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Abstract—Computational indistinguishability is a key property
in cryptography and verification of security protocols. Current
tools for proving it rely on cryptographic game transformations.

We follow Bana and Comon’s approach [1], [2], axiomatizing
what an adversary cannot distinguish. We prove the decidability
of a set of first-order axioms which are computationally sound,
though incomplete, for protocols with a bounded number of
sessions whose security is based on an IND-CCA2 encryption
scheme. Alternatively, our result can be viewed as the decidability
of a family of cryptographic game transformations. Our proof
relies on term rewriting and automated deduction techniques.

Index Terms—Security Protocols, Automated Deduction, Deci-
sion Procedure, Computational Indistinguishability

I. INTRODUCTION

Designing security protocols is notoriously hard. For exam-
ple, the TLS protocol used to secure most of the Internet con-
nections was successfully attacked several times at the protocol
level, e.g. the LOGJAM attack [3] or the TRIPLEHANDSHAKE
attack [4]. This shows that, even for high visibility protocols,
and years after their design, attacks are still found.

Using formal methods to prove a security property is the
best way to get a strong confidence. However, there is a diffi-
culty, which is not present in standard program verification: we
need not only to specify formally the program and the security
property, but also the attacker. Several attacker models have
been considered in the literature.

A popular attacker model, the Dolev-Yao attacker, grants the
attacker the complete control of the network: he can intercept
and re-route all messages. Besides, the adversary is allowed
to modify messages using a fixed set of rules (e.g. given a
cipher-text and its decryption key, he can retrieve the plain-
text message). Formally, messages are terms in a term algebra
and the rules are given through a set of rewrite rules. This
model is very amenable to automatic verification of security
properties. There are several automated tools, such as, e.g.,
ProVerif [5], Tamarin [6] and Deepsec [7].

Another attacker model, closer to a real world attacker, is the
computational attacker model. This adversary also controls the
network, but this model does not restrict the attacker to a fixed
set of operations: the adversary can perform any probabilistic
polynomial time computation. More formally, messages are
bit-strings, random numbers are sampled uniformly among
bit-strings in {0, 1}η (where η is the security parameter)
and the attacker is any probabilistic polynomial-time Turing
machine (PPTM). This model offers stronger guarantees than

the Dolev-Yao model (DY model), but formal proofs are harder
to complete and more error-prone. There exist several formal
verification tools in this model: for example, EASYCRYPT [8]
which relies on pRHL, and CRYPTOVERIF [9] which performs
game transformations. As expected, such tools are less auto-
matic than the verification tools in the DY model. Moreover,
the failure to find a proof in such tools, either because the
proof search failed or did not terminate, or because the user
could not manually find a proof, does not give any indication
on the actual security of the protocol.

There is an alternative approach, the Bana-Comon model
(BC model), introduced in [2]. In this model, we express the
security of a protocol as the unsatisfiability of a set of formulas
in first-order logic. The formulas contain the negation of the
security property and axioms, which reflect implementation
assumptions, such as functional correctness and cryptographic
hypotheses on the security primitives. This method has several
advantages over pRHL and game transformations. First, it is
simpler, as there is no security game and no probabilities,
only a first-order formula. Then, carrying out a proof of
unsatisfiability in this logic entails the security of the protocol
in the computational model. Finally, the absence of such
a proof implies the existence of a model of the formula,
i.e. an attack, albeit not necessarily a computational one;
nonetheless, we know that the security of the protocol cannot
be obtained without extra assumptions. Note that the Bana-
Comon approach is only valid for protocols with a finite
number of sessions (there is no unbounded replication). Since
this is the model we use, we inherit this restriction.

There is another input to security proofs that we did
not discuss yet: the class of security properties considered.
Roughly, there are two categories. Reachability properties
state that some bad state is unreachable. This includes, for
example, authentication or (weak) secrecy. Indistinguishability
properties state that an adversary cannot distinguish between
the executions of two protocols. This allows for more complex
properties, such as strong secrecy and unlinkability.

a) Deciding Security: When trying to prove a protocol,
there are three possible outcomes: either we find a proof,
which gives security guarantees corresponding to the attacker
model; or we find an attack, meaning that the protocol is
insecure; or the tool or the user (for interactive provers) could
not carry out the proof and failed to find an attack. The latter
case may happen for two different reasons. First, we could
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neither find a proof nor an attack because the proof method
used is incomplete. In that case, we need either to make new
assumptions and try again, or to use another proof technique.
Second, the tool may not terminate on the protocol considered.
This is problematic, as we do not know if we should continue
waiting, and consume more resources and memory, or try
another method.

This can be avoided for decidable classes of protocols and
properties. Of course, such classes depend on both the attacker
model and the security properties considered. We give here a
non-exhaustive survey of such results. In the symbolic model,
[10] shows decidability of secrecy (a reachability property) for
a bounded number of sessions. In [11], the authors show the
decidability of a secrecy property for depth-bounded protocols,
with an unbounded number of sessions, using Well-Structured
Transition Systems [12]. Chrétien et al [13] show the decid-
ability of indistinguishability properties for a restricted class
of protocols. E.g., they consider processes communicating
on distinct channels and without else branches. The authors
of [14] show the decidability of symbolic equivalence for a
bounded number of sessions, but with conditional branching.

In the computational model, we are aware of only one direct
result. In [15], the authors show the decidability of the security
of a formula in the BC model, for reachability properties, for
a bounded number of sessions. But there is an indirect way
of getting decidability in the computational model, through a
computational soundness theorem (e.g. [16]). A computational
soundness theorem states that, for some given classes of pro-
tocols and properties, symbolic security implies computational
security. These results usually make strong implementation
assumptions (e.g. parsing assumptions, or the absence of
dishonest keys), and require that the security primitives satisfy
strong cryptographic hypothesis. By combining a decidability
result in the symbolic model with a computational soundness
theorem, which applies to the considered classes of protocols
and properties (e.g. [17] for reachability properties, or [18] for
indistinguishability properties), we obtain a decidability result
in the computational model.

We discuss further related works later, in Section VIII.
b) Contributions: In this paper, we consider the BC

model for indistinguishability properties [1]. This is a first-
order logic in which we design a set of axioms Ax which
includes, in particular, axioms for the IND-CCA2 cryptographic
assumption [19]. Given a protocol and a security property, we
can build, using a folding technique described in [1], a ground
atomic formula ψ expressing the security of the protocol.
Showing the unsatisfiability of the conjunction of the axioms
Ax and the negation of ψ entails the security of the protocol in
the computational model, assuming that the encryption scheme
is IND-CCA2 secure.

Our main result is the decidability of the problem:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

That is, we show the decidability of a sound, though incom-
plete, axiomatization of computational indistinguishability.

All the formulas in Ax are Horn clauses, therefore to show
the unsatisfiability of Ax ∧ ~u 6∼ ~v we use resolution with
a negative strategy: we see axioms in Ax as inference rules
and look for a derivation of the goal ~u ∼ ~v. We prove the
decidability of the corresponding satisfiability problem.

The main difficulty lies in dealing with equalities (de-
fined through a term rewriting system R). First we show
the completeness of an ordered strategy by commuting rule
applications. This allows us to have only one rewriting modulo
R at the beginning of the proof. We then bound the size of
the terms after this rewriting as follows: we identify a class of
proof cuts introducing arbitrary subterms; we give proof cut
eliminations to remove them; and finally, we show that cut-free
proofs are of bounded size w.r.t. the size of the conclusion.

c) Game Transformations: Our result can be reinter-
preted as the decidability of the problem of determining
whether there exits a sequence of game transformations [20],
[21] that allows to prove the security of a protocol. Indeed,
one can associate to every axiom in Ax either a cryptographic
assumption or a game transformation.

Each unitary axiom in Ax (an atomic formula) corresponds
to an instantiation of the IND-CCA2 game. For instance, in
the simpler case of IND-CPA security of an encryption {_}n

pk,
no polynomial-time adversary can distinguish between two
cipher-texts, even if it chooses the two corresponding plain-
texts (here, n is the explicit encryption randomness). Initially,
the public key pk is given to the adversary, who computes a
pair of plain-texts g(pk): g is interpreted as the adversary’s
computation. Then the two cipher-texts, corresponding to the
encryptions of the first and second components of g(pk),
should be indistinguishable. This yields the unitary axiom:

{π1(g(pk))}n
pk ∼ {π2(g(pk))}n

pk

Similarly, non-unitary axioms correspond to cryptographic
game transformations. E.g., the function application axiom:

~u ∼ ~v → f(~u) ∼ f(~v)

states that if no adversary can distinguish between the argu-
ments of a function call, then no adversary can distinguish
between the images. As for a cryptographic game transforma-
tion, the soundness of this axiom is shown by reduction. Given
a winning adversary A against the conclusion f(~u) ∼ f(~v),
we build a winning adversary B against ~u ∼ ~v: the adversary
B, on input ~w (which was sampled from ~u or ~v), computes
f(~w) and then gives the result to the distinguisher A. The
advantage of B against ~u ∼ ~v is then the advantage of A
against f(~u) ∼ f(~v), which is (by hypothesis) non negligible.

By interpreting every axiom in Ax as a cryptographic
assumption or a game transformation, and the goal formula
~u ∼ ~v as the initial game, our result can be reformulated as
showing the decidability of the following problem:

Input: An initial game ~u ∼ ~v.
Question: Is there a sequence of game transformations in Ax

showing that ~u ∼ ~v is secure?
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From this point of view, our result guarantees a kind of
sub-formula property for the intermediate games appearing
in the game transformation proof. We may only consider
intermediate games that are in a finite set computable from the
original protocol: the other games are provably unnecessary
detours. To our knowledge, our result is the first showing the
decidability of a class of game transformations.

d) Scope and Limitations: To achieve decidability, we
had to remove or restrict some axioms. The most important
restriction is arguably that we do not include the transitivity
axiom. The transitivity axiom states that to show that ~u ∼ ~v,
it is sufficient to find a ~w such that ~u ∼ ~w and ~w ∼ ~v.
Obviously, this axiom is problematic for decidability, as the
vector of term ~w must be guessed, and may be arbitrarily
large. Therefore, instead of directly including transitivity, we
push it inside the CCA2 axiom schema, by allowing instances
of the CCA2 axiom to deal simultaneously with multiple keys
and interleaved encryptions. Of course, this is at the cost of a
more complex axiom. We do not know if our problem remains
decidable when we include the transitivity axiom.

e) Applications: The BC indistinguishability model has
been used to analyse RFID protocols [22], a key-wrapping
API [23] and an e-voting protocol [24]. Ideally, we would like
future case studies to be carried out automatically and machine
checked. Because our procedure has a high complexity, it
is unclear whether it can be used directly for this. Still,
our procedure could be a building block in a tool doing an
incomplete but faster heuristic exploration of the proof space.

CRYPTOVERIF and EASYCRYPT are based on game trans-
formations, directly in the former and through the pRHL logic
in the latter. Therefore, our result could be used to bring
automation to these tools. Of course, both tools allow for more
rules. Still, we could identify which game transformations or
rules correspond to our axioms, and apply our result to obtain
decidability for this subset of game transformations.

f) Outline: We introduce the logic and the axioms in
Section II and III. We then state the main result in Section IV,
and depict the difficulties of the proof. Finally we sketch the
proof: in Section V we show the rule commutations and some
cut eliminations; in Section VI we show a normal form for
proofs and its properties; and in Section VII we give more cut
eliminations and the decision procedure. We discuss in details
the related works in Section VIII. Most of the proofs are in
appendix.

II. THE LOGIC

We recall here the logic introduced in [1]. In this logic,
terms represent messages of the protocol sent over the net-
work, including the adversary’s inputs, which are specified
using additional function symbols. Formulas are built using
the usual Boolean connectives and FO quantifiers, and a
single predicate, ∼, which stands for indistinguishability. The
semantics of the logic is the usual first-order semantics, though
we are particularly interested in computational models, in
which terms are interpreted as PPTMs, and ∼ is interpreted
as computational indistinguishability.

This logic is then used as follows: given a protocol and
a security property, we can build (automatically) a single
formula ~u ∼ ~v expressing the security of the protocol. We
specify, through a (recursive) set of axioms, what the adversary
cannot do. This yields a set of axioms Ax. We show that
Ax ∧ ~u 6∼ ~v is unsatisfiable, and that the axioms Ax are valid
in the computational model. We deduce from this the security
of the protocol in the computational model.

A. Syntax

a) Terms: Terms are built upon a set of function symbols
F , a countable set of names N and a countable set of variables
X . This is a sorted logic with two sorts Sm,Sb, with Sb ⊆ Sm.

The set F of function symbols is composed of a countable
set of adversarial function symbols G (representing the ad-
versary computations), and the following function symbols:
the pair 〈_ , _〉, projections π1, π2, public and private key
generation pk(_), sk(_), encryption with random seed {_}_

_,
decryption dec(_, _), if_then_else_, true, false, zero 0(_)
and equality check eq(_, _). We give their types below:

〈_ , _〉 ,dec(_, _) : S2
m → Sm eq(_, _) : S2

m → Sb

π1, π2, 0,pk, sk : Sm → Sm {_}_
_ : S3

m → Sm

if_then_else_ : Sb × S2
m → Sm true, false : → Sb

Moreover all the names in N have sort Sm, and each
variable in X comes with a sort. We let Fs be F without
the if_then_else_ function symbol, and for any subset S of
the union of F , N and X , we let T (S) be the set of terms
built upon S.

b) Formulas: For every integer n, we have one predicate
symbol ∼n of arity 2n, which represents equivalence between
two vectors of terms of length n. Formulas are then obtained
using the usual Boolean connectives and first-order quantifiers.

c) Semantics: We use the classical first-order logic se-
mantics: every sort is interpreted by some domain, and func-
tion symbols and predicates are interpreted as, resp., functions
of the appropriate domains and relations on these domains.

We focus on a particular class of such models, the com-
putational models. We informally describe the properties of a
computational model Mc (a full description is given in [1]):
• Sm is interpreted as the set of probabilistic polynomial

time Turing machines equipped with a working tape and
two random tapes ρ1, ρ2 (one for the protocol random
values, the other for the adversary random samplings).
Moreover its input is of length η (the security parameter).
Sb is the restriction of Sm to machines that return 0 or 1.

• A name n ∈ N is interpreted as a machine that, on input
of length η, extracts a word of length η from the first
random tape ρ1. Furthermore we require that different
names extract disjoint parts of ρ1.

• true, false, 0(_), eq(_, _), and if_then_else_ are in-
terpreted as expected. For instance, eq(_, _) takes two
machines M1, M2, and returns M such that on input w
and random tapes ρ1, ρ2, M returns 1 if M1(w, ρ1, ρ2) =
M2(w, ρ1, ρ2) and 0 otherwise. The function symbol 0
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is interpreted as the function that, on input of length l,
returns the bit-string 0l.

• A function symbol g ∈ G with n arguments is interpreted
as a function [[g]] such that there is a polynomial-time Tur-
ing machine Mg such that for every machines (mi)i≤n in
the interpretation domains, and for every inputs w, ρ1, ρ2:

[[g]]
(
(mi)i≤n)(w, ρ1, ρ2

)
= Mg

(
(mi(w, ρ1, ρ2))i≤n, ρ2)

Observe that Mg cannot access directly the tape ρ1.
• Protocol function symbols are interpreted as deterministic

polynomial-time Turing machine. Their interpretations
will be restricted using implementation axioms later.

• The interpretation of function symbols is lifted to terms:
given an assignment σ of the variables of a term t to
elements of the appropriate domains, we write [[t]]ση,ρ1,ρ2
the interpretation of the term with respect to η, ρ1, ρ2. σ
is omitted when empty. We also omit the other parameters
when they are irrelevant.

• The predicate ∼n is interpreted as computational indis-
tinguishability ≈, defined by m1, . . . ,mn ≈ m′1, . . . ,m′n
iff for every PPTM A with random tape ρ2:∣∣Pr(ρ1, ρ2 : A((mi(1

η, ρ1, ρ2))1≤i≤n, ρ2) = 1) −
Pr(ρ1, ρ2 : A((m′i(1

η, ρ1, ρ2))1≤i≤n, ρ2) = 1)
∣∣

is negligible in η (a function is negligible if it is asymp-
totically smaller than the inverse of any polynomial).
Moreover, for all ground terms u, v, we writeMc |= u ∼
v when [[u]] ≈ [[v]] in Mc.

Example 1. Let n0,n1,n ∈ N and g ∈ F of arity zero. For
every computational model Mc:

Mc |= if g() then n0 else n1 ∼ n

Indeed, the term on the left represents the message obtained
by letting the adversary choose a branch, and then sampling
from n0 or n1 accordingly. This is semantically equivalent to
directly performing a random sampling, as done on the right.

III. AXIOMS

We present the axioms Ax, which are of two kinds:
• structural axioms represent properties that hold in every

computational model. This includes axioms such as the
symmetry of ∼, or properties of the if_then_else_.

• implementation axioms reflect implementation assump-
tions, such as the functional correctness of the pair
and projections (e.g. π1(〈u , v〉) = u), or cryptographic
assumptions on the security primitives (e.g. IND-CCA2).

All our axioms Ax are universally quantified Horn clauses.
To show the unsatisfiability of Ax ∧ ~u 6∼ ~v, we use resolution
with a negative strategy (which is complete, see [25]). As all
axioms are Horn clauses, a proof by resolution with a negative
strategy can be seen as a proof tree where each node is indexed
by the axiom of Ax used at this resolution step. Hence, axioms
will be given as inference rules (where variables are implicitly
universally quantified).

A. Equality and Structural Axioms

Some notation conventions: we use ~u to denote a vector of
terms; and we use an infix notation for ∼, writing ~u ∼ ~v when
~u and ~v are of the same length.

The equality and structural axioms we present here already
appeared in the literature [1], [22], [26], sometimes with
slightly different formulations.

a) Equality: Computational indistinguishability is an
equivalence relation (i.e. reflexive, symmetric and transitive).
But we can observe that it is not a congruence. E.g. take
a computational model Mc, we know that two names n
and n′ are indistinguishable (since they are interpreted as
independent uniform random sampling in {0, 1}η), and n is
indistinguishable from itself. Therefore:

Mc |= n ∼ n′ and Mc |= n ∼ n

But there is a simple PPTM that can distinguish between
〈n , n〉 and 〈n′ , n〉: simply test whether the two arguments
are equal, if so return 1 and otherwise return 0. Then, with
overwhelming probability, this machine will guess from which
distribution its input was sampled from.

Even though ∼ is not a congruence, we can get a congru-
ence from it: if eq(s, t) ∼ true holds in all models then, using
the semantics of eq(_, _), in every computational model Mc,
[[s]] and [[t]] are identical except for a negligible number of
samplings. Hence we can replace any occurrence of s by t
in a formula without changing its semantics with respect to
computational indistinguishability.

We use this in our logic as follows: we let s = t be a
shorthand for eq(s, t) ∼ true, and we introduce a set of
equalities R (given in Fig. 1) and its congruence closure
=R. We split R in four sub-parts: R1 contains the functional
correctness assumptions on the pair and encryption; R2 and
R3 contain, respectively, the homomorphism properties and
simplification rules of the if_then_else_; and R4 allows to
change the order in which conditional tests are performed.

We then introduce a recursive set of rules:
~u, t ∼ ~v
~u, s ∼ ~v R (s, t ground terms with s =R t)

By orienting R1, R2, R3 from left to right, and carefully
choosing an orientation for the ground instances of R4, we
obtain a recursive term rewriting system →R. We have the
following theorem (proven in Appendix I):

Theorem 1. The TRS →R is convergent on ground terms.

b) Structural Axioms: We now give an informal descrip-
tion of the axioms given in Fig. 2. We describe in details the
case study axiom CS, which is the most complicated one. It
states that in order to show that:

if b then u else v ∼ if b′ then u′ else v′

it is sufficient to show that the then branches and the else
branches are indistinguishable, when giving to the adversary
the value of the conditional (i.e. b on the left and b′ on the
right). We can do better, by considering simultaneously several
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R1

{
πi(〈x1, x2〉) = xi eq(x, x) = true
dec({x}zpk(y), sk(y)) = x

R2


f(~u, if b then x else y,~v) =

if b then f(~u, x,~v) else f(~u, y,~v) (f ∈ Fs)
if (if b then a else c) then x else y =

if b then (if a then x else y) else (if c then x else y)

R3


if b then x else x = x
if true then x else y = x if false then x else y = y
if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z

R4


if b then (if a then x else y) else z =

if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =

if a then (if b then x else y) else (if b then x else z)

Fig. 1. R = R1 ∪R2 ∪R3 ∪R4

terms starting with the same conditional. We also allow some
terms ~w and ~w′ on the left and right to stay untouched:

~w, b, (ui)i ∼ ~w′, b′, (u′i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i

~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′i else v′i)i

This is the only axiom with more than one premise. Further-
more we assume that b, b′ do not contain conditionals.

We quickly describe the other structural axioms: Perm allows
to change the terms order, using the same permutation on both
sides of ∼; Restr is a strengthening axiom; R allows to replace
a term s by any R-equal term t; the function application axiom
FA states that to prove that two images are indistinguishable, it
is sufficient to show that the arguments are indistinguishable
(we restrict this axiom to the case where f is in F \{0});
Sym states that indistinguishability is symmetrical; and Dup
states that giving twice the same value to an adversary is
equivalent to giving it only once. All the above axioms are
computationally valid.

Proposition 1. The axioms given in Fig. 2 are valid in
any computational model in which the functional correctness
assumptions R1 on pairs and encryptions hold.

Proof. The proof can be found in [1].

c) Restrictions: As mentioned earlier, we restricted some
axioms to achieve decidability. For example, the CS and FA
axioms presented above are weaker than the corresponding ax-
ioms in [1]: in the CS axiom, we forbid the terms b and b′ from
containing conditionals; and we do not allow FA applications
on the 0 function symbols. These are technical restrictions
which are used in the proof, but might be unnecessary.

B. Cryptographic Assumptions

We now show how cryptographic assumptions are translated
into unitary axioms. In the computational model, the security
of a cryptographic primitive is expressed through a game
between a challenger and an attacker (which is a PPTM) that
tries to break the primitive.

We present here the IND-CCA2 game (for Indistinguishabil-
ity against Chosen Ciphertexts Attacks, see [19]). First, the

challenger computes a public/private key pair (pk(n), sk(n))
(using a nonce n of length η uniformly sampled), and sends
pk(n) to the attacker. The adversary then has access to two
oracles: i) a left-right oracle ObLR(n) that takes two messages
m0,m1 as input and returns {mb}nr

pk(n), where b is an internal
bit uniformly sampled at the beginning by the challenger and
nr is a fresh nonce; ii) a decryption oracle Odec(n) that, given
m, returns dec(m, sk(n)) if m was not the result of a previous
OLR oracle query, and length of m zeros otherwise. Remark
that the two oracles have a shared memory. For simplicity, we
omit the length constraints of these oracles (we give them in
Appendix II). The advantage AdvCCA2

A (η) of an adversary A
against this game is the probability for A to guess the bit b:∣∣ Pr

(
n : AO

1
LR(n),Odec(n) (1η) = 1

)
− Pr

(
n : AO

0
LR(n),Odec(n) (1η) = 1

) ∣∣
An encryption scheme is IND-CCA2 if the advantage
AdvCCA2

A (η) of any adversary A is negligible in η. The
IND-CCA1 game is the restriction of this game where the
adversary cannot call Odec after having called OLR. An
encryption scheme is IND-CCA1 if AdvCCA1

A (η) is negligible
for any adversary A.

a) CCA1 Axiom: Before introducing the CCA2 axioms, we
recall informally the CCA1 axioms from [1]. First, we define a
syntactic property on secret keys used as a side-condition of
the CCA1 axioms:

Definition 1. For every ground term t, we say that a secret
key sk(n) appears only in decryption position in t if it appears
only in subterms of t of the form dec(_, sk(n)).

We now define the CCA1 axioms:

Definition 2. CCA1 is the computable set of unitary axioms:

~w, t[{u}nr
pk(n)] ∼ ~w, t[{v}nr

pk(n)]

where: nr does not appear in t, u, v, ~w; n appears only in
pk(n) or sk(n) in t, u, v, ~w; sk(n) does not appear in t, ~w;
sk(n) appears only in decryption position in u, v; and the
terms u and v are always of the same length.

Proposition 2. CCA1 is valid in every computational model
where the encryption scheme interpretation is IND-CCA1.

