yields a set of axioms Ax. We show that
Ax ∧ ~u 6∼ ~v is unsatisfiable, and that the axioms Ax are valid
in the computational model. We deduce from this the security
of the protocol in the computational model.

A. Syntax

a) Terms: Terms are built upon a set of function symbols
F , a countable set of names N and a countable set of variables
X . This is a sorted logic with two sorts Sm,Sb, with Sb ⊆ Sm.

The set F of function symbols is composed of a countable
set of adversarial function symbols G (representing the ad-
versary computations), and the following function symbols:
the pair 〈_ , _〉, projections π1, π2, public and private key
generation pk(_), sk(_), encryption with random seed {_}_

_,
decryption dec(_, _), if_then_else_, true, false, zero 0(_)
and equality check eq(_, _). We give their types below:

〈_ , _〉 ,dec(_, _) : S2m → Sm eq(_, _) : S2m → Sb

π1, π2, 0,pk, sk : Sm → Sm {_}_
_ : S3m → Sm

if_then_else_ : Sb × S2m → Sm true, false : → Sb

Moreover all the names in N have sort Sm, and each
variable in X comes with a sort. We let Fs be F without
the if_then_else_ function symbol, and for any subset S of
the union of F , N and X , we let T (S) be the set of terms
built upon S.

b) Formulas: For every integer n, we have one predicate
symbol ∼n of arity 2n, which represents equivalence between
two vectors of terms of length n. Formulas are then obtained
using the usual Boolean connectives and first-order quantifiers.

c) Semantics: We use the classical first-order logic se-
mantics: every sort is interpreted by some domain, and func-
tion symbols and predicates are interpreted as, resp., functions
of the appropriate domains and relations on these domains.

We focus on a particular class of such models, the com-
putational models. We informally describe the properties of a
computational model Mc (a full description is given in [1]):
• Sm is interpreted as the set of probabilistic polynomial

time Turing machines equipped with a working tape and
two random tapes ρ1, ρ2 (one for the protocol random
values, the other for the adversary random samplings).
Moreover its input is of length η (the security parameter).
Sb is the restriction of Sm to machines that return 0 or 1.

• A name n ∈ N is interpreted as a machine that, on input
of length η, extracts a word of length η from the first
random tape ρ1. Furthermore we require that different
names extract disjoint parts of ρ1.

• true, false, 0(_), eq(_, _), and if_then_else_ are in-
terpreted as expected. For instance, eq(_, _) takes two
machines M1, M2, and returns M such that on input w
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and random tapes ρ1, ρ2, M returns 1 if M1(w, ρ1, ρ2) =
M2(w, ρ1, ρ2) and 0 otherwise. The function symbol 0
is interpreted as the function that, on input of length l,
returns the bit-string 0l.

• A function symbol g ∈ G with n arguments is interpreted
as a function [[g]] such that there is a polynomial-time Tur-
ing machine Mg such that for every machines (mi)i≤n in
the interpretation domains, and for every inputs w, ρ1, ρ2:

[[g]]
(
(mi)i≤n)(w, ρ1, ρ2

)
= Mg

(
(mi(w, ρ1, ρ2))i≤n, ρ2)

Observe that Mg cannot access directly the tape ρ1.
• Protocol function symbols are interpreted as deterministic

polynomial-time Turing machine. Their interpretations
will be restricted using implementation axioms later.

• The interpretation of function symbols is lifted to terms:
given an assignment σ of the variables of a term t to
elements of the appropriate domains, we write [[t]]ση,ρ1,ρ2
the interpretation of the term with respect to η, ρ1, ρ2. σ
is omitted when empty. We also omit the other parameters
when they are irrelevant.

• The predicate ∼n is interpreted as computational indis-
tinguishability ≈, defined by m1, . . . ,mn ≈ m′1, . . . ,m′n
iff for every PPTM A with random tape ρ2:∣∣Pr(ρ1, ρ2 : A((mi(1

η, ρ1, ρ2))1≤i≤n, ρ2) = 1) −
Pr(ρ1, ρ2 : A((m′i(1

η, ρ1, ρ2))1≤i≤n, ρ2) = 1)
∣∣

is negligible in η (a function is negligible if it is asymp-
totically smaller than the inverse of any polynomial).
Moreover, for all ground terms u, v, we writeMc |= u ∼
v when [[u]] ≈ [[v]] in Mc.

Example 1. Let n0,n1,n ∈ N and g ∈ F of arity zero. For
every computational model Mc:

Mc |= if g() then n0 else n1 ∼ n

Indeed, the term on the left represents the message obtained
by letting the adversary choose a branch, and then sampling
from n0 or n1 accordingly. This is semantically equivalent to
directly performing a random sampling, as done on the right.

III. AXIOMS

We present the axioms Ax, which are of two kinds:
• structural axioms represent properties that hold in every

computational model. This includes axioms such as the
symmetry of ∼, or properties of the if_then_else_.

• implementation axioms reflect implementation assump-
tions, such as the functional correctness of the pair
and projections (e.g. π1(〈u , v〉) = u), or cryptographic
assumptions on the security primitives (e.g. IND-CCA2).

All our axioms Ax are universally quantified Horn clauses.
To show the unsatisfiability of Ax ∧ ~u 6∼ ~v, we use resolution
with a negative strategy (which is complete, see [26]). As all
axioms are Horn clauses, a proof by resolution with a negative
strategy can be seen as a proof tree where each node is indexed
by the axiom of Ax used at this resolution step. Hence, axioms
will be given as inference rules (where variables are implicitly
universally quantified).

A. Equality and Structural Axioms

Some notation conventions: we use ~u to denote a vector of
terms; and we use an infix notation for ∼, writing ~u ∼ ~v when
~u and ~v are of the same length.

The equality and structural axioms we present here already
appeared in the literature [1], [22], [27], sometimes with
slightly different formulations.

a) Equality: Computational indistinguishability is an
equivalence relation (i.e. reflexive, symmetric and transitive).
But we can observe that it is not a congruence. E.g. take
a computational model Mc, we know that two names n
and n′ are indistinguishable (since they are interpreted as
independent uniform random sampling in {0, 1}η), and n is
indistinguishable from itself. Therefore:

Mc |= n ∼ n′ and Mc |= n ∼ n

But there is a simple PPTM that can distinguish between
〈n , n〉 and 〈n′ , n〉: simply test whether the two arguments
are equal, if so return 1 and otherwise return 0. Then, with
overwhelming probability, this machine will guess from which
distribution its input was sampled from.

Even though ∼ is not a congruence, we can get a congru-
ence from it: if eq(s, t) ∼ true holds in all models then, using
the semantics of eq(_, _), in every computational model Mc,
[[s]] and [[t]] are identical except for a negligible number of
samplings. Hence we can replace any occurrence of s by t
in a formula without changing its semantics with respect to
computational indistinguishability.