Proof. (sketch) The proof is a reduction that, given a PPTM A
that can distinguish between ~w, t[{u}nr

pk(n)] and ~w, t[{v}nr
pk(n)],

builds a winning adversary against the IND-CCA1 game.
We define the adversary. First, it computes [[u]] and [[v]],

calling the decryption oracle if necessary. It then sends them
to the challenger who answers c, which is either [[{u}nr

pk(n)]] or
[[{v}nr

pk(n)]]. Observe that we need the freshness hypothesis on
nr as it is drawn by the challenger and the adversary cannot
sample it. Using c, the adversary computes [[t[c]]], which it can
do because the secret key does not appear in t, and then returns
the bit A([[t[c]]]). The advantage of the adversary is exactly the
advantage of A, which we assumed non-negligible, hence the
adversary wins the game.
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uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)
u1, . . . , un ∼ v1, . . . , vn Perm

~u, t ∼ ~v, t′

~u ∼ ~v Restr for any s =R t,
~u, t ∼ ~v
~u, s ∼ ~v R

~u1, ~v1 ∼ ~u2, ~v2

f(~u1), ~v1 ∼ f(~u2), ~v2
FA

~u, t ∼ ~v, t′

~u, t, t ∼ ~v, t′, t′
Dup

~v ∼ ~u
~u ∼ ~v

Sym for any b, b′ ∈ T (Fs,N ),
~w, b, (ui)i ∼ ~w′, b′, (u′i)i ~w, b, (vi)i ∼ ~w′, b′, (v′i)i

~w, (if b then ui else vi)i ∼ ~w′, (if b′ then u′i else v′i)i
CS

Conventions: π is a permutation of {1, . . . , n} and f ∈ F \{0}.

Fig. 2. The Axioms Struct-Ax.

Remark 1. In the CCA1 axiom, we did not specify how we
ensure that u and v are always of the same length. Since
the length of a term depends on implementation details (e.g.
how the pair 〈_ , _〉 implemented), we let the user supply im-
plementation assumptions, but require that these assumptions
satisfy some properties (this is necessary to get decidability).
To simplify the presentation, we omit all length constraints for
now. We describe them later, in Section II-B.

b) CCA2 Axiom: To extend this axiom to the IND-CCA2

game, we need to deal with calls to the decryption oracle
performed after some calls to the left-right oracle. For exam-
ple, consider the case where one call (u, v) was made. Let
α ≡ {u}nr

pk(n) and α′ ≡ {v}nr
pk(n) (where ≡ denotes syntactic

equality) be the result of the call on, respectively, the left and
the right. A naive first try could be to state that decryptions
are indistinguishable. That is, if we let s ≡ t[α] and s′ ≡ t[α′],
then dec(s, sk(n)) ∼ dec(s′, sk(n)). But this is not valid: for
example, take u ≡ 0, v ≡ 1, t ≡ g([]) (where [] is a hole
variable). Then the adversary can, by interpreting g as the
identity function, obtain a term semantically equal to 0 on the
left and 1 on the right. This allows him to distinguish between
the left and right cases.

We prevent this by adding a guard checking that we are not
decrypting α on the left (resp. α′ on the right): if not, we return
the decryption dec(s, sk(n)) (resp. dec(s′, sk(n))) asked for,
otherwise we return a dummy message 0(dec(s, sk(n))) (resp.
0(dec(s′, sk(n)))).

Definition 3. CCA2s is the (recursive) set of unitary axioms:

~w, t[α], if eq(s, α) then 0(dec(t[α], sk(n)))

else dec(t[α], sk(n))

∼ ~w, t[α′], if eq(s′, α′) then 0(dec(t[α′], sk(n)))

else dec(t[α′], sk(n))

under the side-conditions of Definition 2.

This axiom is valid whenever the encryption is IND-CCA2.

Proposition 3. CCA2s is valid in every computational model
where the encryption scheme interpretation is IND-CCA2.

This construction can be generalized to any number of calls
to the left-right oracle, by adding a guard for each call, and to
any number of keys. We refer the reader to Appendix II, where

we define formally the general CCA2 axioms. 1 Still, a few
comments: we use extra syntactic side-conditions to remove
superfluous guards; we allow for α-renaming of names; we
restrict t to be without if_then_else_ and 0; the axioms allow
for an arbitrary number of public/private key pairs to be used
simultaneously; and finally, an instance of the axiom can
contain any number of interleaved left-right and decryption
oracles calls.

Remark 2. The last point is what allows us to avoid transitivity
in proofs. For example, consider four encryptions, two of them
(α and γ) using the public key pk(n), and the other two (β
and δ) using the public key pk(n′):

α ≡ {A}n0

pk(n) β ≡ {B}n1

pk(n′) γ ≡ {C}n0

pk(n) δ ≡ {D}n1

pk(n′)

Then the following formula is a valid instance of the CCA2
axioms on, simultaneously, keys pk(n) and pk(n′):

α, β ∼ γ, δ CCA2(pk(n),pk(n′))

However, proving the above formula using CCA2 only on one
key at a time, as in [1], requires transitivity:

α, β ∼ α, δ CCA2(pk(n′))
α, δ ∼ γ, δ CCA2(pk(n))

α, β ∼ γ, δ

C. Comments and Examples

Our set of axioms is not complete w.r.t. the computational
interpretation semantics. Indeed, being so would mean axiom-
atizing exactly which distributions (computable in polynomial
time) can be distinguished by PPTMs, which is unrealistic
and would lead to undecidability. E.g., if we completely ax-
iomatized IND-CCA2, then showing the satisfiability of our set
of axioms would show the existence of IND-CCA2 functions,
which is an open problem.

Still, our axioms are expressive enough to complete concrete
proofs of security. We illustrate this with two simple examples:
a proof of the formula in Example 1, and a proof of the security
of one round of the NSL protocol [27]. Of course, such proofs
can be found automatically using our decision procedure.

Example 2. We give a proof of the formula of Example 1:

if g() then n0 else n1 ∼ n

1Note that axioms for the IND-CCA2 cryptographic assumption have already
appeared in the literature, in [26]. These axioms are only for a single call to
the left-right oracle, and a single key. Our axiom schema is more general.
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First, we introduce a conditional g() on the right to match the
structure of the left side using R. Then, we split the proof
in two using the CS axiom. We conclude using the reflexivity
modulo α-renaming axiom (this axiom is subsumed by CCA2,
therefore we do not include it in AX).

g(),n0 ∼ g(),n REFL
g(),n1 ∼ g(),n REFL

if g() then n0 else n1 ∼ if g() then n else n
CS

if g() then n0 else n1 ∼ n R

{〈nA , A〉}n0
pkB

{〈nA , 〈nB , B〉〉}n1
pkA

{nB}n2
pkB

A B

Fig. 3. The NSL protocol.

a) Proof of NSL: We con-
sider a simple setting with one
initiator A, one responder B
and no key server. An execu-
tion of the NSL protocol is
given in Fig. 3.

We write this in the logic.
First, we let pkA ≡ pk(nA)
and skA ≡ sk(nA) be the
public/private key pair of agent
A (we define similarly (pkB,
skB)). Since A does not wait for any input before sending
its first message, we put it into the initial frame:

φ0 ≡ pkA,pkB, {〈nA , A〉}n0

pkB

Then, both agents wait for a message before sending a single
reply. When receiving xA (resp. xB), the answer of agent A
(resp. B) is expressed in the logic as follows:

tA[xA] ≡ if eq(π1(dec(xA, skA)),nA) then
if eq(π2(π2(dec(xA, skA))),B) then
{π1(π2(dec(xA, skA)))}n2

pkB

tB[xB] ≡ if eq(π2(dec(xB, skB)),A) then
{〈π1(dec(xB, skB)) , 〈nB , B〉〉}n1

pkA

During an execution of the protocol, the adversary has several
choices. First, it decides whether to interact first with A or
B. We focus on the case where it first sends a message to
B (the other case is similar). Then, it can honestly forward
the messages or forge new ones. E.g., when sending the first
message to B, it can either forward A’s message {〈nA , A〉}n0

pkB
or forge a new message. We are going to prove the security of
the protocol in the following case (the other cases are similar):
• the first message, sent to B, is honest. Therefore we take

xB ≡ {〈nA , A〉}n0

pkB
, and the answer from B is:

tB[xB] =R {〈nA , 〈nB , B〉〉}n1

pkA

• the second message, sent to A, is forged. Therefore we
take xA ≡ g(φ1), where φ1 ≡ φ0, tB[xB]. As, a priori,
nothing prevents g(φ1) from being equal to tB[xB], we
use the conditional eq(g(φ1), tB[xB]) to ensure that this
message is forged. The answer from A is then:

s ≡ if eq(g(φ1), tB[xB]) then 0 else tA[g(φ1)] (1)

We show the secrecy of the nonce nB: we let t′B[xB] (resp. s′)
be the term tB[xB] (resp. s) where we replaced all occurrences
of nB by 0. For example, t′B[xB] =R {〈nA , 〈0 , B〉〉}n1

pkA
. This

yields the following goal formula:

φ0, tB[xB], s ∼ φ0, t
′
B[xB], s′ (2)

Remark 3. The process of computing the formula from the
protocol description can be done automatically, using a simple
procedure similar to the folding procedure from [1]. The
formula in (2) has already been split between the honest and
dishonest cases using the case study axiom CS (we omit the CS
applications to keep the proof readable). For example, the term
in (1) is the “else” branch of a CS application on conditional
eq(g(φ1), tB[xB]) (which does not contain nested conditionals,
as required by the CS side-condition).

We now proceed with the proof. We let δ be the guarded
decryption that will be used in the CCA2 axiom:

δ ≡ if eq(g(φ1), tB[xB]) then 0(dec(g(φ1), skA))

else dec(g(φ1), skA)

(3)

and sδ be the term s where all occurrences of dec(g(φ1), skA)
have been replaced by δ. We have s =R sδ . We also introduce
shorthands for some subterms of sδ: we let aδ , bδ and eδ be the
terms eq(π1(δ),nA), eq(π2(π2(δ))),B) and {π1(π2(δ))}n2

pkB
.

We define δ′, s′δ′ , a
′
δ′ , b
′
δ′ and e′δ′ similarly.

We then rewrite s and s′ into sδ and s′δ′ using R. Then
we apply FA several times, first to deconstruct sδ and s′δ′ , and
then to deconstruct aδ, bδ and a′δ′ , b

′
δ′ . Finally, we use Dup to

remove duplicates, and we apply CCA2 simultaneously on key
pairs (pkA, skA) and (pkB, skB) (we omit here the details of
the syntactic side-conditions that have to be checked):

φ0, tB[xB],nA, δ, eδ ∼ φ0, t
′
B[xB],nA, δ

′, e′δ′
CCA2

φ0, tB[xB], aδ, bδ, eδ ∼ φ0, t
′
B[xB], a′δ′ , b

′
δ′ , e

′
δ′

(FA,Dup)∗

φ0, tB[xB], sδ ∼ φ0, t
′
B[xB], s′δ′

(FA,Dup)∗

φ0, tB[xB], s ∼ φ0, t
′
B[xB], s′

R

IV. MAIN RESULT AND DIFFICULTIES

We let Ax be the conjunction of Struct-Ax and CCA2. We
now state the main result of this paper.

Theorem (Main Result). The following problem is decidable:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

We give here an overview of the problems that have to
be overcome in order to obtain the decidability result. Before
starting, a few comments. We close all rules under permuta-
tions. The Sym rule commutes with all the other rules, and
the CCA2 unitary axioms are closed under Sym. Therefore we
can remove Perm and Sym from the set of rules. Observe that
CS, FA,Dup and CCA2 are all decreasing rules, i.e. the premises
are smaller than the conclusion. The only non-decreasing rules
are R, which may rewrite a term into a larger one, and Restr,
which we eliminate later. Therefore we now focus on R.
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a) Necessary Introductions: As we saw in Example 2,
it might be necessary to use R in the “wrong direction”,
typically to introduce new conditionals. A priori, this yields an
unbounded search space. Therefore our goal is to characterize
in which situations we need to use R in the “wrong direction”,
and with which instances. We identify two necessary reasons
for introducing new conditionals.

First, to match the shape of the term on the other side,
like g() in Example 2. In this case, the introduced conditional
is exactly the conditional that appeared on the other side of
∼. With more complex examples this may not be the case.
Nonetheless, an introduced conditional is always bounded by
the conditional it matches.

Second, we might introduce a guard in order to fit to the
definition of safe decryptions in the CCA2 axioms, as in (3).
Here also, the introduced guard will be of bounded size.
Indeed, guards of dec(s, sk) are of the form eq(s, α) where α
is a subterm of s. Therefore, for a fixed s, there are a bounded
number of them, and they are of bounded size.

Example 3 (Cut Elimination). These conditions are actually
sufficient. We illustrate this on an example where the CS rule
is applied on two conditionals that have just been introduced.

a, s ∼ b, t a, s ∼ b, t
if a then s else s ∼ if b then t else t

CS

s ∼ t R

Here a and b can be of arbitrary size. Intuitively, this is not
a problem since any proof of a, s ∼ b, t includes a proof of
s ∼ t. Formally, we have the following weakening lemma.

Lemma 1. For every proof P of a ground formula ~u, s ∼ ~v, t,
there exists a proof P ′ of ~u ∼ ~v where P ′ is no larger than P .

Proof. (sketch) The full proof is in Appendix III. We prove
by induction on P that the Restr rule is admissible using
Ax\{Restr}. For this to work, we need the CCA2 axioms to
be closed under Restr. Note that this creates some problems,
which are dealt with in Appendix II-A.

Using this lemma, we can deal with Example 3 by doing
a proof cut elimination. More generally, by induction on the
proof size, we can guarantee that no such proof cuts appear.

This is the strategy we are going to follow: look for proof
cuts that introduce unbounded new terms, eliminate them,
and show that after sufficiently many cut eliminations all the
subterms appearing in the proof are bounded by the (R-normal
form of the) conclusion.

But a proof may contain more complex behaviors than just
the introduction of a conditional followed by a CS application.
For example the conditional being matched could have been
itself introduced earlier to match another conditional, which
itself was introduced to match a third conditional etc.

Example 4. We illustrate this on an example. When it is more
convenient, we write terms containing only if_then_else_ and
other subterms (handled as constants) as binary trees; we also

index some subterms with a number, which helps keeping track
of them across rule applications.

a1, b2, b3, u4, w5, u6, v7 ∼ d1, c2, d3, s4, t5, r6, p7

a1

b2

u4 b3

w5 u6

v7

∼

d1

c2

s4 d3

t5 r6

p7

FA(3)

if a then u else v ∼ if c then s else t R

where p7 ≡ if c then s else t. Here the conditionals b, d and
the terms w, r are, a priori, arbitrary. Therefore we would like
to bound them or remove them through a cut elimination. The
cut elimination technique used in Example 3 does not apply
here because we cannot extract a proof of a ∼ c.

But we can extract a proof of b2, b3 ∼ c2, d3. Using
Proposition 1, this means that in every appropriate compu-
tational model, [[b, b]] ≈ [[c, d]]. It means that no adversary
can distinguish between getting twice the same value sampled
from [[b]] and getting a pair of values sampled from [[c, d]].
In particular, this means that [[c]]η,ρ = [[d]]η,ρ, except for a
negligible number of random tapes ρ.

b) A First Key Lemma: A natural question is to ask
whether this semantic equality [[c]] = [[d]] implies a syntactic
equality. While this is not the case in general, there are
fragments of our logic in which this holds. We annotate
the rules FA by the function symbol involved, and we let
FAs = {FAf | f ∈ Fs}.

Definition 4. Let Σ be the set of axiom names, seen as an
alphabet. For all L ⊆ Σ∗, we let F(L) be the fragment of
our logic defined by: a formula φ is in the fragment iff there
exists a proof P such that P ` φ and, for every branch ρ of
P , the word w obtained by collecting the axiom names along
ρ (starting from the root) is in L.

Lemma 2. For all b, b′, b′′, if b, b ∼ b′, b′′ is in the fragment
F(FAs

∗ · Dup∗ · CCA2) then b′ ≡ b′′.

Proof. The proof relies on the shape of the CCA2 axioms, and
can be found in Appendix IV.

Using this lemma, we can deal with Example 4 if a1, b2, b3 ∼
d1, c2, d3 lies in the fragment F(FAs

∗ ·Dup∗ ·CCA2). Using a first
time the lemma on b2, b3 ∼ c2, d3 we obtain c ≡ d, and using
again the lemma on a1, b2 ∼ d1, c2 (since d ≡ c) we deduce
a ≡ b. Hence the cut elimination introduced before applies.

c) Proof Sketch: We now state the sketch of the proof:
• Commutations: first we show that we can assume that

rules are applied in some given order. We prove this by
showing some commutation results and adding new rules.

• Proof Cut Eliminations: through proof cut eliminations,
we guarantee that every conditional appearing in the proof
is α-bounded. Intuitively a conditional is α-bounded if it
is a subterm of the conclusion or if it guards a decryption
appearing in an α-bounded term.
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• Decision Procedure: we give a procedure that, given a
goal formula t ∼ t′, computes the set of α-bounded terms
for this formula. We show that this procedure computes a
finite set, and deduce that the proof search is finite. This
yields an effective algorithm to decide our problem.

V. COMMUTATIONS AND CUT ELIMINATIONS

In this section we show, through rule commutations, that we
can restrict ourselves to proofs using rules in some given order.
Then, we show how this restricts the shapes of the terms.

A. Rule Commutations

Everything in this subsection applies to any set U of unitary
axioms closed under Restr. We specialize to CCA2 later.

We start by showing a set of rule commutations of the form
w ⇒ w′, where w and w′ are words over the set of rule
names. An entry w ⇒ w′ means that a derivation in w can
be rewritten into a derivation in w′, with the same conclusion
and premises. Here are the basic commutations we use:

Dup ·R ⇒ R · Dup

Dup · FA ⇒ FA∗ · Dup

Dup · CS ⇒ CS · Dup

FA ·R ⇒ R · FA

FA · CS ⇒ R · CS · FA

Lemma 3. All the above rule commutations are correct.

Proof. We show only FA · R ⇒ R · FA (the full proof is in
Appendix III):

~u1, ~v1 ∼ ~u ′1, ~v ′1
~u,~v ∼ ~u ′, ~v ′ R

~u, f(~v) ∼ ~u ′, f(~v ′)
FA
⇒

~u1, ~v1 ∼ ~u ′1, ~v ′1
~u1, f(~v1) ∼ ~u ′1, f(~v ′1)

FA

~u, f(~v) ∼ ~u ′, f(~v ′)
R

Using these rules, we obtain a first restriction.

Lemma 4. The ordered strategy F((CS +R)∗ · FA∗ · Dup∗ · U)
is complete for F((CS + FA +R+ Dup + U)∗).

Proof. First, we commute all the Dup to the right, which yields
F((CS +R+ FA)∗ · Dup∗ · U). Then, we commute all FA to the
right, stopping at the first Dup.

a) Splitting the FA Rule: To go further, we split FA as
follows: if the deconstructed symbol is if_then_else_ then
we denote the function application by FA(b, b′), where b, b′

are the involved conditionals; if the deconstructed symbol f
is in Fs, then we denote the function application by FAf . We
give below the two new rules:

~w, a, u, v ∼ ~r, b, s, t
~w, if a then u else v

∼ ~r, if b then s else t

FA(b, b′) ~u,~v ∼ ~s,~t
~u, f(~v) ∼ ~s, f(~t)

FAf

The set of rule names is now infinite, since there exists one
rule FA(b, b′) for every pair of ground terms b, b′.

b) Further Commutations: Intuitively, we want to use
R at the beginning of the proof only. This is helpful since,
as we observed earlier, all the other rules are decreasing (i.e.
premises are smaller than the conclusion). The problem is that
we cannot fully commute CS and R. For example, in:

a′, u′ ∼ b′, s′
a, u ∼ b, s R

a′′, v′ ∼ b′′, t′
a, v ∼ b, t R

if a then u else v ∼ if b then s else t
CS

we can commute the rewritings on u, v, s and t, but not on a
and b because they appear twice in the premises, and a′ and
a′′ may be different (same for b′ and b′′).

c) New Rules: We handle this problem by adding new
rules to track relations between branches. We give only sim-
plified versions here, the full rules are in Appendix III. For
every a, c in T (Fs,N ) in R-normal form, we have the rules:

~u,C
[
a a

a

]
∼ ~v, C ′

[
c c

c

]
~u,C[a] ∼ ~v, C ′[c] 2Boxs

a1, u ∼ c1, s a2, v ∼ c2, t
if a1 a2

a
then u else v ∼ if c1 c2

c
then s else t

CSs
�

where
a

is a new symbol of sort S2
b → Sb, and of fixed

semantics: it ignores its arguments and has the semantics [[a]].
Intuitively, a1 a2

a
stands for the conditional a, and a1, a2

are, respectively, the left and right versions of a.
Remark that for the CS� rule to be sound we need [[a1]], [[a2]]

and [[a]] to be equal, up to a negligible number of samplings
(same for c1, c2 and c). This is not enforced by the rules, so it
has to be an invariant of our strategy. We denote B the set of
new function symbols. We need the functions in B to block
the if-homomorphism to ensure that for all a c

b
∈ st(t),

[[a]] = [[c]] = [[b]]. Therefore the TRS R2 is not extended to B.
For example we have:

if a then c else d e
b
6→∗R if a then c e

b
else d e

b

The R rule is replaced by R� which has an extra side-
condition. R� can rewrite u[s] into u[t] as long as:{

a c
b
∈ st(t)

}
⊆
{
a c

b
∈ st(u[s])

}
This ensures that no new arbitrary a c

b
is introduced. New

boxed conditionals are only introduced through the 2Box rule.
Similarly, the FA axiom is not extended to B.

Definition 5. A term t is well-formed if for every a c
b
∈

st(t), a =R c =R b. We lift this to formulas as expected.

Proposition 4. The following rules preserve well-formedness:

R�, 2Box,CS�, FAs, {FA(b, b′)},Dup

Besides, R�, CS� and 2Box are sound on well-formed formulas.

Proof. The only rule not obviously preserving well-
formedness is R�, but its side-conditions guarantee the well-
formedness invariant. The only rule that is not always sound
is CS�, and it is trivially sound on well-formed formulas.
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d) Ordered Strategy: We have new rule commutations.

FAs · FA(b, b′) ⇒ R · FA(b, b′) · FAs
∗ · Dup

CS� ·R� ⇒ R� · CS�

CS� · 2Box ⇒ R� · 2Box · CS�

Lemma 5. All the rule commutations above are correct.

Proof. The proof can be found in Appendix III.

This allows to have R� rules only at the beginning of the proof.

Lemma 6. The ordered strategy:

F((2Box +R�)∗ · CS∗� · {FA(b, b′)}∗ · FAs
∗ · Dup∗ · U)

is complete for F((CS + FA +R+ Dup + U)∗).

Proof. We start from the result of Lemma 4, split the FA rules
and commute rules until we get:

F((CS +R)∗ · {FA(b, b′)}∗ · FAs
∗ · Dup∗ · U)

We then replace all applications of CS by 2Box.CS�. All
a a

a
introduced are immediately “opened” by a CS� ap-

plication, hence we know that the side-conditions of R�

hold every time we apply R. Therefore we can replace all
applications of R by R�, which yields:

F((CS� + 2Box +R�)∗ · {FA(b, b′)}∗ · FAs
∗ · Dup∗ · U)

Finally we commute the CS� applications to the right.

B. The Freeze Strategy

We now show that we can restrict the terms on which the
rules in {FA(b, b′)} can be applied: when we apply a rule in
{FA(b, b′)}, we “freeze” the conditionals b and b′ to forbid any
further applications of {FA(b, b′)} to them.
Example 5. Let ai ≡ if bi then ci else di (i ∈ {1, 2}), we
want to forbid the following partial derivation to appear:

b1, c1, d1, u1, v1 ∼ b2, c2, d2, u2, v2

a1, u1, v1 ∼ a2, u2, v2
FA(b1, b2)

if a1 then u1 else v1 ∼ if a2 then u2 else v2
FA(a1, a2)

a) Freeze Strategy: We let be a new function symbol
of arity one, and for every ground term s we let s̃ be the term:

s̃ ≡

{
if b then u else v if s ≡ if b then u else v
s if s ∈ T (Fs,N )

Moreover we replace every FA(b1, b2) rule by the rule:

~w1, b̃1, u1, v1 ∼ ~w2, b̃2, u2, v2

~w1, if b1 then u1 else v1 ∼ ~w2, if b2 then u2 else v2
BFA(b1, b2)

We let {BFA(b1, b2)} be the restriction of {BFA(b1, b2)} to the
rules where b1 and b2 are not frozen conditionals. Finally, we
add a new rule, UnF, which unfreezes all conditionals: every
b is replaced by b.