We use this in our logic as follows: we let s = t be a
shorthand for eq(s, t) ∼ true, and we introduce a set of
equalities R (given in Fig. 1) and its congruence closure
=R. We split R in four sub-parts: R1 contains the functional
correctness assumptions on the pair and encryption; R2 and
R3 contain, respectively, the homomorphism properties and
simplification rules of the if_then_else_; and R4 allows to
change the order in which conditional tests are performed.

We then introduce a recursive set of rules:
~u, t ∼ ~v
~u, s ∼ ~v R (s, t ground terms with s =R t)

By orienting R1, R2, R3 from left to right, and carefully
choosing an orientation for the ground instances of R4, we
obtain a recursive term rewriting system →R. We have the
following theorem (the proof is in the long version [25]):

Theorem 1. The TRS →R is convergent on ground terms.

b) Structural Axioms: We now give an informal descrip-
tion of the axioms given in Fig. 2. We describe in details the
case study axiom CS, which is the most complicated one. It
states that in order to show that:

if b then u else v ∼ if b′ then u′ else v′

it is sufficient to show that the then branches and the else
branches are indistinguishable, when giving to the adversary
the value of the conditional (i.e. b on the left and b′ on the
right). We can do better, by considering simultaneously several
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R1

{
πi(〈x1, x2〉) = xi eq(x, x) = true
dec({x}zpk(y), sk(y)) = x

R2


f(~u, if b then x else y,~v) =

if b then f(~u, x,~v) else f(~u, y,~v) (f ∈ Fs)
if (if b then a else c) then x else y =

if b then (if a then x else y) else (if c then x else y)

R3


if b then x else x = x
if true then x else y = x if false then x else y = y
if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z

R4


if b then (if a then x else y) else z =

if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =

if a then (if b then x else y) else (if b then x else z)

Fig. 1. R = R1 ∪R2 ∪R3 ∪R4

terms starting with the same conditional. We also allow some
terms ~w and ~w′ on the left and right to stay untouched:

~w, b, (ui)i ∼ ~w′, b′, (u′i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i

~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′i else v′i)i

This is the only axiom with more than one premise. Further-
more we assume that b, b′ do not contain conditionals.

We quickly describe the other structural axioms: Perm allows
to change the terms order, using the same permutation on both
sides of ∼; Restr is a strengthening axiom; R allows to replace
a term s by any R-equal term t; the function application axiom
FA states that to prove that two images are indistinguishable, it
is sufficient to show that the arguments are indistinguishable
(we restrict this axiom to the case where f is in F \{0});
Sym states that indistinguishability is symmetrical; and Dup
states that giving twice the same value to an adversary is
equivalent to giving it only once. All the above axioms are
computationally valid.

Proposition 1. The axioms given in Fig. 2 are valid in
any computational model in which the functional correctness
assumptions R1 on pairs and encryptions hold.

Proof. The proof can be found in [1].

c) Restrictions: As mentioned earlier, we restricted some
axioms to achieve decidability. For example, the CS and FA
axioms presented above are weaker than the corresponding ax-
ioms in [1]: in the CS axiom, we forbid the terms b and b′ from
containing conditionals; and we do not allow FA applications
on the 0 function symbols. These are technical restrictions
which are used in the proof, but might be unnecessary.

B. Cryptographic Assumptions

We now show how cryptographic assumptions are translated
into unitary axioms. In the computational model, the security
of a cryptographic primitive is expressed through a game
between a challenger and an attacker (which is a PPTM) that
tries to break the primitive.

We present here the IND-CCA2 game (for Indistinguishabil-
ity against Chosen Ciphertexts Attacks, see [19]). First, the

challenger computes a public/private key pair (pk(n), sk(n))
(using a nonce n of length η uniformly sampled), and sends
pk(n) to the attacker. The adversary then has access to two
oracles: i) a left-right oracle ObLR(n) that takes two messages
m0,m1 as input and returns {mb}nr

pk(n), where b is an internal
bit uniformly sampled at the beginning by the challenger and
nr is a fresh nonce; ii) a decryption oracle Odec(n) that, given
m, returns dec(m, sk(n)) if m was not the result of a previous
OLR oracle query, and length of m zeros otherwise. Remark
that the two oracles have a shared memory. For simplicity,
we omit the length constraints of these oracles (they can be
found the long version [25]) The advantage AdvCCA2

A (η) of
an adversary A against this game is the probability for A to
guess the bit b:∣∣ Pr

(
n : AO

1
LR(n),Odec(n) (1η) = 1

)
− Pr

(
n : AO

0
LR(n),Odec(n) (1η) = 1

) ∣∣
An encryption scheme is IND-CCA2 if the advantage
AdvCCA2

A (η) of any adversary A is negligible in η. The
IND-CCA1 game is the restriction of this game where the
adversary cannot call Odec after having called OLR. An
encryption scheme is IND-CCA1 if AdvCCA1

A (η) is negligible
for any adversary A.

a) CCA1 Axiom: Before introducing the CCA2 axioms, we
recall informally the CCA1 axioms from [1]. First, we define a
syntactic property on secret keys used as a side-condition of
the CCA1 axioms:

Definition 1. For every ground term t, we say that a secret
key sk(n) appears only in decryption position in t if it appears
only in subterms of t of the form dec(_, sk(n)).

We now define the CCA1 axioms:

Definition 2. CCA1 is the computable set of unitary axioms:

~w, t[{u}nr

pk(n)] ∼ ~w, t[{v}nr

pk(n)]

where: nr does not appear in t, u, v, ~w; n appears only in
pk(n) or sk(n) in t, u, v, ~w; sk(n) does not appear in t, ~w;
sk(n) appears only in decryption position in u, v; and the
terms u and v are always of the same length.

Proposition 2. CCA1 is valid in every computational model
where the encryption scheme interpretation is IND-CCA1.

Proof. (sketch) The proof is a reduction that, given a PPTM A
that can distinguish between ~w, t[{u}nr

pk(n)] and ~w, t[{v}nr

pk(n)],
builds a winning adversary against the IND-CCA1 game.

We define the adversary. First, it computes [[u]] and [[v]],
calling the decryption oracle if necessary. It then sends them
to the challenger who answers c, which is either [[{u}nr

pk(n)]] or
[[{v}nr

pk(n)]]. Observe that we need the freshness hypothesis on
nr as it is drawn by the challenger and the adversary cannot
sample it. Using c, the adversary computes [[t[c]]], which it can
do because the secret key does not appear in t, and then returns
the bit A([[t[c]]]). The advantage of the adversary is exactly the
advantage of A, which we assumed non-negligible, hence the
adversary wins the game.
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uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)
u1, . . . , un ∼ v1, . . . , vn Perm

~u, t ∼ ~v, t′

~u ∼ ~v Restr for any s =R t,
~u, t ∼ ~v
~u, s ∼ ~v R

~u1, ~v1 ∼ ~u2, ~v2

f(~u1), ~v1 ∼ f(~u2), ~v2
FA

~u, t ∼ ~v, t′

~u, t, t ∼ ~v, t′, t′
Dup

~v ∼ ~u
~u ∼ ~v

Sym for any b, b′ ∈ T (Fs,N ),
~w, b, (ui)i ∼ ~w′, b′, (u′

i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i

~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′
i else v′i)i

CS

Conventions: π is a permutation of {1, . . . , n} and f ∈ F \{0}.