Lemma 7. The following strategy:

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · U)

is complete for F((CS + FA +R+ Dup + U)∗).

Proof. Basically, the proof consists in eliminating all proof
cuts of the shape given in Example 5. The cut elimination is
simple, though voluminous, and is given in Appendix III.

VI. PROOF FORM AND KEY PROPERTIES

The goal of this section is to show that we can assume
w.l.o.g. that the terms appearing in the proof (following the
ordered freeze strategy) after the (2Box+R�)∗ part have a par-
ticular form, that we call proof form. We also show properties
of this restricted shape that allow more cut eliminations.

A. Shape of the Terms

Most of the completeness results shown before are for any
set of unitary axioms closed under Restr. We now specialize
these results to CCA2, to get some further restrictions.

When applying the unitary axioms CCA2, we would like
to require that terms are in R-normal form, e.g. to avoid the
application of CCA2 to terms with an unbounded component,
such as π1(〈u , v〉). Unfortunately, the side-conditions of CCA2
are not stable under R. E.g., consider the CCA2 instance:

{if eq(g(nu),nu) then A else B}nr
pk(n) ∼ {C}

nr
pk(n)

CCA2

The R-normal form of the left term is:

if eq(g(nu),nu) then {A}nr
pk(n) else {B}nr

pk(n)

which cannot be used in a valid CCA2 instance, since the
conditional eq(g(nu),nu) should be somehow “hidden” by the
encryption. To avoid this difficulty, we use a different normal
form for terms: we try to be as close as possible to the R-
normal form, while keeping conditional branching below their
encryption. First, we illustrate this on an example. The term:{

if (if b then a else c) then {if d then u else v}n1

pk else w
}n2

pk

is normalized as follows:{
if b then if a then {if d then u else v}n1

pk else w

else if c then {if d then u else v}n1

pk else w

}n2

pk

a) Basic Terms: We omit the rewriting strategy here
(C.f. Appendix IV) , and describe instead the properties of
the normalized terms. We let A� be the ordered strategy
from Lemma 7, and ACS�

be its restriction to proofs with
an empty (2Box + R�)∗ part. The rule CS� is the only
branching rule, therefore, after applying all the CS� rules,
we can associate to each branch l of the proof an instance
Sl = (Kl,Rl, El,Dl) of the CCA2 axiom, where Kl, Rl, El
and Dl are the sets of, respectively, secret keys, encryption
randomness, encryptions and decryptions. We use Sl to define
a normal form for the terms appearing in branch l. This is done
through four mutually inductive definitions: Sl-encryption
oracle calls are well-formed encryptions; Sl-decryption or-
acle calls are well-formed decryptions; Sl-normalized basic
terms are terms built using function symbols in Fs and
well-formed encryptions and decryptions; and Sl-normalized
simple terms are combinations of normalized basic terms using
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· · ·

FAs
∗

FAs
∗

··
·

FAs
∗

ACS�

··
·

ACS�

CS∗�

BFA
∗

Fig. 4. The shape of the term is determined by the proof.

if_then_else_. We give only the definition of Sl-normalized
basic terms (the full definitions are in Appendix IV).

Definition 6. A Sl-normalized basic term is a term t of the
form U [~w, (αj)j , (deck)k] where:
• U and ~w are if-free and Rl,Kl do not appear in ~w.
• U [~w, ({[]j}

nj
pkj

)j , (dec([]k, skk))k] is in R-normal form.
• (αj)j are Sl-encryption oracle calls under (pkj , skj)j .
• (deck)k are Sl-decryption oracle calls under (pkk, skk)k.

If t is of sort bool, we say that it is a Sl-normalized basic
conditional.

b) Normalized Proof Form: Every application of CS�:

a1, u ∼ b1, s a2, v ∼ b2, t
if a1 a2

a
then u else v ∼ if b1 b2

b
then s else t

CS�

is such that if we extract the sub-proof of ai ∼ bi (for i ∈
{1, 2}), we get a proof in ACS�

. Therefore, we can check that
terms after (2Box +R�)∗ are of the form informally described
in Fig. 4. We define a normal form for such proofs, called
normalized proof form, and we define `npf by P `npf t ∼ t′

if and only if P ` t ∼ t′, the proof P is in A� and is in
normalized proof form. We do not give the full definition, but
one of the key ingredients is to require that for every term s
appearing in a branch l of the proof P , if s is the conclusion
of a sub-proof in the fragment F(FAs

∗ · Dup∗ · U) then s is a
Sl-normalized basic term.

Lemma 8. Every formula in F((CS + FA +R+ Dup + CCA2)∗)
is provable using the strategy `npf.

Proof. (sketch) The full proof is in Appendix IV. First, we
rewrite terms by pulling conditionals upward without cross-
ing an encryption function symbol, and without modifying
decryption guards. Then, we remove all redexes from R1 (e.g.
π1(〈u , v〉)→ u) using a cut elimination procedure. E.g., the
following cut can be eliminated using Lemma 1:

u, v ∼ u′, v′

π1(〈u , v〉) ∼ π1(〈u′ , v′〉)
FA〈 , 〉

u ∼ u′ R

B. Key Properties

A term in R-normal form is in the following grammar:

t ::= u ∈ T (Fs,N ) | if b then t else t (with b ∈ T (Fs,N ))

Given a term t in R-normal form, we let cond-st(t) be its set
of conditionals, and leave-st(t) its set of leaves.

a) Characterization of Basic Terms: We give a key char-
acterization proposition for basic terms: if two Sl-normalized
basic terms β and β′ are such that, when R-normalizing them,
they share a leaf term, then they are identical.

Proposition 5. For all Sl-normalized basic terms β, β′, if we
have leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅ then β ≡ β′.

Proof. (sketch) The full proof is in Appendix V. We give the
intuition: since they are Sl-normalized basic terms, we know
that β ≡ U [~w, (αj)j , (deck)k], β′ ≡ U ′[~w′, (α′j)j , (dec′k)k]
and:

U [~w, ({[]j}
nj
pkj

)j , (dec([]k, skk))k]

U ′[~w′, ({[]′j}
nj
pk′j

)j , (dec([]′k, sk′k))k]

are in R-normal form. Using the fact that U,U ′, ~w, ~w′ are
if-free, and the hypothesis that β and β′ share a leaf term,
we first show that we can assume U ≡ U ′ and ~w ≡ ~w′ by
induction on the number of positions where U and U ′ differ.
Take p where they differ, w.l.o.g. assume β′|p to be a hole
of U ′ (otherwise swap β and β′). We have three cases: i) if
β|p is in ~w, we simply change U to include everything up
to p; ii) if β|p is in some encryption αj ≡ {m}n

pk, then we
know that n appears in ~w, which is not possible since, as β
is a Sl-normalized basic term, n ∈ Rl does not appear in ~w;
iii) if β|p is in some decryption deck ≡ dec(uk, skk) then,
similarly to the previous case, we have skk appearing in ~w,
which contradicts the fact that skk ∈ Kl do not appear in ~w.

Knowing that U ≡ U ′ and ~w ≡ ~w′, it only remains to
show that the encryptions (αj)j and (α′j)j , and the decryptions
(deck)k and (dec′k)k are identical. The former follows from
the fact that, for a given encryption randomness n ∈ Rl, there
exists a unique m such {m}n

_ ∈ El; and the latter follows from
the fact that there is a unique way to guard a decryption in Dl
(this is not obvious, and relies on CCA2 side-conditions).

b) Proofs of b ∼ false or true: Using the previous
proposition, we can show that for all b, if b is if-free then
there is no derivation of b ∼ true or b ∼ false in A�.
Such derivations would be problematic since true and false
are conditionals of constant size, but b could be of any size
(and we are trying to bound all conditionals appearing in a
proof). Also, the else branch of a true conditional can contain
anything and is, a priori, not bounded by the proof conclusion.

Proposition 6. Let b an if-free conditional in R-normal form,
with b 6≡ false (resp. b 6≡ true). Then there exists no derivation
of b ∼ false (resp. b ∼ true) in A�.

Proof. This is shown by induction on the size of the derivation.
The full proof is in Appendix VI, and relies on Proposition 5.

VII. BOUNDING THE PROOF AND DECISION PROCEDURE

We give here two similar proof cut eliminations, one used
on BFA conditionals and the other on CS� conditionals.
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a) BFA Rule: We already used this cut elimination to deal
with Example 4 for conditionals involved in BFA applications.
The cuts we want to eliminate are of the form:

a1, a2, u3, v4, w5 ∼ b1, c2, r3, s4, t5

a1

a2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b1

c2

r3 s4

t5

︸ ︷︷ ︸
τ

BFA
(2)

(4)

Using Lemma 1, we extract a proof of a1, a2 ∼ b1, c2, which,
thanks to the ordered strategy, is in F(FAs

∗ ·Dup∗ ·CCA2). From
Lemma 2 we get that b ≡ c. We then replace (4) by:

a1, u3, w5 ∼ b1, r3, t5

a1

u3 w5

∼
b1

r3 t5

BFA

σ ∼ τ R

We retrieve a proof in A� by pulling R to the beginning of
the proof.

b) CS� Rule: The CS� case is more complicated. E.g.,
take two boxed CS� conditionals for the same if-free condi-
tional a, and two arbitrary CS� conditionals on the right side:

a�i ≡ ali ari
a

(i ∈ {1, 2}) b�1 ≡ bl1 br1
b
c�2 ≡ cl2 cr2

c

Consider the following cut:
.... (A)

al1, a
l
2, u3 ∼ bl1, cl2, r3

.... (B)

al1, a
r
2 , v4 ∼ bl1, cr2 , s4

.... (C)

ar1 , w5 ∼ br1 , t5

a�
1

a�
2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b�1

c�2

r3 s4

t5

︸ ︷︷ ︸
τ

CS(2)
�

As we did for BFA, we can extract from (A), using Lemma 1,
a proof of al1, a

l
2 ∼ bl1, c

l
2. But using the ordered strategy, we

get that this proof is in ACS�
, which we recall is the fragment:

CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · CCA2

Therefore we cannot apply Lemma 2. To deal with this cut, we
generalize Lemma 2 to the case where the proof is in ACS�

.
For this, we need the extra assumptions that al1, a

l
2, b

l
1, c

l
2 are

if-free, which is a side-condition of CS�.

Lemma 9. For all a, a′, b, c such that their R-normal form is
if-free and a =R a

′, if P `npf a, a′ ∼ b, c then b =R c.

Proof. (sketch) The full proof is given in Appendix VI. It uses
Proposition 6 to obtain a proof P ′ of a, a′ ∼ b, c without any
false and true, and also relies on Proposition 5 and Lemma 2.

We now deal with the cut above. Using Lemma 9, we know
that b =R c. Since b, c are in R-normal form, b ≡ c and

therefore b�1 =R� b =R� c
�
2 (using well-formedness). Similarly

a�1 =R� a =R� a
�
2 . This yields the (cut-free) proof:

.... (A′)

al1, u3 ∼ bl1, r3

.... (C)

ar1 , w5 ∼ br1 , t5

a�1

u3 w5

∼
b�1

r3 t5

CS�

σ ∼ τ R�

where (A′) is extracted from (A) by Lemma 1. Finally, to get
a proof in A�, we commute the R� rewriting to the beginning.

A. Decision Procedure

Now, we explain how we obtain a decision procedure for
our logic. Because the proofs and definitions are long and
technical, we omit most of the details and focus instead on
giving a high level sketch of the proof and decision procedure.

a) Spurious Conditionals: A conditional b without
if_then_else_ and in R-normal form is said to be spurious
in t if, when R-normalizing t, the conditional b disappears.
Formally, b is spurious in t if b 6∈ cond-st(t ↓R). E.g., the
conditional eq(n0,n1) is spurious in:

if eq(n0,n1) then g(n) else g(n)

We say that a basic conditional β, which may not be if-free,
is spurious in t if all its leaf terms are spurious in t (i.e.
leave-st(β ↓R)∩cond-st(t ↓R) = ∅). As we saw in Example 2,
we may need to introduce spurious basic conditionals to carry
out a proof. Still, we need to bound such terms. To do this,
we characterize the basic conditionals that cannot be removed:
basically, a basic conditional is α-bounded in a proof of t ∼ t′
if it is not spurious in t or t′, or if it is a guard for a decryption
appearing in a α-bounded conditional of t ∼ t′ (indeed, we
cannot remove a decryption’s guards, as this would not yield
a valid CCA2 instance).

We let `npf
α be the restriction of `npf to proofs such that all

basic conditionals appearing in the derivation are α-bounded.
Using the cut eliminations we introduced earlier, plus some
additional cut eliminations that are given in Appendix VI, we
can show the following completeness result (the full proof is
in Appendix VII).

Lemma 10. `npf
α is complete with respect to `npf.

b) Bounding α-bounded Basic Conditionals: Finally, it
remains to bound the size of α-bounded basic conditionals.
Since basic conditionals can be nested (e.g. a basic conditional
can contain decryption guards, which are themselves basic
conditionals etc), we need to bound the length of sequences
of nested basic conditionals.

Given a sequence of nested basic conditionals β1 <st

· · · <st βn, (where u <st v iff u 6≡ v and u ∈ st(v)),
we show that we can associate to each βi a “frame term”
λi ∈ B(t, t′) (where B(t, t′) is a set of terms of bounded
size w.r.t. |t| + |t′|). Basically, λi is obtained from βi by
“flattening” it: we remove all decryption guards, and replace
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the content of every encryption {m}n
pk by a term {m̃}n

pk,
where m̃ is if-free and in B(t, t′). Moreover, we show that,
for every Sl-normalized basic terms β, γ and their associated
frame terms λ, µ, if λ ≡ µ then β ≡ γ (this result is similar
to Proposition 5).

Since the βis are all pair-wise distinct (as <st is strict), and
since for every i, the frame term λi uniquely characterizes
βi, we know that the λis are pair-wise distinct. Using a
pigeon-hole argument, this shows that n ≤ |B(t, t′)|. Then,
by induction on the number of nested basic conditionals, we
show a triple exponential upper-bound in |t|+|t′| on the size of
the basic conditionals appearing in a cut-free proof of t ∼ t′.

c) Decision Procedure: To conclude, we show that there
exists a non-deterministic procedure that, given two terms t
and t′, non-deterministically guesses a set of α-bounded basic
terms that can appear in a proof P of P `npf

α t ∼ t′ (in triple
exponential time in |t|+ |t′|). Then the procedure guesses the
rule applications, and checks that the candidate derivation is a
valid proof (in polynomial time in the candidate derivation
size). This yields a 3-NEXPTIME decision procedure that
shows the decidability of our problem.

Theorem (Main Result). The following problem is decidable:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

VIII. RELATED WORKS

In [28], the authors design a set of inference rules to prove
CPA and CCA security of asymmetric encryption schemes in
the Random Oracle Model. The paper also presents an attack
finding algorithm. The authors of [28] do not provide decision
algorithm for the designed inference rules. However, they de-
signed proof search heuristics and implemented an automated
tool, called ZooCrypt, to synthesize new CCA encryption
schemes. For small schemes, this procedure can show CCA
security or find an attack in more than 80% of the cases. In
20% of the cases, security remains undecided. Additionally,
ZooCrypt automatically generates concrete security bounds.

As seen in the introduction, the problem of showing CPA
security can be cast into the BC logic. Take a candidate
encryption scheme x 7→ t[x], where t[] is a context built
using, e.g., pairs, a one-way permutation f using public key
pk(n), hash functions and xor. Then this scheme is CPA if
the following formula is valid in every computational model
satisfying some implementation assumptions (mostly, f is
OW-CPA and the hash functions are PRF):

t[π1(f(pk(n)))] ∼ t[π2(f(pk(n)))]

This formula has a particular shape, which stems from the
limitations on the adversary’s interactions: the adversary can
only interact with the (candidate) encryption scheme through
the CPA or CCA game. There is no complex and arbitrary
interactions with the adversary, as it is the case with a security
protocol. We don’t have such restrictions.

In [29], the authors study proof automation in the UC frame-
work [30]. They design a complete procedure for deciding the

existence of a simulator, for ideal and real functionalities using
if-then-else, equality, random samplings and xor. Therefore
their algorithm cannot be used to analyse functionalities rely-
ing on more complex functions (e.g., public key encryption),
or stateful functionalities. This restricts the protocols that can
be checked. Still, their method is semantically complete (while
we are complete w.r.t. a fixed set of inference rules): if there
exists a simulator, they will find it.

In [31], the authors show the decidability of the problem
of the equality of two distributions, for a specific equational
theory (concatenation, projection and xor). Then, for arbitrary
equational theories, they design a proof system for proving
the equality of two distributions. This second contribution has
similarities with our work, but differ in two ways.

First, the proof system of [31] shares some rules with
ours, e.g. the R, Dup and FA rules. But it does not allow
for reasoning on terms using if_then_else_. E.g., they do not
have a counterpart to the CS rule. This is a major difference,
as most of the difficulties encountered in the design of our
decision procedure result from the if_then_else_ conditionals.
Moreover, there are no rules corresponding to cryptographic
assumptions, as our CCA2 rules. Because of this and the lack
of support for reasoning on branching terms, the analysis of
security protocols is out of the scope of [31].

Second, the authors do not provide a decision procedure for
their inference rules, but instead rely on heuristics.

IX. CONCLUSION

We designed a decision procedure for the Bana-Comon
indistinguishability logic. This allows to automatically ver-
ify that a security protocol satisfies some security property.
Our result can be reinterpreted, in the cryptographic game
transformation setting, as a cut elimination procedure that
guarantees that all intermediate games introduced in a proof
are of bounded size w.r.t. the protocol studied.

A lot of work remains to be done. First, our decision
procedure is in 3-NEXPTIME, which is a high complexity.
But, as we do not have any lower-bound, there may exist
a more efficient decision procedure. Finding such a lower-
bound is another interesting direction of research. Then, our
completeness result was proven for CCA2 only. We believe
it can be extended to more primitives and cryptographic
assumptions. For example, signatures and EUF-CMA are very
similar to asymmetric encryption and IND-CCA2, and should
be easy to handle (even combined with the CCA2 axioms).
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APPENDIX I
THE TERM REWRITING SYSTEM R

A. Notations

Definition 7. A position is a word in N∗. The value of a term t at a position p, denoted by (t)|p, is the partial function defined
inductively as follows:

(t)|ε = t

(f(u0, . . . , un−1))|i.p =

{
(ui)|p if i < n

undefined otherwise

We say that a position in valid is t if (t)|p is defined. The set of positions of a term is the set of positions which are valid in t.

Definition 8. A context D[]~x (sometimes written D when there is no confusion) is a term in T (F ,N , {[]y | y ∈ ~x}) where ~x
are distinct special variables called holes.

For all contexts D[]~x, C0, . . . , Cn−1 with |~x| = n, we let D[(Ci)i<n] be the context D[]~x in which we substitute, for all
0 ≤ i < n, all occurrences of the hole []xi by Ci.

A one-holed context is a context with one hole (in which case we write D[] where [] is the only variable).

Often, we want to distinguish between holes that contain “internal” conditionals, and holes that contain terms appearing at
the leaves. To do this we introduce the notion of if-context:

Definition 9. For all distinct variables ~x, ~y, an if-context D[]~x�~y is a context in T (if _ then _ else _, {[]z | z ∈ ~x ∪ ~y}) such
that for all position p, D|p ≡ if b then u else v implies:

• b ∈ {[]z | z ∈ ~x}
• u, v 6∈ {[]z | z ∈ ~x}

Example 6. Let ~x = x1, x2, x3 and ~y = y1, y2, y3, y4, we give below two representations of the same if-context D[]~x�~y (the
term on the left, and the labelled tree on the right):

if []x1
then

(
if []x2 then if []x1 then []y1 else []y2

else []y3

)
else (if []x3

then []y2 else []y4)

[]x1

[]x2

[]x1

[]y1 []y2

[]y3

[]x3

[]y2 []y4

Definition 10. For every term t, we let st(t) be the set of subterms of t.
If t ≡ C[~b � ~u] where ~b, ~u are if-free terms then we let cond-st(t) be the set of conditionals ~b, and leave-st(t) be the set of

terms ~u.

Definition 11. A directed path δ~ρ is a sequence (b0, d0), . . . , (bn, dn) where b0, . . . , bn are conditionals and d0, . . . , dn (the
directions) are in {then,else}.

Two directed paths δ~ρ and δ~ρ ′ are said to have the same directions if:

• they have the same length.
• the sequences of directions d0, . . . , dn and d′0, . . . , d

′
n extracted from, respectively, δ~ρ and δ~ρ ′, are equal.

Given a directed path δ~ρ, we let ~ρ stands for the sequence of conditionals extracted from δ~ρ.

B. Convergence of R

a) Lexicographic Path Ordering:: Let �f be a total precedence over function symbols. The lexicographic path ordering
associated with �f is the pre-order defined by:

s = f(s1, . . . , sn) � t = g(t1, . . . , tm) iff


∃i ∈ J1, nK s.t. si � t
f = g ∧ ∀j ∈ J1,mK, s � tj ∧ s1, . . . , sn �lex t1, . . . , tn
f �f g ∧ ∀j ∈ J1,mK, s � tj
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→R′2

{
f(~u, ifb(x , y), ~v)→ ifb(f(~u, x,~v) , f(~u, y,~v)) (f ∈ Fs)
if(ifb(a , c))(x , y)→ ifb((ifa(x , y)) , (ifc(x , y)))

→R′3


iftrue(x , y)→ x
iffalse(x , y)→ y
ifb(x , x)→ x
ifb((ifb(x , y)) , z)→ ifb(x , z)
ifb(x , (ifb(y , z)))→ ifb(x , z)

→R0
4


if b then (if a then x else y) else z →

if a then (if b then x else z) else (if b then y else z) (b � a, a,b not if-free or not in R-normal form)
if b then x else (if a then y else z)→

if a then (if b then x else y) else (if b then x else z) (b � a, a,b not if-free or not in R-normal form)

→R1
4


if b then (ifa(x , y)) else z →

ifa((if b then x else z) , (if b then y else z)) (b not if-free or not in R-normal form)
if b then x else (ifa(y , z))→

ifa((if b then x else y) , (if b then x else z)) (b not if-free or not in R-normal form)

→R2
4

{
ifb((ifa(x , y)) , z)→ ifa((ifb(x , z)) , (ifb(y , z))) (b �u a)
ifb(x , (ifa(y , z)))→ ifa((ifb(x , y)) , (ifb(x , z))) (b �u a)

→Ri
{

if b then u else v → ifb(u , v) (b if-free and in R-normal form)

Fig. 5. The Relations →R′2
,→R′3

,→R0
4
,→R1

4
,→R2

4
and →Ri used for termination

Let �f be a total precedence on F ,N such that if_then_else_ is the smallest element (elements of N are treated as function
symbols of arity zero). Let � be the lexicographic path ordering on T (F ,N ) using precedence �f . Let �u be a user-chosen
total order on if-free conditionals in R-normal form. We define the total ordering �c on conditionals as follows:

b �c a =


b �u a if a and b are if-free and R-irreducible
b � a if a and b are not if-free or not R-irreducible
true if a is if-free and R-irreducible, and b is not
false if b is if-free and R-irreducible, and a is not

We then order →R�u4
as follows:

if b then (if a then x else y) else z → if a then (if b then x else z) else (if b then y else z) when b �c a
if b then x else (if a then y else z)→ if a then (if b then x else y) else (if b then x else z) when b �c a

Let →R�u=→R1 ∪ →R2 ∪ →R3 ∪ →R�u4
. The term rewriting system →R�u is an orientation of the rules given in Fig. 1.

When we do not care about the choice of total ordering on if-free conditionals in R-normal form �u, we write →R.

Theorem 2. For all �u, the term rewriting system →R�u is convergent on ground terms.

Proof. We show that →R�u is locally confluent and terminating, and conclude by Newman’s lemma.
b) Local Confluence: We show that all critical pairs are joinable. Normally, we would rely on some automated checker

for local confluence. Unfortunately, as we rely on a side-condition to orient R4 (using a LPO), writing down the rules in a
tool is not straightforward. By consequence we believe it is simpler to manually check that every critical pair is joinable. We
give below the most interesting critical pairs, and show how we join them. For every critical pair, we underline the starting
term.