Fig. 2. The Axioms Struct-Ax.

Remark 1. In the CCA1 axiom, we did not specify how we
ensure that u and v are always of the same length. Since
the length of a term depends on implementation details (e.g.
how the pair 〈_ , _〉 implemented), we let the user supply im-
plementation assumptions, but require that these assumptions
satisfy some properties (this is necessary to get decidability).
To simplify the presentation, we omit all length constraints in
the rest of this paper. We explain how they are handled in the
long version [25].

b) CCA2 Axiom: To extend this axiom to the IND-CCA2

game, we need to deal with calls to the decryption oracle
performed after some calls to the left-right oracle. For exam-
ple, consider the case where one call (u, v) was made. Let
α ≡ {u}nr

pk(n) and α′ ≡ {v}nr

pk(n) (where ≡ denotes syntactic
equality) be the result of the call on, respectively, the left and
the right. A naive first try could be to state that decryptions
are indistinguishable. That is, if we let s ≡ t[α] and s′ ≡ t[α′],
then dec(s, sk(n)) ∼ dec(s′, sk(n)). But this is not valid: for
example, take u ≡ 0, v ≡ 1, t ≡ g([]) (where [] is a hole
variable). Then the adversary can, by interpreting g as the
identity function, obtain a term semantically equal to 0 on the
left and 1 on the right. This allows him to distinguish between
the left and right cases.

We prevent this by adding a guard checking that we are not
decrypting α on the left (resp. α′ on the right): if not, we return
the decryption dec(s, sk(n)) (resp. dec(s′, sk(n))) asked for,
otherwise we return a dummy message 0(dec(s, sk(n))) (resp.
0(dec(s′, sk(n)))).

Definition 3. CCA2s is the (recursive) set of unitary axioms:

~w, t[α], if eq(s, α) then 0(dec(t[α], sk(n)))

else dec(t[α], sk(n))

∼ ~w, t[α′], if eq(s′, α′) then 0(dec(t[α′], sk(n)))

else dec(t[α′], sk(n))

under the side-conditions of Definition 2.

This axiom is valid whenever the encryption is IND-CCA2.

Proposition 3. CCA2s is valid in every computational model
where the encryption scheme interpretation is IND-CCA2.

This construction can be generalized to any number of calls
to the left-right oracle, by adding a guard for each call, and to
any number of keys. The general CCA2 axioms can be found

in the long version [25]. 1 Still, a few comments: we use
extra syntactic side-conditions to remove superfluous guards;
we allow for α-renaming of names; we restrict t to be without
if_then_else_ and 0; the axioms allow for an arbitrary number
of public/private key pairs to be used simultaneously; and
finally, an instance of the axiom can contain any number of
interleaved left-right and decryption oracles calls.
Remark 2. The last point is what allows us to avoid transitivity
in proofs. For example, consider four encryptions, two of them
(α and γ) using the public key pk(n), and the other two (β
and δ) using the public key pk(n′):

α ≡ {A}n0

pk(n) β ≡ {B}n1

pk(n′) γ ≡ {C}n0

pk(n) δ ≡ {D}n1

pk(n′)

Then the following formula is a valid instance of the CCA2
axioms on, simultaneously, keys pk(n) and pk(n′):

α, β ∼ γ, δ CCA2(pk(n),pk(n′))

However, proving the above formula using CCA2 only on one
key at a time, as in [1], requires transitivity:

α, β ∼ α, δ CCA2(pk(n′))
α, δ ∼ γ, δ CCA2(pk(n))

α, β ∼ γ, δ

C. Comments and Examples

Our set of axioms is not complete w.r.t. the computational
interpretation semantics. Indeed, being so would mean axiom-
atizing exactly which distributions (computable in polynomial
time) can be distinguished by PPTMs, which is unrealistic
and would lead to undecidability. E.g., if we completely ax-
iomatized IND-CCA2, then showing the satisfiability of our set
of axioms would show the existence of IND-CCA2 functions,
which is an open problem.

Still, our axioms are expressive enough to complete concrete
proofs of security. We illustrate this with two simple examples:
a proof of the formula in Example 1, and a proof of the security
of one round of the NSL protocol [28]. Of course, such proofs
can be found automatically using our decision procedure.
Example 2. We give a proof of the formula of Example 1:

if g() then n0 else n1 ∼ n

First, we introduce a conditional g() on the right to match the
structure of the left side using R. Then, we split the proof

1Note that axioms for the IND-CCA2 cryptographic assumption have already
appeared in the literature, in [27]. These axioms are only for a single call to
the left-right oracle, and a single key. Our axiom schema is more general.
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in two using the CS axiom. We conclude using the reflexivity
modulo α-renaming axiom (this axiom is subsumed by CCA2,
therefore we do not include it in AX).

g(),n0 ∼ g(),n REFL
g(),n1 ∼ g(),n REFL

if g() then n0 else n1 ∼ if g() then n else n
CS

if g() then n0 else n1 ∼ n R

{〈nA , A〉}n0
pkB

{〈nA , 〈nB , B〉〉}n1
pkA

{nB}n2
pkB

A B

Fig. 3. The NSL protocol.

a) Proof of NSL: We con-
sider a simple setting with one
initiator A, one responder B
and no key server. An execu-
tion of the NSL protocol is
given in Fig. 3.

We write this in the logic.
First, we let pkA ≡ pk(nA)
and skA ≡ sk(nA) be the
public/private key pair of agent
A (we define similarly (pkB,
skB)). Since A does not wait for any input before sending
its first message, we put it into the initial frame:

φ0 ≡ pkA,pkB, {〈nA , A〉}n0

pkB

Then, both agents wait for a message before sending a single
reply. When receiving xA (resp. xB), the answer of agent A
(resp. B) is expressed in the logic as follows:

tA[xA] ≡ if eq(π1(dec(xA, skA)),nA) then
if eq(π2(π2(dec(xA, skA))),B) then
{π1(π2(dec(xA, skA)))}n2

pkB

tB[xB] ≡ if eq(π2(dec(xB, skB)),A) then
{〈π1(dec(xB, skB)) , 〈nB , B〉〉}n1

pkA

During an execution of the protocol, the adversary has several
choices. First, it decides whether to interact first with A or
B. We focus on the case where it first sends a message to
B (the other case is similar). Then, it can honestly forward
the messages or forge new ones. E.g., when sending the first
message to B, it can either forward A’s message {〈nA , A〉}n0

pkB
or forge a new message. We are going to prove the security of
the protocol in the following case (the other cases are similar):
• the first message, sent to B, is honest. Therefore we take

xB ≡ {〈nA , A〉}n0

pkB
, and the answer from B is:

tB[xB] =R {〈nA , 〈nB , B〉〉}n1

pkA

• the second message, sent to A, is forged. Therefore we
take xA ≡ g(φ1), where φ1 ≡ φ0, tB[xB]. As, a priori,
nothing prevents g(φ1) from being equal to tB[xB], we
use the conditional eq(g(φ1), tB[xB]) to ensure that this
message is forged. The answer from A is then:

s ≡ if eq(g(φ1), tB[xB]) then 0 else tA[g(φ1)] (1)

We show the secrecy of the nonce nB: we let t′B[xB] (resp. s′)
be the term tB[xB] (resp. s) where we replaced all occurrences

of nB by 0. For example, t′B[xB] =R {〈nA , 〈0 , B〉〉}n1

pkA
. This

yields the following goal formula:

φ0, tB[xB], s ∼ φ0, t′B[xB], s′ (2)

Remark 3. The process of computing the formula from the
protocol description can be done automatically, using a simple
procedure similar to the folding procedure from [1]. The
formula in (2) has already been split between the honest and
dishonest cases using the case study axiom CS (we omit the CS
applications to keep the proof readable). For example, the term
in (1) is the “else” branch of a CS application on conditional
eq(g(φ1), tB[xB]) (which does not contain nested conditionals,
as required by the CS side-condition).