• Critical Pairs R1/(R1 ∪ R2 ∪ R3 ∪ R4): we only show the critical pairs involving π1(_) (the critical pairs with π2(_)
are similar), and for eq(_, _). The critical pairs involving dec(_, _) are similar to the critical pairs involving π1(_).

if b then u else v ←2 if b then π1(〈u , w〉) else π1(〈v , w〉)← π1(〈if b then u else v , w〉)→ if b then u else v

w ← if b then w else w ←2 if b then π1(〈w , u〉) else π2(〈w , v〉)← π1(〈w , if b then u else v〉)→ w
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true ←
eq(if b then u else v, if b then u else v)

→ if b then eq(u, if b then u else v) else eq(v, if b then u else v)

→ if b then (if b then eq(u, u) else eq(u, v)) else eq(v, if b then u else v)

→ if b then eq(u, u) else eq(v, if b then u else v)

→ if b then true else eq(v, if b then u else v)

→∗ if b then true else true
→ true

• Critical Pairs R2/R2: we assume that b �c c. The other possible orderings are handled in the same fashion.

if c then (if b then f(u, s) else f(v, s)) else (if b then f(u, t) else f(v, t)) ←2

if c then f(if b then u else v, s) else f(if b then u else v, t) ←
f(if b then u else v, if c then s else t)

→ if b then f(u, if c then s else t) else f(v, if c then s else t)
→2 if b then (if c then f(u, s) else f(u, t)) else (if c then f(v, s) else f(v, t))

→∗ if c then (if b then f(u, s) else f(v, s)) else (if b then f(u, t) else f(v, t))

• Critical Pairs R2/R3:

f(u,w)← f(if true then u else v, w)→ if true then f(u,w) else f(v, w)→ f(u,w)

f(u, v)← f(if b then u else u, v)→ if b then f(u, v) else f(u, v)→ f(u, v)

if b then f(u, s) else f(w, s) ←
f(if b then u else w, s) ←
f(if b then (if b then u else v) else w, s)

→ if b then f(if b then u else v, s) else f(w, s)

→ if b then (if b then f(u, s) else f(v, s)) else f(w, s)

→ if b then f(u, s) else f(w, s)

• Critical Pairs R2/R4: we assume that a �c b �c c �c d. The other possible orderings are handled in the same fashion.

if d then (if b then (if a then u else v) else w) else (if c then (if a then u else v) else w) ←∗

if a then if d then (if b then u else w) else (if c then u else w)
else if d then (if b then v else w) else (if c then v else w)

←2

if a then (if (if d then b else c) then u else w) else (if (if d then b else c) then v else w) ←
if (if d then b else c) then (if a then u else v) else w

→ if d then (if b then (if a then u else v) else w) else (if c then (if a then u else v) else w)

• Critical Pairs R3/R3:

u← if true then u else u→ u

u← if true then u else v ← if true then (if true then u else v) else w → if true then u else w → u

if b then u else v ← if b then (if b then u else v) else (if b then u else v) → if b then u else (if b then u else v)
→ if b then u else v
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• Critical Pairs R3/R4:

if a then u else v ←
if b then (if a then u else v) else (if a then u else v)

→ if a then (if b then u else (if a then u else v)) else (if b then v else (if a then u else v))

→2 if a then if a then (if b then u else u) else (if b then u else v)
else if a then (if b then v else u) else (if b then v else v)

→2 if a then (if b then u else u) else (if b then v else v)

→2 if a then u else v

• Critical Pairs R4/R4: we assume that a �c b �c c. The other possible orderings are handled in the same fashion.

if c then if b then (if a then u else s) else (if a then v else s)
else if b then (if a then u else t) else (if a then v else t)

←2

if c then (if a then (if b then u else v) else s) else (if a then (if b then v else u) else t) ←
if a then (if b then u else v) else (if c then s else t)

→ if b then (if a then u else (if c then s else t)) else (if a then v else (if c then s else t))
→2 if b then if c then (if a then u else s) else (if a then u else t)

else if c then (if a then v else s) else (if a then v else t)
→∗ if c then if b then (if a then u else s) else (if a then v else s)

else if b then (if a then u else t) else (if a then v else t)

c) Termination: To prove termination we add to F a symbol ifb( , ) for all if-free conditional b in R-normal form. We
also extend the precedence �f on function symbol by having the function symbols {ifb( , )} be smaller than all the other
function symbols, and ifb( , ) �f ifa( , ) if and only if b �u a. Observe that the extended precedence is still a total order.

We then consider the term rewriting system →R′ , defined by removing →R4
from →R and adding all the rules in Fig. 5:

→R′=→R1
∪ →R2

∪ →R′2
∪ →R3

∪ →R′3
∪ →R0

4
∪ →R1

4
∪ →R2

4
∪ →Ri

One can easily (but tediously) check that � is compatible with →R′ : the only non-trivial cases are the cases in →R2
(the

first rule is decreasing because f �f if_then_else_, the second rule using the lexicographic order), in →R′2
(same arguments

than for R2) and the cases in →R0
4
,→R1

4
,→R2

4
(where we use the side conditions b � a, b �u a . . . ).

Since � is a lexicographic path ordering we know that it is total and well-founded on ground-terms. Therefore →R′ is a
terminating TRS on ground terms.

To conclude, one just has to observe that for every ground terms u, v and integer n, if u →(n)
R v then there exist u′, v′

such that u →!
Ri u

′, v →!
Ri v

′ and u′ →(≥n)
R′ v′. That is, we have the following diagram (black edges stand for universal

quantifications, red edges for existentials):

u v

u′ v′

∗
R

!Ri
∗
R′

!Ri

This result can be proved by induction on n. Since →R′ is terminating on ground terms, and since any infinite sequence for
→R can be translated into an infinite sequence for →R′ , it follows easily that →R is terminating on ground terms.

C. Property of R
Proposition 7. Let �u and �′u be two total orderings on if-free conditionals in R-normal form. Then for every ground term
t we have:

leave-st(t ↓R�u ) = leave-st(t ↓
R�
′
u

) and cond-st(t ↓R�u ) = cond-st(t ↓
R�
′
u

)

Proof. Let ~b = leave-st(t ↓R�u ) and ~u = cond-st(t ↓R�u ), we know that there exists a if-context C such that t ↓R�u≡ C[~b�~u].
It is then easy to show by induction on the length of the reduction that for all n, if C[~b � ~u] →(n)

R�
′
u
v then there exists an

if-context C ′ such that v ≡ C ′[~b � ~u]. The wanted result follows immediately.
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APPENDIX II
THE CCA2 AXIOMS

We define and prove correct a recursive set of axioms for an IND-CCA2 encryption scheme. For the sack of simplicity, we
first ignore all length constraints. We explain how length constraints are added and handled to the logic in Section II-B.

a) Multi-Users IND-CCA2 Game: Consider the following multi-users IND-CCA2 game: the adversary receives n public-
keys. For each key pki, he has access to a left-right oracle OLR(pki, b) that takes two messages m0,m1 as input and returns
{mb}nr

pki
, where b is an internal random bit uniformly drawn at the beginning by the challenger (the same b is used for all left-

right oracles) and nr is a fresh nonce. Moreover, for all key pairs (pki, ski), the adversary has access to an ski decryption oracle
Odec(ski), but cannot call Odec(ski) on a cipher-text returned by OLR(pki, b) (to do this, the two oracles use a shared memory
where all encryption requests are logged). The advantage of an adversary against this game and the multi-user IND-CCA2

security are defined as usual.
It is known that if an encryption scheme is IND-CCA2 then it is also multi-users IND-CCA2 (see [32]). Therefore, we allow

multiple key pairs to appear in the CCA2 axioms, and multiple encryptions over different terms using the same public key
(each encryption corresponds to one call to a left-right oracle).

b) Decryption Guards: If we want the following to hold in any computational model

dec
(
t
[
{u1}n1

pk , . . . , {un}
nn
pk

]︸ ︷︷ ︸
s

, sk
)
∼ dec

(
t
[
{v1}n1

pk , . . . , {vn}
nn
pk

]︸ ︷︷ ︸
s′

, sk
)

then we need to make sure that s is different from all {ui}ni
pk and that s′ is different from all {vi}ni

pk. This is done by introducing
all the unwanted equalities in if_then_else_ tests and making sure that we are in the else branch of all these tests, so as to
have a “safe call” to the decryption oracle. Moreover, the adversary is allowed to use values obtained from previous calls to
the decryption oracle in future calls.

To do this, we use the following function:

Definition 12. We define the function else∗ by induction:

else∗(∅, x) ≡ x
else∗ ((eq(a, b)) :: Γ, x) ≡ if eq(a, b) then 0(x) else else∗(Γ, x)

Example 7. Let u ≡ t[{v1}
n1
r

pk , {v2}
n2
r

pk ]. Then:

else∗
((

eq(u, {v1}
n1
r

pk),eq(u, {v2}
n2
r

pk)
)
,dec(u, sk)

)
≡

if eq(u, {v1}
n1
r

pk) then 0(dec(u, sk)) else if eq(u, {v2}
n2
r

pk) then 0(dec(u, sk)) else dec(u, sk)

Morally, this represents a safe call to the decryption oracle.

c) Definition of CCA2: We use the following notations: for any finite set K of valid private keys, K vd ~u holds if for
all sk ∈ K, the secret key sk appears only in decryption position in ~u ; nodec(K, ~u) denotes that for all sk(n) ∈ K, the
only occurrences of n are in subterms pk(n); hidden-rand(~r ; ~u) denotes that for all nr ∈ ~r , nr appears only in encryption
randomness position and is not used with two distinct plaintexts.

We are now going to define by induction the CCA2 axiom. In order to do this we define by induction a binary relation
RKCCA2a on CCA2 executions, where K is the finite set of private keys used in the terms (corresponding to the public keys sent
by the challenger).

Definition 13. Let K be a set of private keys. (φ,Xenc,Xdec, σrand, θenc, λdec) is a CCA2 execution if:
• φ is a vector of ground terms in T (F ,N ).
• Xenc and Xdec are two disjoint sets of variables used as handles for, respectively, encryptions and decryptions.
• σrand is a substitution from Xenc to N .
• θenc and λdec are substitutions from, respectively, Xenc and Xdec, to ground terms in T (F ,N ).

σrand, θenc and λdec co-domains are the sets of, respectively, encryption randomness, encryption oracle calls and decryption
oracle calls in φ. Intuitively, we have:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKCCA2a(ψ,Xenc,Xdec, σ
′
rand, θ

′
enc, λ

′
dec)

when we can build φ and ψ using function symbols, matching encryption oracle calls and matching decryption oracle calls.

Definition 14. Let K be a finite set of private keys. We define the binary relation RKCCA2a by induction:
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1) No Call to the Oracles: if K vd φ then (φ, ∅, ∅, ∅, ∅, ∅)RKCCA2a(φ, ∅, ∅, ∅, ∅, ∅) for every sequence φ of ground terms in
T (F ,N ) such that nodec(K;φ).

2) Encryption Case: Let x a fresh variable that does not appear in Xenc ∪ Xdec, sk be a secret key in K and pk the
corresponding public key. Then:(

(φ, {u}nr
pk),Xenc ∪ {x},Xdec, σrand ∪ {x 7→ nr}, θenc ∪ {x 7→ {u}nr

pk}, λdec
)

RKCCA2a
(
(ψ, {v}n′r

pk),Xenc ∪ {x},Xdec, σ
′
rand ∪ {x 7→ n′r}, θ′enc ∪ {x 7→ {v}

n′r
pk}, λ

′
dec
)

if there exist t, t′ ∈ T (F \{0},N ,Xenc) such that:
• (φ,Xenc,Xdec, σrand, θenc, λdec)RKCCA2a(ψ,Xenc,Xdec, σ

′
rand, θ

′
enc, λ

′
dec)

• u ≡ tλdec, v ≡ t′λ′dec
• nodec(K; t, t′), which ensures that the only decryptions are calls to the oracle.
• fresh(nr,n′r;φ, u, ψ, v) and hidden-rand(Xencσrand ∪ Xencσ

′
rand;φ, u, ψ, v)

3) Decryption Case: Let sk ∈ K, pk the corresponding public key and z be a fresh variable. Then:(
(φ,else∗(l,dec(u, sk))) ,Xenc,Xdec ∪ {z}, σrand, θenc, λdec ∪ {z 7→ else∗(l,dec(u, sk))}

)
RKCCA2a

(
(ψ,else∗(l′,dec(v, sk))) ,Xenc,Xdec ∪ {z}, σ′rand, θ

′
enc, λ

′
dec ∪ {z 7→ else∗(l′,dec(v, sk))}

)
if there exists t ∈ T (F \{if_then_else_, 0},N ,Xenc,Xdec) such that:
• (φ,Xenc,Xdec, σrand, θenc, λdec)RKCCA2a(ψ,Xenc,Xdec, σ

′
rand, θ

′
enc, λ

′
dec)

• u ≡ tθencλdec and v ≡ tθ′encλ
′
dec.

• Consider the set Yu of variables x ∈ Xenc such that the encryption binded to x directly appears in u, i.e. appears
outside of another encryption. That is, x must appear in the term u where we substituted every encryption {_}nx

pk ∈
codom(θenc) by {0}nx

pk :
xσrand ∈ u

{
{0}nx

pk/{_}
nx
pk | {_}

nx
pk ∈ codom(θenc)

}
↓R

Then l is the sequence of guards l ≡ (eq(u, y1), . . . ,eq(u, ym)) where (y1, . . . , ym) = sort(Yuθenc).
Similarly, l′ ≡ (eq(v, y′1), . . . ,eq(v, y′m)) where (y′1, . . . , y

′
m) = sort(Yuθ′enc)2.

• nodec(K; t) and hidden-rand(Xencσrand ∪ Xencσ
′
rand;φ, u, ψ, v)

where sort is a deterministic function sorting terms according to an arbitrary linear order.

Remark 4. In the decryption case, we add a guard only for encryption that appear directly in u. Without this restriction, we
would add one guard eq(u, xθenc) for every x ∈ Xenc such that xθenc is an encryption using public-key pk.

For example, if Xenc = {x0, x1, x2} and θenc = {x0 7→ α0, x1 7→ α1, x2 7→ α2} where:

α0 7→ {m0}n0

pk α1 7→ {m1}n1

pk α2 7→ {α1}n2

pk

then to guard dec(g(α2), sk), we need to add three guards, eq(g(α2), α0), eq(g(α2), α1) and eq(g(α2), α2). This yields the
term:

if eq(g(α2), α0) then 0(dec(g(α2), sk))

else if eq(g(α2), α1) then 0(dec(g(α2), sk))

else if eq(g(α2), α2) then 0(dec(g(α2), sk))

else dec(g(α2), sk)

But here, the adversary, represented by the adversarial function g, is computing the query to the decryption oracle using only
α2. Hence, it cannot use α1, which is hidden by the encryption, nor α0 which does not appear at all. Therefore, there is no
need to add the guards eq(g(α2), α0) and eq(g(α2), α1), since g has a negligible probability of returning α0 or α1.

To remove unnecessary guards when building the decryption oracle call dec(u, sk), we require that eq(u, α) is added to
the list of guards if and only if α ≡ {_}n

pk appears directly in u. This yields smaller axioms, e.g. the term dec(g(α2), sk) is
guarded by:

if eq(g(α2), α2) then 0(dec(g(α2), sk))

else dec(g(α2), sk)

Finally, the sort function is used to ensure that guards are always in the same order, which guarantees that two calls with the
same terms are guarded in the same way.

2Remark that we use, for v, the set Yu defined using u. As we will see later, this is not a problem because Yu = Yv .
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We can now define the recursive set of axioms CCA2a and show their validity. We also state and prove a key property of
these axioms.

Definition 15. CCA2a is the set of unitary axioms φ ∼ ψµ, where µ is a renaming of names in N and there exist two CCA2
executions Y,Y ′ such that:

Y = (φ,Xenc,Xdec, σrand, θenc, λdec) Y ′ = (ψ,Xenc,Xdec, σ
′
rand, θ

′
enc, λ

′
dec) Y RKCCA2a Y ′

In that case, we say that (Y,Y ′) is a valid CCA2a application, and φ ∼ ψµ is a valid CCA2a instance.

Proposition 8. All formulas in CCA2a are computationally valid if the encryption scheme is IND-CCA2.

Proof. First, φ ∼ ψµ is computationally valid if and only if φ ∼ ψ is computationally valid. Hence, w.l.o.g. we consider
µ empty. Let Mc be a computational model where the encryption and decryption symbol are interpreted as an IND-CCA2

encryption scheme. Let φ ∼ ψ be a valid instance of CCA2a such that [[φ]] 6≈Mc [[ψ]] i.e. there is a PPTM A that has a
non-negligible advantage of distinguishing these two distributions.

Since φ ∼ ψ is an instance of CCA2 we know that there exist two CCA2 executions such that:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKCCA2a(ψ,Xenc,Xdec, σ
′
rand, θ

′
enc, λ

′
dec)

We are going to build from φ and ψ a winning attacker against the multi-user IND-CCA2 game. This attacker has access
to a LR oracle and a decryption oracle for all keys in K. We are going to build by induction on RKCCA2a a algorithm B that
samples from [[φ]] or [[ψ]] (depending on the oracles internal bit). The algorithm B uses a memoisation technique: it builds a
store whose keys are subterms of φ, ψ already encountered and variable in Xenc ∪ Xdec, and values are elements of the Mc

domain.
1) (φ, ∅, ∅, ∅, ∅, ∅)RKCCA2a(φ, ∅, ∅, ∅, ∅, ∅): for every term t in the vector φ, B samples from [[t]] by induction as follows:

• if t is in the store then B returns its value.
• nonce n: B draws n uniformly at random and stores the drawn value.

Remark that nodec(K, φ) ensures that n is not used in a secret key sk appearing in K, which we could not compute.
If it is a public key pk, either the corresponding secret key sk is such that sk ∈ K and the challenger sent us a
random sample from [[pk]], or sk does not appear in K and then B can draw the corresponding key pair itself.

• f(t1, . . . , tn), then B inductively samples the function arguments ([[t1]], . . . , [[t1]]) and then samples from
[[f ]] ([[t1]], . . . , [[t1]]). B stores the value at the key f(t1, . . . , tn).

2) Encryption Case:(
(φ, {u}nr

pk),Xenc ∪ {x},Xdec, σrand ∪ {x 7→ nr}, θenc ∪ {x 7→ {u}nr
pk}, λdec

)
RKCCA2a

(
(ψ, {v}n′r

pk),Xenc ∪ {x},Xdec, σ
′
rand ∪ {x 7→ n′r}, θ′enc ∪ {x 7→ {v}

n′r
pk}, λ

′
dec
)

Since we have fresh(nr,n′r;φ, u, ψ, v) we know that the top-level terms do not appear in the store. It is easy to check that
B inductive definition is such that B store has a value associated with every variable in Xenc ∪Xdec and that, if x ∈ Xenc,
then the store value of x is either sampled from [[xθenc]] or from [[xθ′enc]] (depending on the challenger internal bit), and
that if x ∈ Xdec then the store value of x is either sampled from [[xλdec]] or from [[xλ′dec]] (depending on the challenger
internal bit). We also observe that if the challenger internal bit is 0 then for all w:

OLR(pk, b)([[u]], [[v]]) = OLR(pk, b)([[u]], w)

Similarly if the challenger internal bit is 1 then for all w:

OLR(pk, b)([[u]], [[v]]) = OLR(pk, b)(w, [[v]])

B samples two values α, β such that if the challenger internal bit is 0 then α is sampled from [[u]] and if the challenger
internal bit is 1 then β is sampled from [[v]]. Therefore whatever the challenger internal is bit, OLR(pk, b)(α, β) is sampled
from OLR(pk, b)([[u]], [[v]]):
• α is sampled from [[u]] using the case 1 algorithm. Remark that when we encounter a decryption under sk′ ∈ K, we

know that it was already sampled and can therefore retrieve it from the store.
• similarly, β is sampled from [[v]] using the case 1 algorithm.

The condition nodec(K; t, t′) ensures that no secret key from K appears in u, v anywhere else than in decryption
positions for already queried oracle calls (which can therefore be retrieved from the store), and the two conditions
fresh(nr,n′r;φ, u, ψ, v) and hidden-rand(Xencσrand ∪ Xencσ

′
rand;φ, u, ψ, v) ensure that all randomness used by the
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challenger left-right oracles do not appear anywhere else than in encryption randomness position for the corresponding
left-right oracle calls.
We store the result of the left-right oracle call at key x.

3) Decryption Case:

((φ,else∗(l,dec(u, sk))) ,Xenc,Xdec ∪ {z}, σrand, θenc, λdec ∪ {z 7→ else∗(l,dec(u, sk))})
RKCCA2a ((ψ,else∗(l′,dec(v, sk))) ,Xenc,Xdec ∪ {z}, σ′rand, θ

′
enc, λ

′
dec ∪ {z 7→ else∗(l′,dec(v, sk))})

We know that u ≡ tθencλdec and v ≡ tθ′encλ
′
dec. B uses the case 1 algorithm to sample γ from [[tθencλdec]] or [[tθ′encλ

′
dec]]

depending on the challenger internal bit. nodec(K; t) ensures that no call to the decryption oracles are needed and
hidden-rand(Xencσrand ∪ Xencσ

′
rand;φ, u, ψ, v) guarantee that the randomness drawn by the challenger for LR oracle

encryptions do not appear in t.
Observe that all calls to OLR(pk, b) have already been stored. Let x1θenc, . . . , xpθenc be the corresponding keys in the
store. Hence if γ is equal to any of the values stored at keys x1θenc, . . . , xpθenc then B return [[0]](γ), otherwise B can
call the decryption oracle Odec(sk) on γ.
As we observed in Remark 4, if the challenger internal bit is 0, checking whether γ is different from the values sampled
from [[x1θenc]], . . . , [[xpθenc]] amounts to checking whether γ is different from the values sampled from [[y1]], . . . , [[ym]],
except for a negligible number of samplings. Therefore we are sampling from the correct distribution (up to a negligible
number of samplings).
Moreover, the set of variables x ∈ Xenc such that the encryption binded to x in θenc appears directly in the left decryption
u:

xσrand ∈ u
{
{0}nx

pk/{_}
nx
pk | {_}

nx
pk ∈ codom(θenc)

}
↓R

is exactly the set of variables x such that the encryption binded to x in θ′enc appears directly in the right decryption v:

xσrand ∈ v
{
{0}nx

pk/{_}
nx
pk | {_}

nx
pk ∈ codom(θ′enc)

}
↓R

Hence, if the internal bit is 1 then checking whether γ is different from the values sampled from [[x1θ
′
enc]], . . . , [[xpθ

′
enc]]

amounts to checking whether γ is different from the values sampled from [[y′1]], . . . , [[y′m]], except for a negligible number
of samplings.
We store the result at key z.

The attacker against the multi-user IND-CCA2 game simply returns A(B). Since B samples either from [[φ]] if b = 0 or from
[[ψ]] if b = 1 (up to a negligible number of samplings), and since A has a non-negligible advantage of distinguishing [[φ]] from
[[ψ]] we know that the attacker has a non-negligible advantage against the multi-user IND-CCA2 game.

A. Closure Under Restr

To close our logic under Restr, we need the unitary axioms to be closed. Therefore, we let CCA2 be the closure of CCA2a

under Restr.

Definition 16. CCA2 is the set of formula φ ∼ ψ such that we have the derivation:

φ′ ∼ ψ′ CCA2a

φ ∼ ψ Restr

The main contribution of this sub-section, given below, states that any instance ~u ∼ ~v of CCA2 can be automatically extended
into an instance ~u ′ ∼ ~v ′ of CCA2a of, at most, polynomial size.

Proposition 9. For every instance ~u ∼ ~v of CCA2, there exists ~u1, ~v 1 such that ~u, ~u1 ∼ ~v ,~v 1 is an instance of CCA2a (modulo
Perm) and |~u1|+ |~v 1| is of polynomial size in |~u |+ |~v |. We let completion(~u ∼ ~v ) be the formula ~u, ~u1 ∼ ~v ,~v 1.