We now proceed with the proof. We let δ be the guarded
decryption that will be used in the CCA2 axiom:

δ ≡ if eq(g(φ1), tB[xB]) then 0(dec(g(φ1), skA))

else dec(g(φ1), skA)

(3)

and sδ be the term s where all occurrences of dec(g(φ1), skA)
have been replaced by δ. We have s =R sδ . We also introduce
shorthands for some subterms of sδ: we let aδ , bδ and eδ be the
terms eq(π1(δ),nA), eq(π2(π2(δ))),B) and {π1(π2(δ))}n2

pkB
.

We define δ′, s′δ′ , a
′
δ′ , b
′
δ′ and e′δ′ similarly.

We then rewrite s and s′ into sδ and s′δ′ using R. Then
we apply FA several times, first to deconstruct sδ and s′δ′ , and
then to deconstruct aδ, bδ and a′δ′ , b

′
δ′ . Finally, we use Dup to

remove duplicates, and we apply CCA2 simultaneously on key
pairs (pkA, skA) and (pkB, skB) (we omit here the details of
the syntactic side-conditions that have to be checked):

φ0, tB[xB],nA, δ, eδ ∼ φ0, t′B[xB],nA, δ
′, e′δ′

CCA2

φ0, tB[xB], aδ, bδ, eδ ∼ φ0, t′B[xB], a′δ′ , b
′
δ′ , e

′
δ′

(FA,Dup)∗

φ0, tB[xB], sδ ∼ φ0, t′B[xB], s′δ′
(FA,Dup)∗

φ0, tB[xB], s ∼ φ0, t′B[xB], s′
R

IV. MAIN RESULT AND DIFFICULTIES

We let Ax be the conjunction of Struct-Ax and CCA2. We
now state the main result of this paper.

Theorem (Main Result). The following problem is decidable:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

We give here an overview of the problems that have to
be overcome in order to obtain the decidability result. Before
starting, a few comments. We close all rules under permuta-
tions. The Sym rule commutes with all the other rules, and
the CCA2 unitary axioms are closed under Sym. Therefore we
can remove Perm and Sym from the set of rules. Observe that
CS, FA,Dup and CCA2 are all decreasing rules, i.e. the premises
are smaller than the conclusion. The only non-decreasing rules
are R, which may rewrite a term into a larger one, and Restr,
which we eliminate later. Therefore we now focus on R.
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a) Necessary Introductions: As we saw in Example 2,
it might be necessary to use R in the “wrong direction”,
typically to introduce new conditionals. A priori, this yields an
unbounded search space. Therefore our goal is to characterize
in which situations we need to use R in the “wrong direction”,
and with which instances. We identify two necessary reasons
for introducing new conditionals.

First, to match the shape of the term on the other side,
like g() in Example 2. In this case, the introduced conditional
is exactly the conditional that appeared on the other side of
∼. With more complex examples this may not be the case.
Nonetheless, an introduced conditional is always bounded by
the conditional it matches.

Second, we might introduce a guard in order to fit to the
definition of safe decryptions in the CCA2 axioms, as in (3).
Here also, the introduced guard will be of bounded size.
Indeed, guards of dec(s, sk) are of the form eq(s, α) where α
is a subterm of s. Therefore, for a fixed s, there are a bounded
number of them, and they are of bounded size.

Example 3 (Cut Elimination). These conditions are actually
sufficient. We illustrate this on an example where the CS rule
is applied on two conditionals that have just been introduced.

a, s ∼ b, t a, s ∼ b, t
if a then s else s ∼ if b then t else t

CS

s ∼ t R

Here a and b can be of arbitrary size. Intuitively, this is not
a problem since any proof of a, s ∼ b, t includes a proof of
s ∼ t. Formally, we have the following weakening lemma.

Lemma 1. For every proof P of a ground formula ~u, s ∼ ~v, t,
there exists a proof P ′ of ~u ∼ ~v where P ′ is no larger than P .

Proof. (sketch) The full proof is in the long version [25]. We
prove by induction on P that the Restr rule is admissible using
Ax\{Restr}. For this to work, we need the CCA2 axioms to
be closed under Restr. Note that this creates some problems,
which are dealt with in [25].

Using this lemma, we can deal with Example 3 by doing
a proof cut elimination. More generally, by induction on the
proof size, we can guarantee that no such proof cuts appear.

This is the strategy we are going to follow: look for proof
cuts that introduce unbounded new terms, eliminate them,
and show that after sufficiently many cut eliminations all the
subterms appearing in the proof are bounded by the (R-normal
form of the) conclusion.

But a proof may contain more complex behaviors than just
the introduction of a conditional followed by a CS application.
For example the conditional being matched could have been
itself introduced earlier to match another conditional, which
itself was introduced to match a third conditional etc.

Example 4. We illustrate this on an example. When it is more
convenient, we write terms containing only if_then_else_ and
other subterms (handled as constants) as binary trees; we also

index some subterms with a number, which helps keeping track
of them across rule applications.

a1, b2, b3, u4, w5, u6, v7 ∼ d1, c2, d3, s4, t5, r6, p7

a1

b2

u4 b3

w5 u6

v7

∼

d1

c2

s4 d3

t5 r6

p7

FA(3)

if a then u else v ∼ if c then s else t R

where p7 ≡ if c then s else t. Here the conditionals b, d and
the terms w, r are, a priori, arbitrary. Therefore we would like
to bound them or remove them through a cut elimination. The
cut elimination technique used in Example 3 does not apply
here because we cannot extract a proof of a ∼ c.

But we can extract a proof of b2, b3 ∼ c2, d3. Using
Proposition 1, this means that in every appropriate compu-
tational model, [[b, b]] ≈ [[c, d]]. It means that no adversary
can distinguish between getting twice the same value sampled
from [[b]] and getting a pair of values sampled from [[c, d]].
In particular, this means that [[c]]η,ρ = [[d]]η,ρ, except for a
negligible number of random tapes ρ.

b) A First Key Lemma: A natural question is to ask
whether this semantic equality [[c]] = [[d]] implies a syntactic
equality. While this is not the case in general, there are
fragments of our logic in which this holds. We annotate
the rules FA by the function symbol involved, and we let
FAs = {FAf | f ∈ Fs}.

Definition 4. Let Σ be the set of axiom names, seen as an
alphabet. For all L ⊆ Σ∗, we let F(L) be the fragment of
our logic defined by: a formula φ is in the fragment iff there
exists a proof P such that P ` φ and, for every branch ρ of
P , the word w obtained by collecting the axiom names along
ρ (starting from the root) is in L.

Lemma 2. For all b, b′, b′′, if b, b ∼ b′, b′′ is in the fragment
F(FAs

∗ · Dup∗ · CCA2) then b′ ≡ b′′.

Proof. The proof relies on the shape of the CCA2 axioms, and
can be found in the long version [25].

Using this lemma, we can deal with Example 4 if a1, b2, b3 ∼
d1, c2, d3 lies in the fragment F(FAs

∗ ·Dup∗ ·CCA2). Using a first
time the lemma on b2, b3 ∼ c2, d3 we obtain c ≡ d, and using
again the lemma on a1, b2 ∼ d1, c2 (since d ≡ c) we deduce
a ≡ b. Hence the cut elimination introduced before applies.

c) Proof Sketch: We now state the sketch of the proof:
• Commutations: first we show that we can assume that

rules are applied in some given order. We prove this by
showing some commutation results and adding new rules.

• Proof Cut Eliminations: through proof cut eliminations,
we guarantee that every conditional appearing in the proof
is α-bounded. Intuitively a conditional is α-bounded if it
is a subterm of the conclusion or if it guards a decryption
appearing in an α-bounded term.
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• Decision Procedure: we give a procedure that, given a
goal formula t ∼ t′, computes the set of α-bounded terms
for this formula. We show that this procedure computes a
finite set, and deduce that the proof search is finite. This
yields an effective algorithm to decide our problem.

V. COMMUTATIONS AND CUT ELIMINATIONS

In this section we show, through rule commutations, that we
can restrict ourselves to proofs using rules in some given order.
Then, we show how this restricts the shapes of the terms.

A. Rule Commutations

Everything in this subsection applies to any set U of unitary
axioms closed under Restr. We specialize to CCA2 later.

We start by showing a set of rule commutations of the form
w ⇒ w′, where w and w′ are words over the set of rule
names. An entry w ⇒ w′ means that a derivation in w can
be rewritten into a derivation in w′, with the same conclusion
and premises. Here are the basic commutations we use:

Dup ·R ⇒ R · Dup

Dup · FA ⇒ FA∗ · Dup

Dup · CS ⇒ CS · Dup

FA ·R ⇒ R · FA

FA · CS ⇒ R · CS · FA

Lemma 3. All the above rule commutations are correct.

Proof. We show only FA ·R⇒ R · FA (the full proof is in the
long version [25]):

~u1, ~v1 ∼ ~u ′1, ~v ′1
~u,~v ∼ ~u ′, ~v ′ R

~u, f(~v) ∼ ~u ′, f(~v ′)
FA
⇒

~u1, ~v1 ∼ ~u ′1, ~v ′1
~u1, f(~v1) ∼ ~u ′1, f(~v ′1)

FA

~u, f(~v) ∼ ~u ′, f(~v ′)
R

Using these rules, we obtain a first restriction.

Lemma 4. The ordered strategy F((CS +R)∗ · FA∗ · Dup∗ · U)
is complete for F((CS + FA +R+ Dup + U)∗).

Proof. First, we commute all the Dup to the right, which yields
F((CS +R+ FA)∗ · Dup∗ · U). Then, we commute all FA to the
right, stopping at the first Dup.

a) Splitting the FA Rule: To go further, we split FA as
follows: if the deconstructed symbol is if_then_else_ then
we denote the function application by FA(b, b′), where b, b′

are the involved conditionals; if the deconstructed symbol f
is in Fs, then we denote the function application by FAf . We
give below the two new rules:

~w, a, u, v ∼ ~r, b, s, t
~w, if a then u else v

∼ ~r, if b then s else t

FA(b, b′) ~u,~v ∼ ~s,~t
~u, f(~v) ∼ ~s, f(~t)

FAf

The set of rule names is now infinite, since there exists one
rule FA(b, b′) for every pair of ground terms b, b′.

b) Further Commutations: Intuitively, we want to use
R at the beginning of the proof only. This is helpful since,
as we observed earlier, all the other rules are decreasing (i.e.
premises are smaller than the conclusion). The problem is that
we cannot fully commute CS and R. For example, in:

a′, u′ ∼ b′, s′
a, u ∼ b, s R

a′′, v′ ∼ b′′, t′
a, v ∼ b, t R

if a then u else v ∼ if b then s else t
CS

we can commute the rewritings on u, v, s and t, but not on a
and b because they appear twice in the premises, and a′ and
a′′ may be different (same for b′ and b′′).

c) New Rules: We handle this problem by adding new
rules to track relations between branches. We give only sim-
plified versions here, the full rules are in the long version [25].
For every a, c in T (Fs,N ) in R-normal form, we have
the rules:

~u,C
[
a a

a

]
∼ ~v, C ′

[
c c

c

]
~u,C[a] ∼ ~v, C ′[c] 2Boxs

a1, u ∼ c1, s a2, v ∼ c2, t
if a1 a2

a
then u else v ∼ if c1 c2

c
then s else t

CSs
�

where
a

is a new symbol of sort S2b → Sb, and of fixed
semantics: it ignores its arguments and has the semantics [[a]].
Intuitively, a1 a2

a
stands for the conditional a, and a1, a2

are, respectively, the left and right versions of a.
Remark that for the CS� rule to be sound we need [[a1]], [[a2]]

and [[a]] to be equal, up to a negligible number of samplings
(same for c1, c2 and c). This is not enforced by the rules, so it
has to be an invariant of our strategy. We denote B the set of
new function symbols. We need the functions in B to block
the if-homomorphism to ensure that for all a c

b
∈ st(t),

[[a]] = [[c]] = [[b]]. Therefore the TRS R2 is not extended to B.
For example we have:

if a then c else d e
b
6→∗R if a then c e

b
else d e

b

The R rule is replaced by R� which has an extra side-
condition. R� can rewrite u[s] into u[t] as long as:{

a c
b
∈ st(t)

}
⊆
{
a c

b
∈ st(u[s])

}
This ensures that no new arbitrary a c

b
is introduced. New

boxed conditionals are only introduced through the 2Box rule.
Similarly, the FA axiom is not extended to B.

Definition 5. A term t is well-formed if for every a c
b
∈

st(t), a =R c =R b. We lift this to formulas as expected.

Proposition 4. The following rules preserve well-formedness:

R�, 2Box,CS�, FAs, {FA(b, b′)},Dup

Besides, R�, CS� and 2Box are sound on well-formed formulas.