Proof. We first show how to extend an instance of CCA2 into an instance of CCA2a. Let (ui)i∈I ∼ (vi)i∈I be an instance of
CCA2a. Let I ′ ⊆ I , we want to extend (ui)i∈I′ ∼ (vi)i∈I′ into an instance of CCA2a. Let φ ≡ (ui)i∈I , ψ ≡ (vi)i∈I , since
(ui)i∈I ∼ (vi)i∈I is an instance of CCA2a we have:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKCCA2a(ψ,Xenc,Xdec, σ
′
rand, θ

′
enc, λ

′
dec)

For all x ∈ Xenc∪Xdec, we let ix ∈ I be the index corresponding to xθencλdec ∼ xθ′encλ
′
dec. Moreover, for all x ∈ Xdec, we let

tix be the context used for the decryption in the definition of RKCCA2a (hence we have xλdec ≡ else∗(l,dec(tixθencλdec), sk)).
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a) Outline: We are going to define I lr, I l, Ir ⊆ I and (ũi)i∈J , (ṽi)i∈J (where J = I lr ∪ I l ∪ Ir) such that:
• I lr, I l, Ir are pair-wise disjoints and I ′ ⊆ I lr.
• (ũi)i∈J ∼ (ṽi)i∈J is an instance of CCA2a of polynomial size with respect to

∑
i∈I′ |ui|+ |vi|.

Intuitively, I lr is the subset of indices of I\I ′ of the terms that are subterm of (ui)i∈I′ ∼ (vi)i∈I′ on the left and on the right,
i.e. for all i ∈ I lr, ui ∈ st((ui)i∈I′) and vi ∈ st((vi)i∈I′). The terms whose index is in I lr are easy to handle, as they are
immediately bounded by the terms whose indices is in I ′.

Then, I l is the subset of indices of I\I ′ of the terms that are subterms of (ui)i∈I′ ∼ (vi)i∈I′ on the left only (i.e. for every
i ∈ I l, we only know that ui ∈ st((ui)i∈I′)). Terms with indices in I l are easy to bound on the left, but not on the right. To
bound the right terms, we introduce dummy messages (by replace encryptions by encryption of g(), where g is an adversarial
function symbol in G). Similarly Ir is the subset of indices of I\I ′ of the terms that are subterms of (ui)i∈I′ ∼ (vi)i∈I′ on
the right only.

First, we define I lr, I l, Ir, and then we define the corresponding CCA2a instance (ũi)i∈J ∼ (ṽi)i∈J .
b) Inductive Definition of the Left and Right Appearance Sets: We define by induction on i ∈ I ′ the sets I li , I

r
i ⊆ I .

Intuitively, I li is the set of indices of I needed so that ui is well-defined (same for Iri and vi). Let i ∈ I ′, we do a case
disjunction on the rule applied to ui, vi in RKCCA2a :
• No Call to the Oracles: In that case we take I li = Iri = {i}.
• Encryption Case: let t, t′ ∈ T (F \{0},N ,Xdec) such that ui ≡ {tλdec}_

_ and vi ≡ {t′λ′dec}_
_. To have ui well-defined,

we need all the decryptions in ui to be well-defined (same for vi). Hence let:

I li = {i} ∪
⋃

x∈Xdec∩st(t)

I lix Iri = {i} ∪
⋃

x∈Xdec∩st(t′)

Irix

• Decryption Case: recall that ui ≡ else∗(l,dec(u, sk)) where u ≡ tiθencλdec. Therefore we need all encryption in
Xenc ∩ st(ti) and decryption in Xdec ∩ st(ti) to be defined, on the left and on the right. Hence we let:

I li = {i} ∪
⋃

x∈(Xdec∪Xenc)∩st(ti)

I lix Iri = {i} ∪
⋃

x∈(Xdec∪Xenc)∩st(ti)

Irix

We let:

I lr =
⋃
i∈I′

I li ∩
⋃
i∈I′

Iri I l =
⋃
i∈I′

I li ∩
⋃
i∈I′

Iri Ir =
⋃
i∈I′

I li ∩
⋃
i∈I′

Iri

These three sets are disjoint and form a partition of
⋃
i∈I′ I

l
i ∪ Iri . Remark that for every i ∈ I lj , ui is a subterm of uj . Hence,

for every i ∈ I lr ∪ I l, there exists j ∈ I ′ such that ui is a subterm of uj .
c) Building the New Instance: We define (by induction on i) the terms (ũi)i∈J , by letting ũi be:

• ui when i ∈ I lr ∪ I l.
• {g()}n

pk when i ∈ Ir and ui is an encryption, with ui ≡ {_}n
pk.

• else∗(l̃,dec(ũ, sk)) when i ∈ Ir and ui is a decryption, where ui ≡ else∗(l,dec(u, sk)), u ≡ tiθencλdec, l is the
sequence of guards l ≡ (eq(u, y1), . . . ,eq(u, ym)) where (y1, . . . , ym) = sort(Yuθenc). Then we take:

– ũ ≡ tiθ̃encλ̃dec, where θ̃enc = {x 7→ ũix | x ∈ Xenc} and λ̃dec = {x 7→ ũix | x ∈ Xdec}.
– l̃ ≡ (eq(ũ, ỹ1), . . . ,eq(ũ, ỹm)) where (ỹ1, . . . , ỹm) = sort(Yuθ̃enc).

Similarly, we define ṽi for every i ∈ J .
d) Conclusion: Let J = I lr ∪ I l ∪ Ir. To conclude, we check that (ũi)i∈J ∼ (ṽi)i∈J :

• is a CCA2a instance. This is done by induction on i ∈ J .
• is of polynomial size w.r.t. (ui)i∈I′ ∼ (vi)i∈I′ .
We omit the details of the proof of the first point.
For the second point, we first show by induction on i that |I li | ≤ |ui| and |Iri | ≤ |vi|. We deduce that:

|J | =
∣∣ ⋃
i∈I′

Iri ∪ I li
∣∣ ≤∑

i∈I′
|Iri |+ |I li | ≤

∑
i∈I′
|ui|+ |vi|

Let i ∈ I lr ∪ I l, we know that there exists j ∈ I ′ such that ui is a subterm of uj . Since ũi ≡ ui, we deduce that |ũi| ≤ |uj | ≤∑
j∈I′ |uj |+ |vj |.
Let i ∈ Ir. If ũi is an encryption then it is of constant size. Assume ũi is a decryption. Then ũi is the decryption vi

where any encryption whose index is in I lr has been replaced by its left counterpart, and any encryption whose index is in
Ir has been replaced by a dummy encryption (the case I l cannot happen, since i ∈ Ir). Since there are at most |vi| − 1 such
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Length(n) = lη Length(0le) = le

Length(u) = Length(u′) if u =R u
′ and Length(u),Length(u′) are not undefined

Length(〈u , v〉) = Length(u) + Length(v) + l〈 , 〉 ∀le.Length(padle(u)) = le

∀k.Length({u}n
pk) = k.l{block} + l{} if Length(u) = k.lblock

∀k.Length(dec(u, sk)) = k.lblock if Length(u) = k.l{block} + l{}

Length(if b then u else v) =

{
Length(u) if Length(u) = Length(v)

undefined otherwise

Fig. 6. Definition of the Length partial function.

encryptions (as vi contain at least one occurrence of the dec function symbol), and since any encryption with index in I lr or
Ir is upper-bounded by

∑
j∈I′ |uj |+ |vj |, we get that:

|ũi| ≤ |vi|+ (|vi| − 1).
∑
j∈I′
|uj |+ |vj | ≤ |vi|.

∑
j∈I′
|uj |+ |vj | ≤

(∑
j∈I′
|uj |+ |vj |

)2
We deduce that (ũi)i∈J ∼ (ṽi)i∈J is of polynomial size in

∑
j∈I′ |uj |+ |vj |.

B. Length in the CCA2 Axioms

If we want the formula {t}rpk ∼ {t′}r
′

pk′ to be a valid application of the CCA2 axioms, we need to make sure that t and t′

are of the same length. Since the length of terms depend on implementation details (e.g. how is the pair 〈_ , _〉 implemented),
we let the user supply implementation assumptions. We use a predicate symbol EQL(_, _) in the logic, together with some
derivation rules DL (supplied by the user), and we require that they verify the following properties:
• Complexity: for every u, v, we can decide whether EQL(u, v) is a consequence of DL in polynomial time in |u|+ |v|.
• Branch Invariance: for all term b, u, v, t, if EQL(if b then u else v, t) is derivable using DL then EQL(u, t) and

EQL(v, t) are derivable using DL.
We add to all CCA2 instances the side condition EQL(ml, mr) for every encryption oracle call on (ml,mr). Then, we know
that our CCA2 instances are valid in any computational modelMc where the encryption is interpreted as a IND-CCA2 encryption
scheme, and where the following property holds: for every ground terms u, v, if EQL(u, v) is derivable using DL, then:

[[length(u)]]Mc
= [[length(v)]]Mc

a) Example: Block Cipher: We give here an example of derivation rules DL that axiomatize the fact that the encryption
function is built upon a block cipher, taking blocks of length lblock and returning blocks of length l{block}. The length constant
l{} is used to represent the constant length used, e.g., for the IV and the HMAC.

We let L be a set of length constants, and we define a length expression to be an expression of the form
∑
l∈L kl.l,

where L is a finite subset of L and (kl)l∈L are positive integers. We consider length expressions modulo commutativity (i.e.
3.l1 + 4.l2 ≈ 4.l2 + 3.l1), and we assume that for every length expression le, there exists a function symbol padle ∈ F .
Intuitively padle is function padding messages to length l: if the message is too long it truncates it, and if the message is too
short it pads it. Similarly, we assume that for every le, we have a function symbol 0le ∈ F or arity zero which, intuitively,
returns le zeroes. Also, we assume that L contains the following length constants: l〈 , 〉, lenc, lblock, lη .

We define the Length (partial) function on terms in Figure 6. Then, we let DL be the (recursive) set of unitary axioms:

Length(u) = Length(v) 6= undefined
EQL(u, v)

Proposition 10. The function Length is well defined, and the set of axioms DL satisfies the branch invariance properties.

Proof. To check that Length is well defined, one just need to look at the critical pairs in the definition and check that they
are joinable. Soundness is easy, as JLengthKMc

is just an under-approximation of JlengthKMc
in every computational model

Mc where the encryption is interpreted as a block cipher, the padding functions are interpreted as expected etc.
Finally, branch invariance follows directly from the definition of Length(if b then u else v).
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Remark 5. We can allow the user to add any set of length equations, as long as the branch invariance property holds and the
Length function is well-defined. E.g one may wish to add equations like Length(A) = Length(B) = Length(C) = lagent.
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APPENDIX III
RULE ORDERING AND FREEZE STRATEGY

In this section, we give the proofs of the Restr elimination lemma (Lemma 1). We then show the rule commutations used to
obtain a complete ordered strategy (Lemma 3, Lemma 5). Finally we show the completeness of the freeze strategy (Lemma 7).

A. Tracking Relations Between Branches

We introduce the following erasure function, defined on if-free ground terms inductively as follows:

2erase(t) ≡


f(2erase(t1), . . . ,2erase(tn)) if t ≡ f(t1, . . . , tn) ∧ f ∈ Fs
2erase(b) if t ≡ b1 b2

b

n if t ≡ n ∧ n ∈ N
This function is used to define the full (not simplified) versions of UnF and 2Box, which are given in Fig. 7, together with a
summary of all the axioms introduced for the complete strategy.
Remark 6. We modify the definition of cond-st(t) as follows: for all t, cond-st(t) = cond-st(2erase(t)).

B. Proof Ordering

We now show that all the rule commutations given in Fig. 8 are correct. Observe that this subsumes Lemma 3 and Lemma 5.

Lemma 11. All the rule commutations in Fig. 8 are correct.

Proof. We split the proof depending on the left-most rule we are commuting.
a) Delay Dup:

• If the R rules involves a term which is not duplicated then this is trivial. Assume the R rewriting involves a duplicated
term, and that t =R s and t′ =R s

′:
~u,~v, s ∼ ~u′, ~v′, s′

~u,~v, t ∼ ~u′, ~v′, t′ R

~u,~v, t, ~v, t ∼ ~u′, ~v′, t′, ~v′, t′
Dup

⇒
~u,~v, s ∼ ~u′, ~v′, s′

~u,~v, s, ~v, s ∼ ~u′, ~v′, s′, ~v′, s′
Dup

~u,~v, t, ~v, t ∼ ~u′, ~v′, t′, ~v′, t′ R

• Similarly if the FA rules does not involve a duplicated term then this is trivial. Otherwise:

~u,~v, ~w ∼ ~u′, ~v′, ~w′

~u,~v, f(~w) ∼ ~u′, ~v′, f(~w′)
FA

~u,~v, f(~w), ~v, f(~w) ∼ ~u′, ~v′, f(~w′), ~v′, f(~w′)
Dup

⇒

~u ∼ ~u′
~u,~v, ~w,~v, ~w ∼ ~u′, ~v′, ~w′, ~v′, ~w′

Dup

~u,~v, f(~w), ~v, ~w ∼ ~u′, ~v′, f(~w′),~′v, ~w′
FA

~u,~v, f(~w), ~v, f(~w) ∼ ~u′, ~v′, f(~w′), ~v′, f(~w′)
FA

• Commutation of Dup with CS is easy.
b) Delay FA:

• For every b, b′ ∈ T (Fs,N ):

~w1, ~w2, b, (ui)i∈I∪J ∼ ~w′1, ~w
′
2, b
′, (u′i)i∈I∪J ~w1, ~w2, b, (vi)i∈I∪J ∼ ~w′1, ~w

′
2, b
′, (v′i)i∈I∪J

~w1, ~w2, (if b then ui else vi)i∈I∪J ∼ ~w′1, ~w
′
2, (if b′ then u′i else v′i)i∈I∪J

CS

~w1, (if b then ui else vi)i∈I , f(~w2, (if b then ui else vi)i∈J)
∼ ~w′1, (if b′ then u′i else v′i)i∈I , f(~w′2, (if b′ then u′i else v′i)i∈J)

FA

Can be rewritten into:
~w1, ~w2, b, (ui)i∈I∪J ∼ ~w′1, ~w

′
2, b
′, (u′i)i∈I∪J

~w1, b, (ui)i∈I , f(~w2, (ui)i∈J)
∼ ~w′1, b

′, (u′i)i∈I , f(~w′2, (u
′
i)i∈J)

FA
~w1, ~w2, b, (vi)i∈I∪J ∼ ~w′1, ~w

′
2, b
′, (v′i)i∈I∪J

~w1, b, (vi)i∈I , f(~w2, (vi)i∈J)
∼ ~w′1, b

′, (v′i)i∈I , f(~w′2, (v
′
i)i∈J)

FA

~w1, (if b then ui else vi)i∈I , if b then f(~w2, (ui)i∈J) else f(~w2, (vi)i∈J)
∼ ~w′1, (if b′ then u′i else v′i)i∈I , if b

′ then f(~w′2, (u
′
i)i∈J) else f(~w′2, (v

′
i)i∈J)

CS

~w1, (if b then ui else vi)i∈I , f(~w2, (if b then ui else vi)i∈J)
∼ ~w′1, (if b′ then u′i else v′i)i∈I , f(~w′2, (if b′ then u′i else v′i)i∈J)

R

• Assume that ~u,~v, ~u′, ~v′ =R ~u1, ~v1, ~u
′
1, ~v
′
1:

~u1, ~v1 ∼ ~u′1, ~v′1
~u,~v ∼ ~u′, ~v′ R

~u, f(~v) ∼ ~u′, f(~v′)
FA

⇒
~u1, ~v1 ∼ ~u′1, ~v′1

~u1, f(~v1) ∼ ~u′1, f(~v′1)
FA

~u, f(~v) ∼ ~u′, f(~v′)
R
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• (Sym) : ∼ is symmetric.

• For any permutation π of 1, . . . , n:
xπ(1), . . . , xπ(n) ∼ yπ(1), . . . , yπ(n)

x1 . . . , xn ∼ y1, . . . , yn Perm

•
~u, t ∼ ~v, t′

~u, t, t ∼ ~v, t′, t′
Dup

• If s =R t and { a c
b
∈ st(~u, t)} ⊆ { a c

b
∈ st(~u,C[s])} then:

~u,C[t] ∼ ~v
~u,C[s] ∼ ~v

R�

• For all f ∈ F ,
~x, ~y ∼ ~x′, ~y′

f(~x), ~y ∼ f(~x′), ~y′
FA

• For every b, b′ ∈ T (Fs,N ):

~w, b1, (ui)i ∼ ~w′, b′1, (u
′
i)i ~w, b2, (vi)i ∼ ~w′, b′2, (v

′
i)i

~w,
(

if b1 b2
b

then ui else vi
)
i
∼ ~w′,

(
if b′1 b′2

b′
then u′i else v′i

)
i

CS�

• UnF unfreezes all conditionals.
• For every b, b′ ∈ T (Fs ∪ B,N ):

~u,C
[
b b 2erase(b)↓R

]
∼ ~u′, C ′

[
b′ b′ 2erase(b′)↓R

]
~u,C[b] ∼ ~u′, C ′[b′] 2Box

Fig. 7. Summary of the strategy axioms.

Dup ·R ⇒ R · Dup

Dup · FA ⇒ FA∗ · Dup

Dup · CS ⇒ CS · Dup

FA ·R ⇒ R · FA

FA · CS ⇒ R · CS · FA

FAs · FA(b, b′) ⇒ R · FA(b, b′) · FAs
∗ · Dup

CS� ·R� ⇒ R� · CS�

CS� · 2Box ⇒ R� · 2Box · CS�

Explanation: Each entry w ⇒ w′ means that a derivation in w can be rewritten into a derivation in w′.

Fig. 8. Summary of all the rule commutations

• For all f, b, b′, one can always apply FAf after FA(b, b′):

~u,~v, b, s, t ∼ ~u′, ~v′, b′, s′, t′

~u,~v, if b then s else t ∼ ~u′, ~v′, if b′ then s′ else t′
FA(b, b′)

~u, f(~v, if b then s else t) ∼ ~u′, f(~v′, if b′ then s′ else t′)
FAf

Then we can rewrite this proof as follows:

~u, b, s, ~v, t ∼ ~u′, b′, s′, ~v′, t′

~u, b, ~v, s,~v, t ∼ ~u′, b′, ~v′, s′, ~v′, t′
Dup

~u, b, ~v, s, f(~v, t) ∼ ~u′, b′, ~v′, s′, f(~v′, t′)
FAf

~u, b, f(~v, s), f(~v, t) ∼ ~u′, b′, f(~v′, s′), f(~v′, t′)
FAf

~u, if b then f(~v, s) else f(~v, t) ∼ ~u′, if b′ then f(~v′, s′) else f(~v′, t′)
FA(b, b′)

~u, f(~v, if b then s else t) ∼ ~u′, f(~v′, if b′ then s′ else t′) R
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• FA(b, b′)− FA(a, a′) commutation: assume that u =R if a then s else t and that u′ =R if a′ then s′ else t′.

~w, b, a, s, t, v ∼ ~w′, b′, a′, s′, t′, v′

~w, b, if a then s else t, v ∼ ~w′, b′, if a′ then s′ else t′, v′
FA(a, a′)

~w, b, u, v ∼ ~w′, b′, u′, v′
R

~w, if b then u else v ∼ ~w′, if b′ then u′ else v′
FA(b, b′)

Then we can rewrite this proof as follows:

~w, a, b, s, t, v ∼ ~w′, a′, b′, s′, t′, v′

~w, a, b, s, v, b, t, v ∼ ~w′, a′, b′, s′, v′, b′, t′, v′
Dup

~w, a, b, s, v, if b then t else v ∼ ~w′, a′, b′, s′, v′, if b′ then t′ else v′
FA(b, b′)

~w, a, if b then s else v, if b then t else v ∼ ~w′, a′, if b′ then s′ else v′, if b′ then t′ else v′
FA(b, b′)

~w, if a then if b then s else v
else if b then t else v

∼ ~w′, if a′ then if b′ then s′ else v′

else if b′ then t′ else v′

FA(a, a′)

~w, if b then u else v ∼ ~w′, if b′ then u′ else v′ R

c) Delay CS:
• For all b, b′ ∈ T (Fs,N ), the rule application:

(wn)0
n, b

0, (u0
i )i ∼ (w′0n )n, b

′0, (u′0i )i

(wn)n, b, (ui)i ∼ (w′n)n, b
′, (u′i)i

R
(wn)n, b, (vi)i ∼ (w′n)n, b

′, (v′i)i

(wn)n, (if b then ui else vi)i ∼ (w′n)n, (if b′ then u′i else v′i)i
CS

can be rewritten into:
(wn)0

n, b
0, (u0

i )i ∼ (wn)′0n , b
′0, (u′0i )i

(wn)0
n, b, (u

0
i )i ∼ (wn)′0n , b

′, (u′0i )i
Rfree

(wn)n, b, (vi)i ∼ (wn)′n, b
′, (v′i)i

(if b then w0
n else wn)n, (if b then u0

i else vi)i ∼ (if b′ then w′0n else w′n)n, (if b′ then u′0i else v′i)i
CS

(wn)n, (if b then ui else vi)i ∼ (w′n)n, (if b′ then u′i else v′i)i
R

d) Delay CS�:
• The following proof:

(w1
j )j , b1, (u

1
i )i ∼ (w′1j )j , b

′
1, (u

′1
i )i

(wj)j , a1, (ui)i ∼ (w′j)j , a
′
1, (u

′
i)i

R�

(w2
j )j , b2, (v

1
i )i ∼ (w′2j )j , b

′
2, (v

′1
i )i

(wj)j , a2, (vi)i ∼ (w′j)j , a
′
2, (v

′
i)i

R�

(wj)j , (if a1 a2
b

then ui else vi)i ∼ (w′j)j , (if a′1 a′2
b′

then u′i else v′i)i
CS�

can be rewritten into:
(w1

j )j , b1, (u
1
i )i ∼ (w′1j )j , b

′
1, (u

′1
i )i (w2

j )j , b2, (v
1
i )i ∼ (w′1j )j , b

′
2, (v

′1
i )i

(if b1 b2
b

then w1
j else w2

j )j , (if b1 b2
b

then u1
i else v1

i )i

∼ (if b′1 b′2
b′

then w′1j else w′2j )j , (if b′1 b′2
b′

then u′1i else v′1i )i

CS�

(wj)j , (if a1 a2
b

then ui else vi)i ∼ (w′j)j , (if a′1 a′2
b′

then u′i else v′i)i
R�

• Similarly we can commute CS� with 2Box. Let b, b′ ∈ T (Fs ∪ B,N ), and let:

b� ≡ b b 2erase(b)↓R
∧ b′� ≡ b′ b′ 2erase(b′)↓R

Then the following proof:

(wj [b�])j , a1[b�], (ui[b�])i
∼ (w′j [b

′
�])j , a

′
1[b′�], (u′i[b

′
�])i

(wj [b])j , a1[b], (ui[b])i
∼ (w′j [b

′])j , a
′
1[b′], (u′i[b

′])i

2Box
(wj [b])j , a2[b], (vi[b])i

∼ (w′j [b
′])j , a

′
2[b′], (v′i[b

′])i

(wj [b])j ,
(

if a1[b] a2[b]
a

then ui[b] else vi[b]
)
i

∼ (w′j [b
′])j ,

(
if a′1[b′] a′2[b′]

a′
then u′i[b

′] else v′i[b
′]
)
i

CS�
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can be rewritten into:

(wj [b�])j , a1[b�], (ui[b�])i
∼ (w′j [b

′
�])j , a

′
1[b′�], (u′i[b

′
�])i

(wj [b])j , a2[b], (vi[b])i
∼ (w′j [b

′])j , a
′
2[b′], (v′i[b

′])i(
if a1[b�] a2[b]

a
then wj [b�] else wj [b]

)
j
,
(

if a1[b�] a2[b]
a

then ui[b�] else vi[b]
)
i

∼
(

if a′1[b′�] a′2[b′]
a′

then w′j [b
′
�] else w′j [b

′]
)
j
,
(

if a′1[b′�] a′2[b′]
a′

then u′i[b
′
�] else v′i[b

′]
)
i

CS�

(
if a1[b] a2[b]

a
then wj [b] else wj [b]

)
j
,
(

if a1[b] a2[b]
a

then ui[b] else vi[b]
)
i

∼
(

if a′1[b′] a′2[b′]
a′

then w′j [b
′] else w′j [b

′]
)
j
,
(

if a′1[b′] a′2[b′]
a′

then u′i[b
′] else v′i[b

′]
)
i

2Box

(wj [b])j ,
(

if a1[b] a2[b]
a

then ui[b] else vi[b]
)
i

∼ (w′j [b
′])j ,

(
if a′1[b′] a′2[b′]

a′
then u′i[b

′] else v′i[b
′]
)
i

R�

The commutation with an application of 2Box in the right branch is exactly the same.