Proof. The only rule not obviously preserving well-
formedness is R�, but its side-conditions guarantee the well-
formedness invariant. The only rule that is not always sound
is CS�, and it is trivially sound on well-formed formulas.
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d) Ordered Strategy: We have new rule commutations.

FAs · FA(b, b′) ⇒ R · FA(b, b′) · FAs
∗ · Dup

CS� ·R� ⇒ R� · CS�

CS� · 2Box ⇒ R� · 2Box · CS�

Lemma 5. All the rule commutations above are correct.

Proof. The proof can be found in the long version [25].

This allows to have R� rules only at the beginning of the proof.

Lemma 6. The ordered strategy:

F((2Box +R�)∗ · CS∗� · {FA(b, b′)}∗ · FAs
∗ · Dup∗ · U)

is complete for F((CS + FA +R+ Dup + U)∗).

Proof. We start from the result of Lemma 4, split the FA rules
and commute rules until we get:

F((CS +R)∗ · {FA(b, b′)}∗ · FAs
∗ · Dup∗ · U)

We then replace all applications of CS by 2Box.CS�. All
a a

a
introduced are immediately “opened” by a CS� ap-

plication, hence we know that the side-conditions of R�

hold every time we apply R. Therefore we can replace all
applications of R by R�, which yields:

F((CS� + 2Box +R�)∗ · {FA(b, b′)}∗ · FAs
∗ · Dup∗ · U)

Finally we commute the CS� applications to the right.

B. The Freeze Strategy

We now show that we can restrict the terms on which the
rules in {FA(b, b′)} can be applied: when we apply a rule in
{FA(b, b′)}, we “freeze” the conditionals b and b′ to forbid any
further applications of {FA(b, b′)} to them.
Example 5. Let ai ≡ if bi then ci else di (i ∈ {1, 2}), we
want to forbid the following partial derivation to appear:

b1, c1, d1, u1, v1 ∼ b2, c2, d2, u2, v2
a1, u1, v1 ∼ a2, u2, v2

FA(b1, b2)

if a1 then u1 else v1 ∼ if a2 then u2 else v2
FA(a1, a2)

a) Freeze Strategy: We let be a new function symbol
of arity one, and for every ground term s we let s̃ be the term:

s̃ ≡

{
if b then u else v if s ≡ if b then u else v
s if s ∈ T (Fs,N )

Moreover we replace every FA(b1, b2) rule by the rule:

~w1, b̃1, u1, v1 ∼ ~w2, b̃2, u2, v2

~w1, if b1 then u1 else v1 ∼ ~w2, if b2 then u2 else v2
BFA(b1, b2)

We let {BFA(b1, b2)} be the restriction of {BFA(b1, b2)} to the
rules where b1 and b2 are not frozen conditionals. Finally, we
add a new rule, UnF, which unfreezes all conditionals: every
b is replaced by b.

Lemma 7. The following strategy:

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · U)

is complete for F((CS + FA +R+ Dup + U)∗).

Proof. Basically, the proof consists in eliminating all proof
cuts of the shape given in Example 5. The cut elimination
is simple, though voluminous, and is given in the long ver-
sion [25].

VI. PROOF FORM AND KEY PROPERTIES

The goal of this section is to show that we can assume
w.l.o.g. that the terms appearing in the proof (following the
ordered freeze strategy) after the (2Box+R�)∗ part have a par-
ticular form, that we call proof form. We also show properties
of this restricted shape that allow more cut eliminations.

A. Shape of the Terms

Most of the completeness results shown before are for any
set of unitary axioms closed under Restr. We now specialize
these results to CCA2, to get some further restrictions.

When applying the unitary axioms CCA2, we would like
to require that terms are in R-normal form, e.g. to avoid the
application of CCA2 to terms with an unbounded component,
such as π1(〈u , v〉). Unfortunately, the side-conditions of CCA2
are not stable under R. E.g., consider the CCA2 instance:

{if eq(g(nu),nu) then A else B}nr

pk(n) ∼ {C}
nr

pk(n)
CCA2

The R-normal form of the left term is:

if eq(g(nu),nu) then {A}nr

pk(n) else {B}nr

pk(n)

which cannot be used in a valid CCA2 instance, since the
conditional eq(g(nu),nu) should be somehow “hidden” by the
encryption. To avoid this difficulty, we use a different normal
form for terms: we try to be as close as possible to the R-
normal form, while keeping conditional branching below their
encryption. First, we illustrate this on an example. The term:{

if (if b then a else c) then {if d then u else v}n1

pk else w
}n2

pk

is normalized as follows:{
if b then if a then {if d then u else v}n1

pk else w

else if c then {if d then u else v}n1

pk else w

}n2

pk

a) Basic Terms: We omit the rewriting strategy here ,
and describe instead the properties of the normalized terms.
We let A� be the ordered strategy from Lemma 7, and
ACS�

be its restriction to proofs with an empty (2Box +R�)∗

part. The rule CS� is the only branching rule, therefore,
after applying all the CS� rules, we can associate to each
branch l of the proof an instance Sl = (Kl,Rl, El,Dl) of
the CCA2 axiom, where Kl, Rl, El and Dl are the sets of,
respectively, secret keys, encryption randomness, encryptions
and decryptions. We use Sl to define a normal form for
the terms appearing in branch l. This is done through four
mutually inductive definitions: Sl-encryption oracle calls are
well-formed encryptions; Sl-decryption oracle calls are well-
formed decryptions; Sl-normalized basic terms are terms built
using function symbols in Fs and well-formed encryptions and
decryptions; and Sl-normalized simple terms are combinations
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· · ·

FAs
∗

FAs
∗

··
·

FAs
∗

ACS�

··
·

ACS�

CS∗�

BFA
∗

Fig. 4. The shape of the term is determined by the proof.

of normalized basic terms using if_then_else_. We give only
the definition of Sl-normalized basic terms (the full definitions
are in the long version [25]).

Definition 6. A Sl-normalized basic term is a term t of the
form U [~w, (αj)j , (deck)k] where:

• U and ~w are if-free and Rl,Kl do not appear in ~w.
• U [~w, ({[]j}

nj

pkj
)j , (dec([]k, skk))k] is in R-normal form.

• (αj)j are Sl-encryption oracle calls under (pkj , skj)j .
• (deck)k are Sl-decryption oracle calls under (pkk, skk)k.

If t is of sort bool, we say that it is a Sl-normalized basic
conditional.

b) Normalized Proof Form: Every application of CS�:

a1, u ∼ b1, s a2, v ∼ b2, t
if a1 a2

a
then u else v ∼ if b1 b2

b
then s else t

CS�

is such that if we extract the sub-proof of ai ∼ bi (for i ∈
{1, 2}), we get a proof in ACS�

. Therefore, we can check that
terms after (2Box +R�)∗ are of the form informally described
in Fig. 4. We define a normal form for such proofs, called
normalized proof form, and we define `npf by P `npf t ∼ t′

if and only if P ` t ∼ t′, the proof P is in A� and is in
normalized proof form. We do not give the full definition, but
one of the key ingredients is to require that for every term s
appearing in a branch l of the proof P , if s is the conclusion
of a sub-proof in the fragment F(FAs

∗ · Dup∗ · U) then s is a
Sl-normalized basic term.