C. Restr Elimination

We show in the following lemma that any proof using Restr can be rewritten into a (no larger) proof without the Restr rule.
In other word, the Restr rule is admissible in our logic. Remark that this Restr elimination result subsumes Lemma 1.

Lemma 12 (Restr Elimination). If P ` ~u ∼ ~v with P in (CS� + R + 2Box + FA + Dup + CCA2 + Restr)∗ then there exists P ′

such that P ′ ` ~u ∼ ~v and P ′ contains no Restr applications. Moreover the height of P ′ is no larger than the height of P .

Proof. We do a proof by induction on the height of the derivation P of ~u ∼ ~v. For the inductive case, assume that we have a
derivation P of ~u ∼ ~v where the last rule applied is Restr:

~u,~t ∼ ~v,~t
~u ∼ ~v Restr

We discriminate on the second last rule applied:
• If it is a unitary axiom we conclude easily using the fact that unitary axioms are closed under Restr.
• If it is a FA axiom and ~t is not involved in this function application then P is of the form:

P0

f(~u), ~u′,~t ∼ f(~v), ~v′,~t′
FA

f(~u), ~u′ ∼ f(~v), ~v′
Restr

∧ P0 ` ~u, ~u′,~t ∼ ~v,~v′,~t′

By applying the induction hypothesis on the following derivation:

P0

~u, ~u′ ∼ ~v,~v′ Restr

we have a derivation P ′ ` ~u, ~u′ ∼ ~v,~v′ in the wanted fragment. We conclude by applying the FA rule:
P ′

f(~u), ~u′ ∼ f(~v), ~v′
FA.

• If it is a FA axiom and ~t is involved in this function application then P is of the form:

P0

~u, ~u′, f(~u′′) ∼ ~v,~v′, f(~v′′)
FA

~u ∼ ~v Restr
∧ P0 ` ~u, ~u′, ~u′′ ∼ ~v,~v′, ~v′′

By applying the induction hypothesis on the following derivation:

P0

~u ∼ ~v Restr

We get a derivation P ′ ` ~u ∼ ~v in the wanted fragment.
• The CS� axiom is handled similarly to FA.
• The Dup, 2Box and R axioms are trivial to handle.
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a) Sub-Proof Extraction Functions extractl and extractr: It follows that, given a proof P ` ~u ∼ ~v and a position h in
the proof P such that:

P|h =
~w, b1, (ui)i ∼ ~w′, b′1, (u

′
i)i ~w, b2, (vi)i ∼ ~w′, b′2, (v

′
i)i

~w,
(

if b1 b2
b

then ui else vi
)
i
∼ ~w′,

(
if b′1 b′2

b′
then u′i else v′i

)
i

CS�

we can extract from P the left (resp. right) proof of b1 ∼ b′1 (resp. b2 ∼ b′2) using the Restr elimination procedure described in
the proof of Lemma 12. We let extractl(h, P ) be proof of b1 ∼ b′1 extracted from P|h, and extractr(h, P ) be proof of b2 ∼ b′2
extracted from P|h.

D. Completeness of the Freeze Strategy

We give here a proof of Lemma 7, which we recall below.

Lemma (7). Let U be a set of unitary axioms closed under Restr. Then the following strategy:

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · U)

is complete for F(CS + FA +R+ Dup + U).

Before starting the proof, we need to define the induction ordering.
a) Proof ordering: Let us consider the following well-founded order on proofs: a proof is interpreted by the multi-set of

pair (b, b′) appearing as (potentially frozen) labels of BFA applications where we erased the function symbol . We then order
these multi-set using the multi-set ordering �mult, which is induced by the product ordering �×, which itself is built upon
an arbitrary total rewrite ordering on ground terms without boxes � (e.g a LPO for some arbitrary precedence over function
symbols).

b) Example: Assume that b1 ≡ if b then a else c and b2 ≡ if b′ then a′ else c′. We let P1 be the derivation:

b, a, c, u1, v1 ∼ ~x′, b′, a′, c′, u1, v1

b̃1, u1, v1 ∼ b̃2, u2, v2

BFA(b, b′)

if b1 then u1 else v1 ∼ if b2 then u2 else v2
BFA(b1, b2)

And P2 be the derivation:

b̃, ã, c̃, u1, v1 ∼ b̃′, ã′, c̃′, u2, v2

b̃, ã, u1, v1, c̃, u1, v1 ∼ b̃′, ã′, u2, u2, c̃′, u2, v2
Dup

b̃, ã, u1, v1, if c then u1 else v1 ∼ b̃′, ã′, u2, u2, if c′ then u2 else v2
BFA(c, c′)

b̃, if a then u1 else v1, if c then u1 else v1 ∼ b̃′, if a′ then u2 else u2, if c′ then u2 else v2
BFA(a, a′)

if b then (if a then u1 else v1) else (if c then u1 else v1) ∼ if b′ then (if a′ then u2 else v2) else (if c′ then u2 else v2)
BFA(b, b′)

if b1 then u1 else v1 ∼ if b2 then u2 else v2
R

P1 and P2 are respectively interpreted as the multi-sets {(b1, b2), (b, b′)} and {(b, b′), (a, a′), (c, c′)} (observe that we unfroze
the conditionals). b, a, c (resp. b′, a′, c′) are strict subterms of b1 (resp. b2), therefore we have (b1, b2) �× (b, b′), (b1, b2) �×
(a, a′) and (b1, b2) �× (c, c′). Therefore we have:

{(b1, b2), (b, b′)} �mult {(b, b′), (a, a′), (c, c′)}

By consequence P2 is a smaller proof of if b1 then u1 else v1 ∼ if b2 then u2 else v2 than P1.

Proof of Lemma 7. First we are going to show a cut elimination strategy to get rid of the deconstruction of frozen conditionals
introduced by:

~w1, b̃1, u
′
1, v
′
1 ∼ ~w2, b̃2, u

′
2, v
′
2

~w1, if b1 then u1 else v1 ∼ ~w2, if b2 then u2 else v2
BFA(b1, b2)

Assume now that u ∼ v is not provable without deconstructing frozen conditionals introduced as described above. We
consider a proof P1 of u ∼ v that we suppose minimal for �mult. We are going to consider the first conditionals (b1, b2)
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(starting from the bottom) which are deconstructed. We let b1 ≡ if b then a else c and b2 ≡ if b′ then a′ else c′, we know
that our proof has the following shape:

.... (A3)

~x, b, a, c, ~y ∼ ~x′, b′, a′, c′, ~y′

~x, b̃1, ~y ∼ ~x′, b̃2, ~y′
BFA(b, b′)

.... (A2)

~w1, b̃1, u1, v1 ∼ ~w2, b̃2, u2, v2

~w1, if b1 then u1 else v1 ∼ ~w2, if b2 then u2 else v2
BFA(b1, b2)

.... (A1)

C[if b1 then u1 else v1] ∼ C[if b2 then u2 else v2]
u ∼ v R

Where C is a one-hole context. Since (b1, b2) are the first conditionals deconstructed in this proof we know that C is such
that the hole does not appear in a conditional branch. This proof can be rewritten as the following proof P2:

.... (A3)

~x, b̃, ã, c̃, ~y ∼ ~x′, b̃′, ã′, c̃′, ~y′.... (A2)

~w1, b̃, ã, c̃, u1, v1 ∼ ~w2, b̃′, ã′, c̃′, u2, v2

~w1, b̃, ã, u1, v1, c̃, u1, v1 ∼ ~w2, b̃′, ã′, u2, u2, c̃′, u2, v2
Dup

~w1, b̃, ã, u1, v1, if c then u1 else v1 ∼ ~w2, b̃′, ã′, u2, u2, if c′ then u2 else v2
BFA(c, c′)

~w1, b̃, if a then u1 else v1, if c then u1 else v1 ∼ ~w2, b̃′, if a′ then u2 else u2, if c′ then u2 else v2
BFA(a, a′)

~w1, if b then if a then u1 else v1
else if c then u1 else v1

∼ ~w2, if b′ then if a′ then u2 else v2
else if c′ then u2 else v2

BFA(b, b′)

.... (A1)

C[if b then (if a then u1 else v1) else (if c then u1 else v1)] ∼ C[if b′ then (if a′ then u2 else v2) else (if c′ then u2 else v2)]
C[if b1 then u1 else v1] ∼ C[if b2 then u2 else v2]

R

u ∼ v R

One can check that A1 remains the same in the second proof tree since the hole in C is not in a conditional branch.
The A1, A2, A3 parts are the same in both proofs, so let M be the interpretation of A1, A2, A3 as a multi-set. Then the

interpretation of P1 (resp. P2) is M ∪ {(b1, b2), (b, b′)} (resp. M ∪ {(b, b′), (a, a′), (c, c′)}). Therefore P2 is a strictly smaller
proof of u ∼ v than P1 (this is almost the same multi-sets than in the example above). Absurd.
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APPENDIX IV
PROOF FORM

In this section, we define what are the early proof form and the normal proof form. This is rather technical and lengthy, as
the definition of normal proof form relies on four mutually recursive definitions: Sl-encryption oracle calls are well-formed
encryptions; Sl-decryption oracle calls are well-formed decryptions; Sl-normalized basic terms are terms built using well-
formed encryptions and decryptions as well as function symbols different from if_then_else_; and Sl-normalized simple terms
are combinations of normalized basic terms using if_then_else_.

We then show Lemma 8, which is a weak normalization result: it describes a procedure that, given a proof P of ~u ∼ ~v
following the ordered freeze strategy of Lemma 7, computes a proof P ′ of ~u ∼ ~v such that P ′ is in normal proof form. This
procedure is a careful bottom-up rewriting of all the sub-terms appearing in P .

We also give a proof of Lemma 2.

A. Early Proof Form

We showed in Lemma 7 that:

(2Box +R�)
∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs

∗ · Dup∗ · CCA2 (A�)

is complete for CS + FA +R+ Dup + CCA2. Let us consider a proof P following this ordering. From now on we will use A�
to denote this fragment. Moreover we let ACS�

and ABFA be, respectively, the fragments:

CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · CCA2 (ACS�

)
{BFA(b, b′)}∗ · UnF · FAs

∗ · Dup∗ · CCA2 (ABFA)

The only branching rule is the CS� rule, which has two premises. Hence after having completed all the CS� applications we
know that the proof will be non-branching and in ABFA. We want to name each branch of the proof tree, and its corresponding
instance of the CCA2 axiom. To do so, we index each branch of the proof tree P by some l ∈ L where L is a set of labels,
and we let `b be the proof system ` with branch annotations. When P `b t ∼ t′, we let label(P ) be the set of labels L
annotating the branches in P , and for all l ∈ L, we let instance(P, l) be the instance of CCA2 obtained using Proposition 9
from the instance of CCA2 used in branch l:

instance(P, l) = ~w, (αi)i∈I , (decj)j∈J ∼ ~w, (α′i)i∈I , (dec′j)j∈J
CCA2

We also define EPl = {αi | i}, DPl = {decj | j ∈ J} and KPl to be the sets of, respectively, encryptions, decryptions and keys
used in the CCA2 application of the branch l of proof P , on the left side. Similarly we define E ′Pl , D′Pl and K′Pl for the right
side.

Definition 17. For all terms t, t′ and proofs P such that P `b
ACS�

t ∼ t′, we say that P proof in early proof form if t and t′

are of the following form:

t ≡ C
[(

bhl bhr
bh

)
h∈H
� (ul)l∈label(P )

]
∧ t′ ≡ C

[(
b′hl b′hr

b′h

)
h∈H
� (u′l)l∈label(P )

]
where H is a set of positions in P (we let cs-pos(P ) ≡ H) such that:
• for all h ∈ H , the rule applied at position h in P is a CS� rule on the conditionals:(

bhl bhr
bh
, b′hl b′hr

b′h

)
• (bh)h∈H are if-free conditionals in R-normal form and for all h ∈ H, bhl =R b

hr =R b
h (same for b′hl , b′hr , bh).

• Let Phl = extractl(h, P ) and Phr = extractr(h, P ), then:

Phl `b
ACS�

bhl ∼ b′hl ∧ Phr `b
ACS�

bhr ∼ b′hr

and these two proofs are in early proof form.
• label(Phl) ⊆ label(P ), and for all l ∈ label(Phl), instance(Phl , l) is subsumed by instance(P, l) (same for label(Phr)).
• For all l ∈ label(P ), we know that the extraction from P of the sub-proof of ul ∼ u′l is in the fragment ABFA.

Proposition 11. For all terms t, t′ and proofs P such that P `ACS�
t ∼ t′, there exists a labelling P ′ of P such that

P ′ `b
ACS�

t ∼ t′ and P ′ is in early proof form.

Proof. We can check that the proof P has the wanted shape and is properly labelled by induction on the size of the proof, by
observing that for all h ∈ cs-pos(P ) and x ∈ {l, r}, extractx(h, P ) is of size strictly smaller that P . We only need to perform
some α-renaming to have the labelling of the sub-proofs coincide.
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Finally we can check that the resulting proof Q is such that for all h ∈ cs-pos(Q), x ∈ {l, r}, for all l ∈ label(extractx(h, P )),
the CCA2 instance instance(extractx(h, P ), l) is subsumed by instance(P, l). This follows from the fact that extractx(h, P )
is obtained through the Restr elimination procedure from P .

We define below the set index(P ) of positions of P , which is the set of all positions of P where a CS� rule is applied.
This set is naturally ordered using the prefix ordering on positions. Moreover we can define the “depth” of a position h in P
to be, intuitively, the number of nested applications of the CS� rule.

Definition 18. Let P `b
ACS�

t ∼ t′ in early proof form.
• We let index(P ) be the set of indices where CS� rules occur in the proof P :

index(P ) = cs-pos(P ) ∪

 ⋃
h∈cs-pos(P )

index (extractl(h, P )) ∪ index (extractr(h, P ))


• For all h, h′ ∈ index(t, P ), we let < be the ancestor relation, defined by h < h′ if and only if h is a prefix of h′.
• For all h ∈ index(P ), we let if-depthP (h) be the depth of h in P , defined as follows:

if-depthP (h) =


0 if h ∈ cs-pos(P )

1 + if-depthP l(h) if ∃g ∈ cs-pos(P ) such that h ∈ index(extractl(g, P )))

1 + if-depthP r(h) if ∃g ∈ cs-pos(P ) such that h ∈ index(extractr(g, P )))

For all h = hx, where h ∈ index(P ) and x ∈ {l, r}, we let cs-posP (h) = cs-pos(extractx(h, P )). When there is no
ambiguity on the proof P , we write cs-pos(h) instead of cs-posP (h).

Definition 19. Let P `b
ACS�

t ∼ t′ in early proof form. For all l ∈ label(P ), we define:

h-branch(l) = {hx | h ∈ index(P ) ∧ x ∈ {l, r} ∧ l ∈ label(extractx(h, P ))} ∪ {ε}

We abuse the notation and say that h ∈ h-branch(l) if there exists x ∈ {l, r} such that hx ∈ h-branch(l). In that case, we say
that x is the direction taken at h in l.

Morally, h-branch(l) is the set of positions of P where a CS� rule is applied on a given branch. Of course for all l ∈ label(P ),
ε ∈ h-branch(l) since ε is the index of the toplevel proof P .

B. Shape of the Terms

For all proofs in A�, all R rewritings are done at the beginning of the proofs in the (2Box + R�)∗ part, and, afterwards,
all rules (apart from Dup) only “peel off” terms by removing the top-most function symbol. Therefore the terms just after
(2Box + R�)∗ characterize the shape of the subsequent proof. This observation is illustrated in Fig. 9. Recall that for all
P `b

ACS�
t ∼ t′ in early proof form, we have:

t ≡ C
[(

bhl bhr
bh

)
h∈H
� (ul)l∈label(P )

]
∧ t′ ≡ C

[(
b′hl b′hr

b′h

)
h∈H
� (u′l)l∈label(P )

]
where for all l ∈ label(P ), the extraction from P of the sub-proof of ul ∼ u′l is in the fragment ABFA. This means that for
all l:

ul ≡ Dl

[(
Bi,l[~wi,l, (α

j
i,l)j∈J0

i,l
, (decki,l)K0

i,l
]
)
i∈I
�
(
Um,l[~wm,l, (α

j
m,l)j∈J1

i,l
, (deckm,l)k∈K1

i,l
]
)
m∈M

]
u′l ≡ Dl

[(
Bi,l[~wi,l, (α

′j
i,l)j∈J0

i,l
, (dec′ki,l)K0

i,l
]
)
i∈I
�
(
Um,l[~wm,l, (α

′j
m,l)j∈J1

i,l
, (dec′km,l)k∈K1

i,l
]
)
m∈M

]
where Dl is an if-context, (Bi,l)i and (Um,l)m are if-free contexts, the encryptions appear in EPl :{

αji,l | i ∈ I, j ∈ J
0
i,l

}
∪
{
αjm,l | m ∈M, j ∈ J0

m,l

}
⊆ EPl{

α′ji,l | i ∈ I, j ∈ J
0
i,l

}
∪
{
α′jm,l | m ∈M, j ∈ J0

m,l

}
⊆ E ′Pl

and the decryptions appear in DPl :{
decki,l | i ∈ I, k ∈ K0

i,l

}
∪
{

deckm,l | m ∈M,k ∈ K0
m,l

}
⊆ DPl{

dec′ki,l | i ∈ I, k ∈ K0
i,l

}
∪
{

dec′km,l | m ∈M,k ∈ K0
m,l

}
⊆ D′Pl
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(
blh brh

bh

)
h∈H

Un0,0[]

(Bi,0[])i

U0,0[]

· · ·

Unm,m[]

(Bi,m[])i

U0,m[]

FAs
∗

FAs
∗

··
·

FAs
∗

ACS�

··
·

ACS�

CS∗�

{BFA(b, b′)}∗

Fig. 9. The shape of the term is determined by the proof.

Using these notation, we give some definitions:

Definition 20. Let P `b
ACS�

t ∼ t′. Then for all l ∈ label(P ), we define the following relations:

• (b, b′) ≤ε,lcs∼cs (t ∼ t′, P ) (resp. b ≤ε,lcs (t, P ), b′ ≤ε,lcs (t′, P )) if and only if there exists h0 ∈ index(P ) such that:

b ≡ bh0 ∧ b′ ≡ b′h0

• (β, β′) ≤ε,lc∼c (t ∼ t′, P ) (resp. β ≤ε,lc (t, P ), β′ ≤ε,lc (t′, P )) if and only if there exists i ∈ I such that:

β ≡ Bi,l[~wi,l, (αji,l)j∈J0
i,l
, (decki,l)k∈K0

i,l
] ∧ β′ ≡ Bi,l[~wi,l, (α′ji,l)j∈J0

i,l
, (dec′ki,l)k∈K0

i,l
]

• (γ, γ′) ≤ε,ll∼l (t ∼ t′, P ) (resp. γ ≤ε,ll (t, P ), γ′ ≤ε,ll (t′, P )) if and only if there exists m ∈M such that:

γ ≡ Um,l[~wm,l, (αjm,l)j∈J1
i,l
, (deckm,l)k∈K1

i,l
] ∧ γ′ ≡ Um,l[~wm,l, (α′jm,l)j∈J1

i,l
, (dec′km,l)k∈K1

i,l
]

Definition 21. Let P `b
ACS�

t ∼ t′ in early proof form. For all h ∈ index(P ), x ∈ {l, r}:

• For all ∆ ∈ {c∼c, l∼l, cs∼cs}, we define ≤hx,l
∆ (t ∼ t′, P ) as follows:

∀s, s′. (s, s′) ≤hx,l
∆ (t ∼ t′, P ) if and only if (s, s′) ≤ε,l∆ (b ∼ b′,extractx(h, P ))

where extractx(h, P ) is a proof of b ∼ b′.
• For all ∆ ∈ {c, l, cs}, we define ≤hx,l

∆ (t, P ) as follows:

∀s. s ≤hx,l
∆ (t, P ) if and only if s ≤ε,l∆ (b,extractx(h, P ))

where extractx(h, P ) is a proof of b ∼ b′.

Remark 7. We extend these notations to proofs P such that P `b
A� t ∼ t

′. Let P ′ be such that:

P ≡ P ′

t ∼ t′
(2Box +R�)∗

and P ′ `b
ACS�

t0 ∼ t′0, then (s, s′) ≤h,l
∆ (t ∼ t′, P ) if and only if (s, s′) ≤h,l

∆ (t0 ∼ t′0, P
′) where ∆ ∈ {c∼c, l∼l, cs∼cs}.

Similarly s ≤h,l
∆ (t, P ) if and only if s ≤h,l

∆ (t0, P
′) where ∆ ∈ {c, l, cs}.

Extending these notations to Bh
l [], Uh

l . . . , we describe the shape of a complete proof in Fig. 10.
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∀l ∈ L,

((
~wh
i,l, (α

h,j
i,l )j , (dech,k

i,l )k

)
i
,
(
~wh
m,l, (α

h,j
m,l)j , (dech,k

m,l)k

)
m

)
h∈h-branch(l)

∼((
~wh
i,l, (α

′h,j
i,l )j , (dec′h,ki,l )k

)
i
,
(
~wh
m,l, (α

′h,j
m,l)j , (dec′h,km,l )k

)
m

)
h∈h-branch(l)

CCA2

.... FAs
∗ · Dup∗((

Bh
i,l[~w

h
i,l, (α

h,j
i,l )j , (dech,k

i,l )k]
)
i
,
(
Uh
m,l[~w

h
m,l, (α

h,j
m,l)j , (dech,k

m,l)k]
)
m

)
h∈h-branch(l)

∼((
Bh
i,l[~w

h
i,l, (α

′h,j
i,l )j , (dec′h,ki,l )k]

)
i
,
(
Uh
m,l[~w

h
m,l, (α

′h,j
m,l)j , (dec′h,km,l )k]

)
m

)
h∈h-branch(l)

.... {BFA(b, b′)}∗(
Dh
l

[(
Bh
i,l[~w

h
i,l, (α

h,j
i,l )j , (dech,k

i,l )k]
)
i
�
(
Uh
m,l[~w

h
m,l, (α

h,j
m,l)j , (dech,k

m,l)k]
)
m

])
h∈h-branch(l)

∼(
Dh
l

[(
Bh
i,l[~w

h
i,l, (α

′h,j
i,l )j , (dec′h,ki,l )k]

)
i
�
(
Uh
m,l[~w

h
m,l, (α

′h,j
m,l)j , (dec′h,km,l )k]

)
m

])
h∈h-branch(l)

.... CS∗�

C

[(
blh brh

bh

)
h

�
(
Dl

[(
Bi,l[~wi,l, (α

j
i,l)j , (decki,l)k]

)
i
�
(
Um,l[~wm,l, (α

j
m,l)j , (deckm,l)k]

)
m

])
l

]
∼

C

[(
b′lh b′rh

b′h

)
h

�
(
Dl

[(
Bi,l[~wi,l, (α

′j
i,l)j , (dec′ki,l)k]

)
i
�
(
Um,l[~wm,l, (α

′j
m,l)j , (dec′km,l)k]

)
m

])
l

]
t ∼ t′

Fig. 10. Shape of a full proof (for simplicity, we omitted the boxes in terms and related rules).

C. Simple Terms

A public/private key pair is valid if the same name has been used to generate the keys.

Definition 22. A valid public/private key pair is a pair of terms (pk(n), sk(n)) where n is a name.

We will now formally define the normal form for terms used in the strategy. This is done through four mutually inductive
definitions: the normal forms of well-formed encryptions and of well-formed decryptions; the normal form of basic terms
built using well-formed encryptions and decryptions, as well as function symbols different from if_then_else_; and finally the
normal form of terms with conditionals.

The next step will be to prove that all intermediate terms in the proofs can be assumed to be in these normal forms. To keep
the proof tractable, this will be done in two steps. Therefore we introduce two versions of some forms, e.g. we will define
simple terms to be terms having a particular form, and normalized simple terms to be simple terms satisfying some further
properties. Consider a instance of CCA2a:

(φ,Xenc,Xdec, σrand, θenc, λdec)RKCCA2a(_, _, _, _, _, _)

Let E = Xencθenc be the set of encryptions, D = Xdecλdec be set of decryptions and R = Xencσrand the set of encryption
randomness used. We also let S = (K,R, E ,D).