Lemma 8. Every formula in F((CS + FA +R+ Dup + CCA2)∗)
is provable using the strategy `npf.

Proof. (sketch) The full proof is in the long version [25].
First, we rewrite terms by pulling conditionals upward without
crossing an encryption function symbol, and without modify-
ing decryption guards. Then, we remove all redexes from R1

(e.g. π1(〈u , v〉)→ u) using a cut elimination procedure. E.g.,
the following cut can be eliminated using Lemma 1:

u, v ∼ u′, v′

π1(〈u , v〉) ∼ π1(〈u′ , v′〉)
FA〈 , 〉

u ∼ u′ R

B. Key Properties
A term in R-normal form is in the following grammar:

t ::= u ∈ T (Fs,N ) | if b then t else t (with b ∈ T (Fs,N ))

Given a term t in R-normal form, we let cond-st(t) be its set
of conditionals, and leave-st(t) its set of leaves.

a) Characterization of Basic Terms: We give a key char-
acterization proposition for basic terms: if two Sl-normalized
basic terms β and β′ are such that, when R-normalizing them,
they share a leaf term, then they are identical.

Proposition 5. For all Sl-normalized basic terms β, β′, if we
have leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅ then β ≡ β′.

Proof. (sketch) The full proof is in the long version [25].
We give the intuition: since they are Sl-normalized basic
terms, we know that β ≡ U [~w, (αj)j , (deck)k], β′ ≡
U ′[~w′, (α′j)j , (dec′k)k] and:

U [~w, ({[]j}
nj

pkj
)j , (dec([]k, skk))k]

U ′[~w′, ({[]′j}
nj

pk′j
)j , (dec([]′k, sk′k))k]

are in R-normal form. Using the fact that U,U ′, ~w, ~w′ are
if-free, and the hypothesis that β and β′ share a leaf term,
we first show that we can assume U ≡ U ′ and ~w ≡ ~w′ by
induction on the number of positions where U and U ′ differ.
Take p where they differ, w.l.o.g. assume β′|p to be a hole
of U ′ (otherwise swap β and β′). We have three cases: i) if
β|p is in ~w, we simply change U to include everything up
to p; ii) if β|p is in some encryption αj ≡ {m}n

pk, then we
know that n appears in ~w, which is not possible since, as β
is a Sl-normalized basic term, n ∈ Rl does not appear in ~w;
iii) if β|p is in some decryption deck ≡ dec(uk, skk) then,
similarly to the previous case, we have skk appearing in ~w,
which contradicts the fact that skk ∈ Kl do not appear in ~w.

Knowing that U ≡ U ′ and ~w ≡ ~w′, it only remains to
show that the encryptions (αj)j and (α′j)j , and the decryptions
(deck)k and (dec′k)k are identical. The former follows from
the fact that, for a given encryption randomness n ∈ Rl, there
exists a unique m such {m}n

_ ∈ El; and the latter follows from
the fact that there is a unique way to guard a decryption in Dl
(this is not obvious, and relies on CCA2 side-conditions).

b) Proofs of b ∼ false or true: Using the previous
proposition, we can show that for all b, if b is if-free then
there is no derivation of b ∼ true or b ∼ false in A�.
Such derivations would be problematic since true and false
are conditionals of constant size, but b could be of any size
(and we are trying to bound all conditionals appearing in a
proof). Also, the else branch of a true conditional can contain
anything and is, a priori, not bounded by the proof conclusion.

Proposition 6. Let b an if-free conditional in R-normal form,
with b 6≡ false (resp. b 6≡ true). Then there exists no derivation
of b ∼ false (resp. b ∼ true) in A�.

Proof. This is shown by induction on the size of the derivation.
The full proof is in the long version [25], and relies on
Proposition 5.
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VII. BOUNDING THE PROOF AND DECISION PROCEDURE

We give here two similar proof cut eliminations, one used
on BFA conditionals and the other on CS� conditionals.

a) BFA Rule: We already used this cut elimination to deal
with Example 4 for conditionals involved in BFA applications.
The cuts we want to eliminate are of the form:

a1, a2, u3, v4, w5 ∼ b1, c2, r3, s4, t5

a1

a2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b1

c2

r3 s4

t5

︸ ︷︷ ︸
τ

BFA
(2)

(4)

Using Lemma 1, we extract a proof of a1, a2 ∼ b1, c2, which,
thanks to the ordered strategy, is in F(FAs

∗ ·Dup∗ ·CCA2). From
Lemma 2 we get that b ≡ c. We then replace (4) by:

a1, u3, w5 ∼ b1, r3, t5

a1

u3 w5

∼
b1

r3 t5

BFA

σ ∼ τ R

We retrieve a proof in A� by pulling R to the beginning of
the proof.

b) CS� Rule: The CS� case is more complicated. E.g.,
take two boxed CS� conditionals for the same if-free condi-
tional a, and two arbitrary CS� conditionals on the right side:

a�i ≡ ali ari
a

(i ∈ {1, 2}) b�1 ≡ bl1 br1
b
c�2 ≡ cl2 cr2

c

Consider the following cut:
.... (A)

al1, a
l
2, u3 ∼ bl1, cl2, r3

.... (B)

al1, a
r
2 , v4 ∼ bl1, cr2 , s4

.... (C)

ar1 , w5 ∼ br1 , t5

a�
1

a�
2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b�1

c�2

r3 s4

t5

︸ ︷︷ ︸
τ

CS(2)
�

As we did for BFA, we can extract from (A), using Lemma 1,
a proof of al1, a

l
2 ∼ bl1, c

l
2. But using the ordered strategy, we

get that this proof is in ACS�
, which we recall is the fragment:

CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · CCA2

Therefore we cannot apply Lemma 2. To deal with this cut, we
generalize Lemma 2 to the case where the proof is in ACS�

.
For this, we need the extra assumptions that al1, a

l
2, b

l
1, c

l
2 are

if-free, which is a side-condition of CS�.

Lemma 9. For all a, a′, b, c such that their R-normal form is
if-free and a =R a

′, if P `npf a, a′ ∼ b, c then b =R c.

Proof. (sketch) The full proof is given in the long version [25].
It uses Proposition 6 to obtain a proof P ′ of a, a′ ∼ b, c
without any false and true, and also relies on Proposition 5
and Lemma 2.

We now deal with the cut above. Using Lemma 9, we know
that b =R c. Since b, c are in R-normal form, b ≡ c and
therefore b�1 =R� b =R� c

�
2 (using well-formedness). Similarly

a�1 =R� a =R� a
�
2 . This yields the (cut-free) proof:

.... (A′)

al1, u3 ∼ bl1, r3

.... (C)

ar1 , w5 ∼ br1 , t5

a�1

u3 w5

∼
b�1

r3 t5

CS�

σ ∼ τ R�

where (A′) is extracted from (A) by Lemma 1. Finally, to get
a proof in A�, we commute the R� rewriting to the beginning.