Definition 23. A S-encryption oracle call is a term t of the form {u}rpk where:
• {u}rpk ∈ E , r ∈ R, (pk, sk) is a valid public/private key pair and with sk ∈ K.
• u is a S-normalized simple terms.

Similarly, a S-decryption oracle calls t is valid decryption in D under secret key sk ∈ K such that all other encryptions
and decryptions appearing directly in t, either in guards or in the decrypted term, are themselves S-encryption oracle calls
and S-decryption oracle calls.

Definition 24. A S-decryption oracle call is a term of the form C [~g � (si)i≤p] in D where:
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 t1 tn· · ·

~b



nr

pk

eq(t, α1)

0(dec(t, sk)) · · ·

eq(t, αn)

0(dec(t, sk)) dec(t, sk)

Encryption Oracle Call Decryption Oracle Call

Convention: α1, . . . , αn are the encryptions of E under pk appearing in t.

Fig. 11. Shapes of Encryption and Decryption Oracle Calls

• (pk, sk) is valid public/private key pair and sk ∈ K.
• There exists a context u if-free and in R-normal form, and a term t such that:

t ≡ u[(αj)j , (deck)k] ∀i < p, si ≡ 0(dec(t, sk)) sp ≡ dec(t, sk) ∀g ∈ ~g, g ≡ eq(t, αj)

• For all j, αj is a S-encryption oracle call.
• For all k, deck is a S-decryption oracle call.

(αj)j are called u’s encryptions. We often write (deck)k to denote a vector of decryption oracle calls.

Figure 11 gives a visual representation of the shapes of encryption and decryption oracle calls.
A S-basic term is a term build using S-encryption oracle calls, S-decryption oracle calls, function symbols in
F \{if_then_else_, 0} and names in N , with some restrictions. More precisely, we require that:
• We do not use names in R, as this would contradict CCA2 randomness side-conditions.
• We do not decrypt terms using secret keys in K.

Definition 25. A S-basic term is a term of the form U [~w, (αj)j , (deck)k] where:
• U and ~w are if-free, U does not contain 0(_), fresh(R; ~w) and nodec(K, ~w).
• (αj)j are S-encryption oracle calls.
• (deck)k are S-decryption oracle calls.

A S-basic conditional is a S-basic term of sort Sb.

A S-normalized basic term is a a S-basic term that has been built without introducing any R-redex.

Definition 26. A S-normalized basic term is a S-basic term of the form U [~w, (αj)j , (deck)k] where:
• (αj)j are encryptions under (pkj , skj)j , and (deck)k are decryptions under (pkk, skk)k.
• U [~w, ({[]j}0pkj

)j , (dec([]k, skk))k] is in R-normal form.
A S-normalized basic conditional is a S-normalized basic term of sort Sb.

Finally, a S-simple term is a term build using only S-basic term and the if_then_else_ function symbols. Moreover, if we
use only S-normalized basic term, then we get an a S-normalized simple term.

Definition 27. A S-simple term (resp. S-normalized simple term) is a term of the form C[~b � ~u] where:
• C is an if-context.
• ~b are S-basic conditionals (resp. S-normalized basic conditionals).
• ~u are S-basic terms (resp. S-normalized basic terms).

Remark 8. For all term u, the guards of a Sl-decryption oracle calls are Sl-normalized basic terms. But the leaves of S-
decryption oracle calls are not S-normalized basic terms, because they do not satisfy the condition nodec(K, ·).

The inductive definition of S-normalized basic terms naturally gives us a relation <Sind between S-normalized basic terms,
S-normalized simple terms, S-decryption oracle calls and S-encryption oracle calls.

Definition 28. <Sind is the reflexive and transitive closure of the relation <S defined as:
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• For all S-encryption oracle call t ≡ {u}rpk, u <S t.
• For all S-decryption oracle call:

t ≡ C [~g[(αj)j , (deck)k] � (si[(αj)j , (deck)k])i≤p]

for all j, αj <S t and for all k, deck <S t.
• For all S-normalized basic term t ≡ U [~w, (αj)j , (deck)k] where: for all j, αj <S t and for all k, deck <S t.
• For all Snormalized simple term t ≡ C[~b � ~u], ∀b ∈ ~b, b <S t and ∀u ∈ ~u, u <S t.

We let ≤Sbt be union of the restriction of <Sind to the instances where the left term is a S-normalized basic term, and the set
of guards appearing in the right-term. Formally:

Definition 29. Let <′Sind be the reflexive and transitive closure of the order <′S , which has the same definition than <S , apart
for the S-decryption oracle call:
• For all S-decryption oracle call:

t ≡ C [~g � (si[(αj)j , (deck)k])i≤p]

for all j, αj <′S t; for all k, deck <′S t; and for all b ∈ ~g, b <′S t.
We finally define ≤Sbt: for every terms u, v:

u ≤Sbt v iff u <′Sind v ∧ u is a S-normalized basic term

D. Proof Form and Normalized Proof Form

Definition 30. Let P `b
ACS�

t ∼ t′ in early proof form. We say that this proof is in proof form (resp. normalized proof form)
if:

t ≡ C
[(

bhl bhr
bh

)
h∈H
�
(
Dl

[
(β)β≤ε,lc (t,P ) � (γ)γ≤ε,ll (t,P )

])
l∈L

]
t′ ≡ C

[(
b′hl b′hr

b′h

)
h∈H
�
(
Dl

[
(β′)β′≤ε,lc (t′,P ) � (γ′)γ′≤ε,ll (t′,P )

])
l∈L

]
and it satisfies the following properties:
• (bhl)h∈H , (b

hr)h∈H are terms in proof forms (resp. normalized proof forms).
• For all l, Dl

[
(β)β≤ε,lc (t,P ) � (γ)γ≤ε,ll (t,P )

]
is a (KPl , EPl )-simple term (resp. (KPl , EPl )-normalized simple term).

• For all l, Dl

[
(β′)β′≤ε,lc (t′,P ) � (γ′)γ′≤ε,ll (t′,P )

]
is a (K′Pl , E ′Pl )-simple term (resp. (K′Pl , E ′Pl )-normalized simple term).

We let P `npf t ∼ t′ if and only if P `ACS�
t ∼ t′ and the proof is in normalized proof form.

Let P `npf t ∼ t′, we already defined the set of conditionals ≤h,l
c (t, P ) used in the BFA rules in the sub-proof P of at index

h and branch l. In the case of proof in normalized proof form, these conditionals are normalized basic conditional. Similarly
the set of leave terms ≤h,l

l (t, P ) in the sub-proof of P of at index h and branch l is a set of normalized basic terms. Recall
that a basic term may contain other basic terms in its subterm. Hence we can define the set of all normalized basic terms
appearing in the subterms of ≤h,l

c (t, P )∪ ≤h,l
l (t, P ).

Definition 31. For all P `npf t ∼ t′, we define ≤h,l
bt (t, P ) as follows: for all term s, s ≤h,l

bt (t, P ) if and only if there exists
u(≤h,l

c ∪ ≤h,l
l )(t, P ) such that s ≤Slbt u.

E. Eager Reduction for FAs
∗ · Dup∗ · CCA2

Before proving that we can restrict ourselves to term in proof forms we need several auxiliary results about the FAs
∗·Dup∗·CCA2

fragment, which we state and prove here.

Proposition 12. For all b, b′ ∈ T (F ,N ), if b ∼ b′ is derivable in FAs
∗ · Dup∗ · CCA2 then b ≡ C[~w, (αi)i, (decj)j ], b′ ≡

C[~w, (α′i)i, (dec′j)j ] and the applied CCA2 axiom is:

~w, (αi)i, (decj)j ∼ ~w, (α′i)i, (dec′j)j

Proof. This is easy to show by induction on the proof derivation.

We now give the proof of Lemma 2, which we recall below:

Lemma (2). For all b, b′, b′′, if b, b ∼ b′, b′′ is in the fragment F(FAs
∗ · Dup∗ · CCA2) then b′ ≡ b′′.
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Proof. From Proposition 12 we have:

b ≡ Cl[~wl, (αli)i∈Il , (declj)j∈Jl ] b′ ≡ Cl[~wl, (α′li )i∈Il , (dec′lj )j∈Jl ]

b ≡ Cr[~wr, (αri )i∈Ir , (decrj)j∈Jr ] b′′ ≡ Cr[~wr, (α′ri )i∈Ir , (dec′rj )j∈Jr ]

Assume that Cl 6≡ Cr. Let p be the position of a hole of Cl such that p is a valid position but not a hole position in Cr

(if this is not the case, invert b′ and b′′). Then we have three cases:
• If the hole at b|p is mapped to a term u ∈ ~wl, then we can rewrite the proof such that p is an hole position in both terms.
• If the hole at b|p is mapped to an encryption oracle call {m}rpk(n) in b and {m′}rpk(n) in b′. Since {m}rpk(n) is an encryption

in the CCA2 application we know from the freshness side-condition that r does not appear in ~wr.
Then there exists a context A such that A is not a hole, m ≡ A[~wr, (αri )i∈Ir , (decrj)j∈Jr ] and Cr|p ≡ A. By consequence
we know that r ∈ ~wr. Absurd.

• If the hole at b|p is mapped to a decryption oracle call decli0 in b. We let dec(m, sk(n)) be such that dec(m, sk(n))

is well-guarded in decli0 . Since decli0 is a decryption in the CCA2 application we know from the key-usability side-
condition that sk(n) appears only in decryption position in ~wr. Then there exists a context A such that A is not a hole,
b′|p ≡ A[~wr, (αri )i∈Ir , (decrj)j∈Jr ] and A is if-free. By consequence we know that FAdec is applied on the right-side,
which implies that either n ∈ ~wr or sk(n) ∈ ~wr. Absurd.

a) Eager Reduction: We state here a key result about the FAs
∗ · Dup∗ · CCA2 fragment, which deals with the following

problem: when trying to prove that u ∼ u′ holds, one may rewrite u and u′ into 〈u , v〉 and 〈u′ , v′〉 using R. The problem
here is that v and v′ are arbitrary large terms, which makes the proof space unbounded. E.g. this is the case in the following
proof:

.... (P )

u, v ∼ u′, v′

π1(〈u , v〉) ∼ π1(〈u′ , v′〉)
FA〈 , 〉

u ∼ u′ R

Of course there is a shortcut here: since (P ) is a proof of u, v ∼ u′, v′ using the Restr rule we have a proof of u ∼ u′.
Moreover the Restr elimination Lemma 12 allows us to get rid of v and v′, and to get a (no larger) proof Pcut of u ∼ u′.

One may wish to generalize this, and to prove that we can restrict ourselves to proofs where all intermediate terms are in
R-normal form. As we saw this is not possible (terms in proof form are not necessarily in R-normal form). Therefore we
prove a slightly different result. For all basic terms C[~w, (αi)i∈I , (decj)j∈J ] and C ′[~w, (α′i)i∈I , (dec′j)j∈J ], for all proof:

~w, (αi)i∈I , (decj)j∈J ∼ ~w, (α′i)i∈I , (dec′j)j∈J
CCA2

....
C[~w, (αi)i∈I , (decj)j∈J ] ∼ C[~w, (α′i)i∈I , (dec′j)j∈J ]

FAs
∗ · Dup∗

we are going to prove that we can assume that there are no redexes in C. This shows that we can assume the basic terms
C[~w, (αi)i∈I , (decj)j∈J ] and C ′[~w, (α′i)i∈I , (dec′j)j∈J ] to be normalized basic terms.

b) Formal Statement: We are going to prove that we can guarantee that C does not contain any redexes and that some
further technical properties holds. These properties (that we discuss below) are used to deal with the fact that ∼ is not a
congruence: they allow to compose applications of the cut-elimination lemma. We start by discussing the properties needed to
compose these cut-eliminations, then give the composition proposition and finally we will state the cut-elimination lemma.

Let
(
Ck[~wk, (αki )i∈Ik , (deckj )j∈Jk ]

)
k

and
(
C ′k[~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk ]

)
k

be basic terms, and assume that we have
the proof: (

~wk, (αki )i∈Ik , (deckj )j∈Jk
)
k
∼
(
~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk

)
k

CCA2

....(
Ck[~wk, (αki )i∈Ik , (deckj )j∈Jk ]

)
k
∼
(
C ′k[~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk ]

)
k

FAs
∗ · Dup∗

(5)

Moreover assume that, for all k, there exists basic terms C̃k, ~̃wk and Ĩk, J̃k such that we can rewrite the sub-proof of:

C̃k[~wk, (αki )i∈Ik , (deckj )j∈Jk ] ∼ C̃ ′k[~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk ]
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into the following proof:

~̃wk, (αki )i∈Ĩk , (deckj )j∈J̃k ∼ ~̃wk, (α′ki )i∈Ĩk , (dec′kj )j∈J̃k
CCA2

....

C̃k[ ~̃wk, (αki )i∈Ĩk , (deckj )j∈J̃k ] ∼ C̃ ′k[ ~̃wk, (α′ki )i∈Ĩk , (dec′kj )j∈J̃k ]
FAs
∗ · Dup∗

Ck[~wk, (αki )i∈Ik , (deckj )j∈Jk ] ∼ C ′k[~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk ]
R

(6)

Then we can recombine the instances of the CCA2 axiom into one instance, as long as we did not introduce new encryptions
and new decryptions (i.e. Ĩk ⊆ Ik and J̃k ⊆ Jk), and as long as ~̃wk does not contain new encryptions randomness or secret
keys etc ... A sufficient condition to that ensure the latter property holds is to require that ~̃wk ⊆ st(~wk). Putting everything
together one get the following proposition:

Proposition 13. For all basic terms
(
Ck[~wk, (αki )i∈Ik , (deckj )j∈Jk ]

)
k

and
(
C ′k[~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk ]

)
k

such that the

proof displayed in Equation (5) is valid, if for all k, there exists basic terms C̃k, ~̃wk and Ĩk, J̃k such that:
• st( ~̃wk) ⊆ st(~wk).
• Ĩk ⊆ Ik and J̃k ⊆ Jk
• The derivation in (6) is valid.

Then we have: (
~̃wk, (αki )i∈Ĩk , (deckj )j∈J̃k

)
k
∼
(
~̃wk, (α′ki )i∈Ĩk , (dec′kj )j∈J̃k

)
k

CCA2

....(
C̃k[ ~̃wk, (αki )i∈Ĩk , (deckj )j∈J̃k ]

)
k
∼
(
C̃ ′k[ ~̃wk, (α′ki )i∈Ĩk , (dec′kj )j∈J̃k ]

)
k

FAs
∗ · Dup∗

(
Ck[~wk, (αki )i∈Ik , (deckj )j∈Jk ]

)
k
∼
(
C ′k[~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk ]

)
k

R

Proof. Axioms FAs and Dup verify a kind of frame property. If we have the derivation:

~u′ ∼ ~v′
~u ∼ ~v Ax

then for all ~w, ~w′ of same length, the following derivation is valid:

~w, ~u′ ∼ ~w′, ~v′

~w, ~u ∼ ~w′, ~v
Ax

The only problem comes from the CCA2 axiom, which does not verify the frame property. But thanks to the hypothesis
st( ~̃wk) ⊆ st(~wk) and Ĩk ⊆ Ik, J̃k ⊆ Jk, we know that the CCA2 application:

~̃wk, (αki )i∈Ĩk , (deckj )j∈J̃k ∼ ~̃wk, (α′ki )i∈Ĩk , (dec′kj )j∈J̃k
CCA2

is “included” in the application:(
~wk, (αki )i∈Ik , (deckj )j∈Jk

)
k
∼
(
~wk, (α′ki )i∈Ik , (dec′kj )j∈Jk

)
k

CCA2

Therefore we can combine all proofs, using Dup to remove duplicates, to get the wanted proof.

Lemma 13. For all basic terms C[~w, (αi)i∈I , (decj)j∈J ] and C ′[~w, (α′i)i∈I , (dec′j)j∈J ], if we have a derivation:

~w, (αi)i∈I , (decj)j∈J ∼ ~w, (α′i)i∈I , (dec′j)j∈J
CCA2

....

C[~w, (αi)i∈I , (decj)j∈J ] ∼ C[~w, (α′i)i∈I , (dec′j)j∈J ]
FAs
∗ · Dup∗

then there exists C̃, ~̃w and Ĩ , J̃ such that:
• st( ~̃w) ⊆ st(~w).
• Ĩ ⊆ I , J̃ ⊆ J
• C̃[ ~̃w, (αi)i∈Ĩ , (decj)j∈J̃ ] and C̃[ ~̃w, (α′i)i∈Ĩ , (dec′j)j∈J̃ ] are normalized basic terms.
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• We have the following derivation:

~̃w, (αi)i∈Ĩ , (decj)j∈J̃ ∼ ~̃w, (α′i)i∈Ĩ , (dec′j)j∈J̃
CCA2

....

C̃[ ~̃w, (αi)i∈Ĩ , (decj)j∈J̃ ] ∼ C̃[ ~̃w, (α′i)i∈Ĩ , (dec′j)j∈J̃ ]
FAs
∗ · Dup∗

C[~w, (αi)i∈I , (decj)j∈J ] ∼ C[~w, (α′i)i∈I , (dec′j)j∈J ]
R

Proof. We start by observing that if we have a derivation:

(~wk, (αki )i∈I , (deckj )j∈J)k ∼ (~wk, (α′ki )i∈I , (dec′kj )j∈J)k
CCA2

....

(C[~wk, (αki )i∈I , (deckj )j∈J ])k ∼ (C[~wk, (α′ki )i∈I , (dec′kj )j∈J ])k
FAs
∗ · Dup∗

Then we can apply the lemma for each k and recombine the proofs together using Proposition 13.
We prove the lemma by induction on the context C. Each time we say we have a shortcut we use Lemma 12 to get ride of

the Restr application introduced by the shortcut.
• Both left and right side can be reduced by πi(〈x1 , x2〉)→ xi. W.l.o.g we assume i = 1, therefore we have:〈

C1[~w1, (α1
i )i∈I , (dec1

j )j∈J ] , C2[~w2, (α2
i )i∈I , (dec2

j )j∈J ]
〉

∼
〈
C1[~w1, (α′1i )i∈I , (dec′1j )j∈J ]′ , C2[~w2, (α′2i )i∈I , (dec′2j )j∈J ]

〉
π1

(〈
C1[~w1, (α1

i )i∈I , (dec1
j )j∈J ] , C2[~w2, (α2

i )i∈I , (dec2
j )j∈J ]

〉)
∼ π1

(〈
C1[~w1, (α′1i )i∈I , (dec′1j )j∈J ]′ , C2[~w2, (α′2i )i∈I , (dec′2j )j∈J ]

〉)
FAπ1

By induction hypothesis we have a derivation of the premise in which terms are normalized basic terms. Observe that
this implies that the normalized basic terms start with a pair symbol, therefore we have:〈

C̃1[ ~̃w1, (α̃1
i )i∈I , (

˜dec
1

j )j∈J ] , C̃2[ ~̃w2, (α̃2
i )i∈I , (

˜dec
2

j )j∈J ]
〉

∼
〈
C̃1[ ~̃w1, (α̃′1i )i∈I , ( ˜dec

′1
j )j∈J ]′ , C̃2[ ~̃w2, (α̃′2i )i∈I , ( ˜dec

′2
j )j∈J ]

〉
π1

(〈
C̃1[ ~̃w1, (α̃1

i )i∈I , (
˜dec

1

j )j∈J ] , C̃2[ ~̃w2, (α̃2
i )i∈I , (

˜dec
2

j )j∈J ]
〉)

∼ π1

(〈
C̃1[ ~̃w1, (α̃′1i )i∈I , ( ˜dec

′1
j )j∈J ]′ , C̃2[ ~̃w2, (α̃′2i )i∈I , ( ˜dec

′2
j )j∈J ]

〉)
FAπ1

π1

(〈
C1[~w1, (α1

i )i∈I , (dec1
j )j∈J ] , C2[~w2, (α2

i )i∈I , (dec2
j )j∈J ]

〉)
∼ π1

(〈
C1[~w1, (α′1i )i∈I , (dec′1j )j∈J ]′ , C2[~w2, (α′2i )i∈I , (dec′2j )j∈J ]

〉) R

We look at the next rule:
– Either it is an is a unitary axioms and both terms are the same, in which case we can construct directly a derivation

(by induction over P ) of:

C̃1[ ~̃w1, (α̃1
i )i∈I , (

˜dec
1

j )j∈J ] ∼ C̃1[ ~̃w1, (α̃′1i )i∈I , ( ˜dec
′1
j )j∈J ]′

C̃1[ ~̃w1, (α̃1
i )i∈I , (

˜dec
1

j )j∈J ] ∼ C̃1[ ~̃w1, (α̃′1i )i∈I , ( ˜dec
′1
j )j∈J ]′

FAπ1

π1

(〈
C1[~w1, (α1

i )i∈I , (dec1
j )j∈J ] , C2[~w2, (α2

i )i∈I , (dec2
j )j∈J ]

〉)
∼ π1

(〈
C1[~w1, (α′1i )i∈I , (dec′1j )j∈J ]′ , C2[~w2, (α′2i )i∈I , (dec′2j )j∈J ]

〉) R

– Or it is a function application: it can only be a function application on the pair symbol, hence we have a shortcut.
• Only one side can be reduced by πi(〈x1 , x2〉)→ xi. This is impossible since, at all positions in the proof, corresponding

terms start with the same function symbol. Absurd.
• Both sides can be reduced by dec({x}nr

pk(n), sk(n))→ x:

{u}rpk(n), sk(n) ∼ {u′}r′pk(n′), sk(n′)

dec({u}rpk(n), sk(n)) ∼ dec({u′}r′pk(n′), sk(n′))
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Using the induction hypothesis we know that we have a derivation of {u}rpk(n), sk(n) ∼ {u′}r′pk(n′), sk(n′) where
intermediate terms are normalized basic conditionals. We look at the next rule applied on {u}rpk(n), _ ∼ {u

′}r′pk(n′), _
which is not Dup. If it is a function application then we have a shortcuts, if it is a unitary axioms then we have two cases:

– {u}rpk(n) is a renaming of {u′}r′pk(n′), in which case we can build by induction a proof of u ∼ u′ whose intermediate
terms are normalized basic conditionals.

– {u}rpk(n) is a not renaming of {u′}r′pk(n′), in which case the IND-CCA2 axiom is used. This means that at the root of
the proof tree we know that sk appears only in decryption position. By induction we show that this is not the case.
Absurd.

• Only one side can be reduced by dec({x}rpk(n), sk(n))→ x. Observe that it is necessarily of the form:

{t}rpk(n), sk(n) ∼ {t′}r′p′ , sk′(n′)

dec({t}rpk(n), sk(n)) ∼ dec({t′}r′p′ , sk′(n′))

We look at the next rule applied to {t}rpk(n) and {t′}r′p′ it which is not Dup:
– If it is a unitary axiom, then necessarily p′ ≡ pk(n) and n′ ≡ n. Therefore the right side can be reduced by

dec({x}rpk(n), sk(n))→ x. Absurd.
– If it is FA{} then there is a proof of pk(n), sk(n) ∼ p′, sk(n′), which implies that p′ ≡ pk(n) and n′ ≡ n. Therefore

the right side can be reduced by dec({x}rpk(n), sk(n))→ x. Absurd.
• Both side can be reduced by eq(x, x)→ true. In this case the cut is trivial.
• Only one side can be reduced by eq(x, x)→ true. Therefore we have a proof of the form:

t, t ∼ t′, t′′

eq(t, t) ∼ eq(t′, t′′)
FAeq(,)

Using Lemma 2 we know that t′ ≡ t′′, therefore both side can be reduced by eq(x, x)→ true. Absurd.

F. Restriction to Proofs in Normalized Proof Form

Definition 32. We let CCA2 be the restriction of CCA2 to cases ~w, (αi)i, (decj)j ∼ ~w′, (α′i)i, (dec′j)j where:
• (αj)j , (α

′
j)j are encryption oracle calls.

• (decj)j , (dec′j)j are decryption oracle calls.