A. Decision Procedure

Now, we explain how we obtain a decision procedure for
our logic. Because the proofs and definitions are long and
technical, we omit most of the details and focus instead on
giving a high level sketch of the proof and decision procedure.

a) Spurious Conditionals: A conditional b without
if_then_else_ and in R-normal form is said to be spurious
in t if, when R-normalizing t, the conditional b disappears.
Formally, b is spurious in t if b 6∈ cond-st(t ↓R). E.g., the
conditional eq(n0,n1) is spurious in:

if eq(n0,n1) then g(n) else g(n)

We say that a basic conditional β, which may not be if-free,
is spurious in t if all its leaf terms are spurious in t (i.e.
leave-st(β ↓R)∩cond-st(t ↓R) = ∅). As we saw in Example 2,
we may need to introduce spurious basic conditionals to carry
out a proof. Still, we need to bound such terms. To do this,
we characterize the basic conditionals that cannot be removed:
basically, a basic conditional is α-bounded in a proof of t ∼ t′
if it is not spurious in t or t′, or if it is a guard for a decryption
appearing in a α-bounded conditional of t ∼ t′ (indeed, we
cannot remove a decryption’s guards, as this would not yield
a valid CCA2 instance).

We let `npf
α be the restriction of `npf to proofs such that

all basic conditionals appearing in the derivation are α-
bounded. Using the cut eliminations we introduced earlier, plus
some additional cut eliminations, we can show the following
completeness result (the full proof is in the long version [25]).

Lemma 10. `npf
α is complete with respect to `npf.

b) Bounding α-bounded Basic Conditionals: Finally, it
remains to bound the size of α-bounded basic conditionals.
Since basic conditionals can be nested (e.g. a basic conditional
can contain decryption guards, which are themselves basic
conditionals etc), we need to bound the length of sequences
of nested basic conditionals.

Given a sequence of nested basic conditionals β1 <st

· · · <st βn, (where u <st v iff u 6≡ v and u ∈ st(v)),
we show that we can associate to each βi a “frame term”
λi ∈ B(t, t′) (where B(t, t′) is a set of terms of bounded
size w.r.t. |t| + |t′|). Basically, λi is obtained from βi by
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“flattening” it: we remove all decryption guards, and replace
the content of every encryption {m}n

pk by a term {m̃}n
pk,

where m̃ is if-free and in B(t, t′). Moreover, we show that,
for every Sl-normalized basic terms β, γ and their associated
frame terms λ, µ, if λ ≡ µ then β ≡ γ (this result is similar
to Proposition 5).

Since the βis are all pair-wise distinct (as <st is strict), and
since for every i, the frame term λi uniquely characterizes
βi, we know that the λis are pair-wise distinct. Using a
pigeon-hole argument, this shows that n ≤ |B(t, t′)|. Then,
by induction on the number of nested basic conditionals, we
show a triple exponential upper-bound in |t|+|t′| on the size of
the basic conditionals appearing in a cut-free proof of t ∼ t′.

c) Decision Procedure: To conclude, we show that there
exists a non-deterministic procedure that, given two terms t
and t′, non-deterministically guesses a set of α-bounded basic
terms that can appear in a proof P of P `npf

α t ∼ t′ (in triple
exponential time in |t|+ |t′|). Then the procedure guesses the
rule applications, and checks that the candidate derivation is a
valid proof (in polynomial time in the candidate derivation
size). This yields a 3-NEXPTIME decision procedure that
shows the decidability of our problem.

Theorem (Main Result). The following problem is decidable:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

VIII. RELATED WORKS

In [29], the authors design a set of inference rules to prove
CPA and CCA security of asymmetric encryption schemes in
the Random Oracle Model. The paper also presents an attack
finding algorithm. The authors of [29] do not provide decision
algorithm for the designed inference rules. However, they de-
signed proof search heuristics and implemented an automated
tool, called ZooCrypt, to synthesize new CCA encryption
schemes. For small schemes, this procedure can show CCA
security or find an attack in more than 80% of the cases. In
20% of the cases, security remains undecided. Additionally,
ZooCrypt automatically generates concrete security bounds.

As seen in the introduction, the problem of showing CPA
security can be cast into the BC logic. Take a candidate
encryption scheme x 7→ t[x], where t[] is a context built
using, e.g., pairs, a one-way permutation f using public key
pk(n), hash functions and xor. Then this scheme is CPA if
the following formula is valid in every computational model
satisfying some implementation assumptions (mostly, f is
OW-CPA and the hash functions are PRF):

t[π1(f(pk(n)))] ∼ t[π2(f(pk(n)))]

This formula has a particular shape, which stems from the
limitations on the adversary’s interactions: the adversary can
only interact with the (candidate) encryption scheme through
the CPA or CCA game. There is no complex and arbitrary
interactions with the adversary, as it is the case with a security
protocol. We don’t have such restrictions.

In [30], the authors study proof automation in the UC frame-
work [31]. They design a complete procedure for deciding the

existence of a simulator, for ideal and real functionalities using
if-then-else, equality, random samplings and xor. Therefore
their algorithm cannot be used to analyse functionalities rely-
ing on more complex functions (e.g., public key encryption),
or stateful functionalities. This restricts the protocols that can
be checked. Still, their method is semantically complete (while
we are complete w.r.t. a fixed set of inference rules): if there
exists a simulator, they will find it.

In [32], the authors show the decidability of the problem
of the equality of two distributions, for a specific equational
theory (concatenation, projection and xor). Then, for arbitrary
equational theories, they design a proof system for proving
the equality of two distributions. This second contribution has
similarities with our work, but differ in two ways.

First, the proof system of [32] shares some rules with
ours, e.g. the R, Dup and FA rules. But it does not allow
for reasoning on terms using if_then_else_. E.g., they do not
have a counterpart to the CS rule. This is a major difference,
as most of the difficulties encountered in the design of our
decision procedure result from the if_then_else_ conditionals.
Moreover, there are no rules corresponding to cryptographic
assumptions, as our CCA2 rules. Because of this and the lack
of support for reasoning on branching terms, the analysis of
security protocols is out of the scope of [32].

Second, the authors do not provide a decision procedure for
their inference rules, but instead rely on heuristics.

IX. CONCLUSION

We designed a decision procedure for the Bana-Comon
indistinguishability logic. This allows to automatically ver-
ify that a security protocol satisfies some security property.
Our result can be reinterpreted, in the cryptographic game
transformation setting, as a cut elimination procedure that
guarantees that all intermediate games introduced in a proof
are of bounded size w.r.t. the protocol studied.

A lot of work remains to be done. First, our decision
procedure is in 3-NEXPTIME, which is a high complexity.
But, as we do not have any lower-bound, there may exist
a more efficient decision procedure. Finding such a lower-
bound is another interesting direction of research. Then, our
completeness result was proven for CCA2 only. We believe
it can be extended to more primitives and cryptographic
assumptions. For example, signatures and EUF-CMA are very
similar to asymmetric encryption and IND-CCA2, and should
be easy to handle (even combined with the CCA2 axioms).
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