Lemma 14. The following strategy is complete for F((CS + FA +R+ Dup + CCA2)∗):

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · CCA2)

Proof. We showed in Lemma 7 that the following strategy:

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · CCA2)

is complete for CS+FA+R+Dup+CCA2. Let P be a proof of t ∼ t′ in this fragment. Let LP = label(P ) the set of indices of
the branch of the proof tree. Recall that EPl ,DPl and KPl are the sets of, respectively, encryptions, decryptions and keys used in
the CCA2 instance of branch l, and that SPl = (KPl ,RPl , EPl ,DPl ). We define the order < as follows: for all u, u′ ∈ EPl ∪DPl ,
we let u < u′ hold if u is a strict subterm of u′.

We show that for all proof P of t ∼ t′ in the above fragment, there is a proof Q of t ∼ t′ where for all l ∈ label(Q), all
u ∈ EQl are SQl -encryption oracle calls, and all u ∈ DQl are SQl -decryption oracle calls (the same holds for E ′Ql and D′Ql ). We
prove this by induction on the number of elements of

⋃
l EPl ∪ DPl that are not SPl -encryption oracle calls or SPl -decryption

oracle calls, plus the number of elements of
⋃
l E ′Pl ∪ D′Pl that are not S ′Pl -encryption oracle calls or S ′Pl -decryption oracle

calls.
Let P be a proof of t ∼ t′, l ∈ LP and let u maximal for < which is not a SPl -encryption oracle call or a SPl -decryption

oracle call.
• If u ∈ EPl is an encryption. We know that u ≡ {m}nr

pk where the corresponding secret key sk is in KPl . Let (αk)k be
the set of elements of EPl ∩ st(m), and let (decn)n be the set of elements of DPl ∩ st(m). We know that there exists a
context C such that:

m ≡ C[(αk)k, (decn)n]

We let A be an if-context and (Bi[])i, (Um[])m be if-free contexts in R-normal form such that C[] =R A[(Bi[])i�(Um[])m].
Let m0 be the term:

m0 ≡ A[(Bi[(αk)k, (decn)n])i � (Um[(αk)k, (decn)n])m]
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We know that m0 =R m. By maximality of u we know that the (αk)k are SPl -encryption oracle calls, and the (decn)n
are SPl -decryption oracle calls. For all k we know that αk ≡ {_}nk

pkk
, and for all l let skn be the secret key of decn.

Assume that there is some i such that:

m̃ ≡ Bi[({[]k}nk
pkk

)k, (dec([]n, skn))n]

is not in R-normal form. Since Bi[] is in R-normal form, this means that there exists some k such that dec({[]k}nk
pkk
, skk)

is a subterm of m̃. This implies that skk is a subterm of Bi[]. But skk ∈ KPl , and therefore Bi cannot contain skk as a
subterm. Absurd. The same me reasoning applies to Um[(αk)k, (decn)n].
Therefore for all k (resp. for all m), Bi[(αk)k, (decn)n] (resp. Um[(αk)k, (decn)n]) is an SPl -normalized basic term.
Hence m0 is a SPl -normalized simple term. We then rewrite, using R, all occurrences of {m}nr

sk by {m′}nr
sk in branch l,

i.e in every:
Dh
l

[(
Bh
i,l[~w

h
i,l, (α

h,j
i,l )j , (dech,k

i,l )k]
)
i
�
(
Uh
m,l[~w

h
m,l, (α

h,j
m,l)j , (dech,k

m,l)k]
)
m

]
with h ∈ h-branch(l). We can check that this yields a new proof Q of t ∼ t′ with a smaller number of terms in EQl ∪D

Q
l

which are not SQl -encryption oracle calls or SQl -decryption oracle calls: the only difficulty lies in making sure that the
side-conditions of the decryptions still holds. This is the case, for example look at one of the conditions under which a
encryption α0 ≡ {m0}n0

pk must be guarded in dec(u0, sk): we require that n0 ∈ st(u0 ↓R), which is indeed stable under
any R rewriting (hence in particular the rewriting of {m}nr

sk into {m′}nr
sk ).

Since all other branches l′ ∈ LP \{l} are left unchanged, and since the right part of the proof (corresponding to t′) is also
left unchanged we can conclude using the induction hypothesis.

• One can easily check that the case where u ≡ C[(ge)e � (sa)a≤p] ∈ DPl is a decryption cannot happen.

We are now ready to give the proof of Lemma 8, which we recall below.

Lemma (8). The restriction of the fragment A� to formulas provable in `npf is complete for F((CS + FA +R+ Dup + CCA2)∗).

Proof. Using Lemma 14 we know that the strategy:

F((2Box +R�)∗ · CS∗� · {BFA(b, b′)}∗ · UnF · FAs
∗ · Dup∗ · CCA2)

is complete for F((CS + FA +R+ Dup + CCA2)∗).
First we show that this strategy remains complete even if with restrict it to proofs such that the terms after (2Box + R�)∗

are in proof form. Let P be such that P `ACS�
t ∼ t′, we want to find t0 =R t, t

′
0 =R t

′ and P ′ such that P ′ `b
ACS�

t ∼ t′ is
in proof form.

Assume that P0 `ACS�
t ∼ t′, using Proposition 11 we know that there exists P such that P `b

ACS�
t ∼ t′. Let h ∈

index(P ), x ∈ {l, r}, h = hx. We know that there exists bh, b′h such that extractx(h, P ) `b
ACS�

bh ∼ b′h. To get a proof with

terms in proof form, we need to show that for all h, l, for all (β, β′)(≤h,l
c∼c ∪ ≤h,l

l∼l)(t ∼ t′, P ), β, β′ are of the form:

β ≡ B[~w, (αj)j , (deck)k] ∧ β′ ≡ B[~w, (α′j)j , (dec′k)k]

the contexts B is if-free. Assume that this is not the case. Then there exists contexts Be, Bc, B0, B1 such that:

B ≡ Be[if Bc then B0 else B1]] =R if Bc then Be[B0] else Be[B1]

Let t0 be the term obtained from t by replacing this occurrence of β by:

if Bc[~w, (αj)j , (deck)k] then (Be[B0])[~w, (αj)j , (deck)k] else (Be[B1])[~w, (αj)j , (deck)k]

Similarly we define t′0 by replacing β′ by the corresponding term. Then t0 =R t and t′0 =R t′. Moreover it is easy to check
that the formula t0 ∼ t′0 is provable in `b

ACS�
, as we replaced one BFA application by three BFA applications (without changing

the encryptions, decryptions or branches of the proof etc ...).
Moreover we replaced B by three terms Bc, Be[B0], Be[B1] containing strictly less if then else applications. Therefore

we can show by induction that we can ensure that all the contexts B are if-free by repeating the proof rewriting above.
To show that there a proof of t ∼ t′ such that the terms after (2Box +R�)∗ are in normalized proof form, we only have to

apply the Lemma 13 to all branches l, and to commute the new R rewriting to the bottom of the proof.
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APPENDIX V
RESTRICTIONS ON THE BASIC CONDITIONALS PART

In this section, we give the proof of Proposition 5.

A. Properties of Normalized Basic Terms

Definition 33. We call a conditional context a context C[]~x such that all holes appear in the conditional part of an if then else .
Formally, for all position p, if C|p is a hole []x then p = p′.0 and there exists u, v such that:

C|p′ ≡ if []x then u else v

We say that u is an almost conditional context if u a conditional context or a hole.

The main goal of this subsection is to show the following lemma.

Lemma 15. For all P `npf t ∼ t′, for all h, l and β, β′ ≤h,l
bt (t, P ), there exists an almost conditional context β̃′[] such that:

β′ ≡ β̃′ [β] ∧ leave-st(β ↓R) ∩ cond-st
(
β̃′[] ↓R

)
= ∅

Before delving in the proof, we would like to remark that the above lemma is not entirely satisfactory. Consider the following
example:

β0 ≡ eq({if b then s else t}nr
pk(n), 0) =R if b then eq({s}nr

pk(n), 0)︸ ︷︷ ︸
β0
0

else eq({t}nr
pk(n), 0)︸ ︷︷ ︸
β1
0

β1 ≡ eq({if β0
0 then u else u}n′r

pk(n), 0)

where β0
0 , β

1
0 6∈ cond-st(u ↓R) and s 6=R t. Then β0

0 , β
1
0 6∈ cond-st(β1 ↓R), because β0

0 disappear using the rule
if x then y else y → y in R. Hence, Lemma 15 could choose β̃1 ≡ β1. Of course this situation cannot occur, as we cannot
have β0

0 be a subterm of β1 (this contradicts the freshness side-condition of encryptions’ randomnesses in the CCA2 axiom).
But we cannot rule this situation out simply by applying the lemma, we have to make a more in-depth analysis. We would
like to a stronger version of this lemma that somehow directly “includes” the above observation.

To do this we introduce over-approximations of cond-st(· ↓R) and leave-st(· ↓R), show that Lemma 15 holds for the
over-approximations of cond-st(· ↓R) and leave-st(· ↓R).

Definition 34. We define the function leave-st from the set of terms to the set of if-free terms in R-normal form:

leave-st(u0, . . . , un) = ∪i≤nleave-st(ui) leave-st(if b then u else v) = leave-st(u, v)

leave-st(f(u0, . . . , un)) =
{
f(v0, . . . , vn) ↓R| ∀i ≤ n, vi ∈ leave-st(ui)

}
(∀f ∈ Fs ∪N )

We define the function cond-st from the set of terms to the set of if-free conditionals in R-normal form:

cond-st(u0, . . . , un) = ∪i≤ncond-st(ui) cond-st(f(~u)) = cond-st(~u) (∀f ∈ Fs ∪N )

cond-st(if b then u else v) = cond-st(b) ∪ leave-st(b) ∪ cond-st(u, v)

Remark 9. The over-approximation is two-fold: for leave-st() there is a first over-approximation, and for cond-st() there is an
over-approximation, plus the over-approximation of leave-st() .

Proposition 14. leave-st and cond-st are sound over-approximations:
• For all u→∗R u′, leave-st(u) ⊇ leave-st(u′). Moreover leave-st(u ↓R) = leave-st(u ↓R).
• For all u→∗R u′, cond-st(u) ⊇ cond-st(u′). Moreover cond-st(u ↓R) = cond-st(u ↓R).

Proof. The facts that leave-st(u ↓R) = leave-st(u ↓R) and cond-st(u ↓R) = cond-st(u ↓R) are straightforward to show. Let
us prove by induction on →∗R that for all u →∗R u′, leave-st(u) ⊇ leave-st(u′). If u ≡ u′ this is immediate, assume that
u→R v →∗R u′. By induction hypothesis we know that leave-st(v) ⊇ leave-st(u′). We then have a case disjunction (we omit
the redundant or obvious cases):
• u ≡ if b then (if b then s else t) else w and v ≡ if b then s else w then:

leave-st(u) = leave-st(s) ∪ leave-st(t) ∪ leave-st(w)

⊇ leave-st(s) ∪ leave-st(w) = leave-st(v)

⊇ leave-st(u′)
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• u ≡ if b then s else s and v ≡ s then:

leave-st(u) = leave-st(s) = leave-st(v)

• u ≡ if (if b then a else c) then s else t and v ≡ if b then (if a then s else t) else (if c then s else t) then:

leave-st(u) = leave-st(s) ∪ leave-st(t) = leave-st(v)

• u ≡ if b then (if a then s else t) else w and v ≡ if a then (if b then s else w) else (if b then t else w) then:

leave-st(u) = leave-st(s) ∪ leave-st(t) ∪ leave-st(w) = leave-st(v)

• u ≡ f(~w, if b then ~s else ~t) and v ≡ if b then f(~w,~s) else f(~w,~t) then:

leave-st(u) = {f(~w′, ~w′′) ↓R| ∀i, w′i ∈ leave-st(wi) ∧ ∀j, w′′j ∈ leave-st(sj) ∪ leave-st(tj)}
⊇ {f(~w′, ~w′′) ↓R| ∀i, w′i ∈ leave-st(wi) ∧ ∀j, w′′j ∈ leave-st(sj)}
∪ {f(~w′, ~w′′) ↓R| ∀i, w′i ∈ leave-st(wi) ∧ ∀j, w′′j ∈ leave-st(tj)}

⊇ leave-st(f(~w,~s)) ∪ leave-st(f(~w,~t))

⊇ leave-st(v)

• (u ≡ πi(〈s1 , s2〉), v ≡ si) and (u ≡ dec({m}nr
pk(n), sk(n)), v ≡ m) are trivial.

a) : Similarly, we show by induction on→∗R that for all u→∗R u′, cond-st(u) ⊇ cond-st(u′). If u ≡ u′ this is immediate,
assume that u→R v →∗R u′. By induction hypothesis we know that leave-st(v) ⊇ leave-st(u′). We then have a case disjunction
(we omit the redundant or obvious cases):
• u ≡ if b then (if b then s else t) else w and v ≡ if b then s else w then:

cond-st(u) = cond-st(s, t, w) ∪ cond-st(b) ∪ leave-st(b)

⊇ cond-st(s, w) ∪ cond-st(b) ∪ leave-st(b)

⊇ cond-st(v)

• (u ≡ if b then (if a then s else t) else w, v ≡ if a then (if b then s else w) else (if b then t else w)) and (u ≡
if b then s else s, v ≡ s) are simple.

• u ≡ if (if b then a else c) then s else t and v ≡ if b then (if a then s else t) else (if c then s else t) then:

cond-st(u) = cond-st(b, a, c, s, t) ∪ leave-st(b, a, c) = cond-st(v)

• u ≡ f(~w, if b then ~s else ~t) and v ≡ if b then f(~w,~s) else f(~w,~t) then:

cond-st(u) = cond-st(b, ~w,~s,~t) ∪ leave-st(b) = cond-st(v)

• (u ≡ πi(〈s1 , s2〉), v ≡ si) and (u ≡ dec({m}nr
pk(n), sk(n)), v ≡ m) are trivial.

Let us show the following helpful propositions:

Proposition 15. For all Sl-normalized basic terms β, β′ if:

leave-st(β) ∩ leave-st(β′) 6= ∅

then we have Sl-normalized basic terms B[~w, (αj)j , (δ
k)k], B[~w, (α′j)j , (δ

′k)k] such that:

β ≡ B[~w, (αj)j , (δ
k)k] ∧ β′ ≡ B[~w, (α′j)j , (δ

′k)k]

∀j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ ∧ ∀k, leave-st(δk) ∩ leave-st(δ′k) 6= ∅

Proof. We have Sl-normalized basic terms B[~w, (αj)j , (δ
k)k], B′[~w′, (α′j)j , (δ

′k)k] such that:

β ≡ B[~w, (αj)j , (δ
k)k] ∧ β′ ≡ B′[~w′, (α′j)j , (δ′k)k]

Since β, β′ are Sl-normalized basic terms, we know that:

B[~w, ({0}_
_)j , (dec(0, _))k] ∧ B′[~w′, ({[]j}_

_)j , (dec([]j , _))k]

are in R-normal form, and that B,B′, ~w, ~w′ are if-free. Hence:

leave-st(β) =
{
B[~w, (aj)j , (d

k)k] | ∀j, aj ∈ leave-st(αj) ∧ ∀k, dk ∈ leave-st(δk)
}

leave-st(β′) =
{
B′[~w′, (a′j)j , (d

′k)k] | ∀j, a′j ∈ leave-st(α′j) ∧ ∀k, d′k ∈ leave-st(δ′k)
}
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Similarly to what we did in the proof of Lemma 2, we prove that we can assume that B ≡ B′ by induction on the number
of hole positions in B or B′ such that (B)|p differs from (B′)|p (modulo hole renaming). Knowing that B ≡ B′, it is then
straightforward to show that:

~w ≡ ~w′ ∧ ∀j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ ∧ ∀k, leave-st(δk) ∩ leave-st(δ′k) 6= ∅

The base case is trivial, let us prove the inductive case. We let p be the position of a hole in B such that p is a valid position
in B′, but not a hole (if p is not valid in B′, invert B and B′). Let B[~w, (aj)j , (d

k)k] and B′[~w′, (a′j)j , (d′k)k] be such that:

∀j, k. aj ∈ leave-st(αj) ∧ dk ∈ leave-st(δk) ∧ ∀j, k. a′j ∈ leave-st(α′j) ∧ d′k ∈ leave-st(δ′k)

and:
B[~w, (aj)j , (d

k)k] ≡ B′[~w′, (a′j)j , (d′k)k] ∈ leave-st(β′) ∩ leave-st(β)

We then have three cases depending on β|p:
• B contains a hole []x at position p such that β|p ∈ ~w. Then let B̃′ be the context B′ in which we replaced the term at

position p by []y (where y is a fresh hole variable) and let ~̃w′ be the terms ~w′ extended by β|p (binded to []y). Then B
differs B̃′ on a smaller number of hole position, therefore we can conclude by induction hypothesis.

• B contains a hole []x at position p such that β|p is an encryption oracle call {m}nr
pk(np). Since {m}nr

pk(np) ∈ El is an
encryption in an instance of a CCA2 application, we know from the freshness side-condition that nr does not appear in ~w
and that nr ∈ Rl.
Moreover since β′ is a Sl-normalized basic term, we know that fresh(Rl; ~w′). But since p is a valid non-hole position
in B′, we have nr ∈ ~w′. Absurd.

• Similarly if B contains a hole []x at position p such that β|p is a decryption oracle call dec(m, sk(n)). Since dec(m, sk(n))
is a decryption oracle call we know that sk(n) ∈ Kl. Moreover since β′ is a Sl-normalized basic term, we know that
nodec(Kl, ~w′). But since p is a valid non-hole position in B′, we know that either sk(n) ∈ ~w′ or n ∈ ~w′. Absurd.

We can now state the following proposition, which subsumes Proposition 5.

Proposition 16. For all Sl-normalized basic terms β, β′, if:

leave-st(β) ∩ leave-st(β′) 6= ∅

then β ≡ β′.

Proof. We show this by induction on |β| + |β′|. Using Proposition 15 we know that we have Sl-normalized basic terms
B[~w, (αj)j , (δ

k)k], B[~w, (α′j)j , (δ
′k)k] such that:

β ≡ B[~w, (αj)j , (δ
k)k] ∧ β′ ≡ B[~w, (α′j)j , (δ

′k)k]

∀j, leave-st(αj) ∩ leave-st(α′j) 6= ∅ ∧ ∀k, leave-st(δk) ∩ leave-st(δ′k) 6= ∅

To conclude we only need to show that for all j, leave-st(αj)∩ leave-st(α′j) 6= ∅ implies that αj ≡ α′j and that leave-st(δk)∩
leave-st(δ′k) 6= ∅ implies that δk ≡ δ′k. The former is immediate, as leave-st(αj)∩leave-st(α′j) 6= ∅ implies that αj ≡ {m}nr

pk(n)

and α′j ≡ {m′}nr
pk(n). Since αj , α′j ∈ El and since there is as most one Sl-encryption oracle call with the same randomness,

we have m ≡ m′. It only remains to show that for all k, δk ≡ δ′k. Since δk, δ′k are Sl-decryption oracle calls we know that

δk ≡ C [~g � (si)i≤p] ∧ δ′k ≡ C ′ [~g′ � (s′i)i≤p′ ]

where:
• There exists contexts u, u′, if-free and in R-normal form, such that:

∀i < p, si ≡ 0(dec(u[(αj)j , (deck)k], sk)) sp ≡ dec(u[(αj)j , (deck)k], sk)

∀g ∈ ~g, g ≡ eq(u[(αj)j , (deck)k], αj)

∀i < p′, s′i ≡ 0(dec(u′[(α′j)j , (dec′k)k], sk′)) s′p ≡ dec(u′[(α′j)j , (dec′k)k], sk′)

∀g ∈ ~g ′, g ≡ eq(u′[(α′j)j , (dec′k)k], α′j)

• (αj)j , (α
′
j)j are Sl-encryption oracle calls.

• (deck)k, (dec′k)k are Sl-decryption oracle call.
Since leave-st(δk) ∩ leave-st(δ′k) 6= ∅, and since u, u′ are if-free and in R-normal form we know that u ≡ u′, for all j,
leave-st(αj) ∩ leave-st(α′j) and for all k, leave-st(deck) ∩ leave-st(dec′k). It follows, by induction hypothesis, that for all j,
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αj ≡ α′j and for all k, deck ≡ dec′k. We only have to check that the guards are the same. Since δk, δ′k ∈ Dl, we know
from the definition of the CCA2 axioms that δk (resp. δ′k) has one guard for every encryption α ∈ El such that α ≡ {_}n

pk
and n ∈ st(sp ↓R)} (resp. n ∈ st(s′p ↓R)}). Since we showed that sp ≡ s′p, we deduce that δk, δ′k have the same guards.
Since guards are sorted according to an arbitrary but fixed order (the sort function in the definition of RKCCA2a ), we know that
δk ≡ δ′k.

Corollary 1. For all P `npf t ∼ t′, for all h, l:

(i) for all β, β′ ≤h,l
c (t, P ) if leave-st(β ↓R) ∩ leave-st(β′ ↓R) 6= ∅ then β ≡ β′.

(ii) for all γ, γ′ ≤h,l
l (t, P ) if leave-st(γ ↓R) ∩ leave-st(γ′ ↓R) 6= ∅ then γ ≡ γ′.

(iii) for all β ≤h,l
c (t, P ), γ ≤h,l

l (t, P ) if leave-st(β ↓R) ∩ leave-st(γ ↓R) 6= ∅ then β ≡ γ.

Lemma 16. For all P `npf t ∼ t′, for all h, l and β, β′ ≤h,l
bt (t, P ), there exists an almost conditional context β̃′[] such that:

β′ ≡ β̃′ [β] ∧ leave-st(β ↓R) ∩ cond-st
(
β̃′[]
)

= ∅

Proof. Let l ∈ label(P ). We prove by mutual induction on the definition of Sl-normalized simple terms, Sl-normalized basic
terms, Sl-encryption oracle calls and Sl-decryption oracle calls that for every u ∈ st(β′) such that u is in one of the four
above cases, there exists a conditional context uc[] such that:

u ≡ uc [β] ∧ leave-st(β ↓R) ∩ cond-st (uc[]) = ∅ ∧ leave-st(~uc) = leave-st(~u)

Moreover if u is a Sl-normalized basic term then there exists an almost conditional context ud[] such that:

u ≡ ud [β] ∧ leave-st(β ↓R) 6∈ cond-st (ud[]) ∪ leave-st (ud[])

• Normalized Simple Term: Let u ≡ C[~b �~s], where ~b are Sl-normalized basic conditionals and ~s are Sl-normalized basic
terms. Let ~bd[] and ~sc[] be contexts obtained from ~b,~s by induction hypothesis such that ~b,~s ≡ ~bd[β], ~sc[β] and:

leave-st(~sc[]) = leave-st(~s) ∧ leave-st(β ↓R) ∩
(
cond-st

(
~bd[], ~sc[]

)
∪ leave-st

(
~bd[]
))

= ∅

Moreover:

cond-st(C[~bd[] � ~sc[]]) = cond-st(~bd[], ~sc[]) ∪ leave-st(~bd[]) = cond-st(C[~b � ~s])
leave-st(C[~bd[] � ~sc[]]) = leave-st(~sc[]) = leave-st(~s) = leave-st(C[~b � ~s])

Hence we can take ~uc ≡ C[~bd[] � ~sc[]].
• Normalized Basic Term: Let u ≡ B[~w, (αi)i, (decj)j ] be a Sl-normalized basic term. Let (αic)i, (α

i
d)i and

(decjc)j , (decjd)j be the contexts obtained by applying the induction hypothesis to (αi)i and (decj)j . Using the fact
that:

leave-st
(

(αic)i, (decjc)i
)

= leave-st
(

(αi)i, (decj)i
)

and since B and ~w are if-free, one can check that:

leave-st
(
B[~w, (αic)i, (decjc)j ]

)
= leave-st

(
B[~w, (αi)i, (decj)j ]

)
It is then immediate to check that uc ≡ B[~w, (αic)i, (decjc)j ] satisfies the wanted properties. It remains to construct the
context ud[]: if for all, leave-st(β ↓R) ∩ leave-st(u) = ∅ then ud ≡ uc satisfies the wanted properties. Otherwise using
Proposition 16 we know that β ≡ u, hence we can take ud ≡ [].

• Encryption Oracle Call: The proof done for the normalized basic term case applies here.
• Decryption Oracle Call: The proof done for the normalized simple term case applies here.

Observe that this lemma subsumes Lemma 15.
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B. Well-nestedness

Definition 35. A simple term C[~a �~b] is said to be flat if ~a,~b are if-free terms in R-normal forms.

Definition 36. We let well-nested be the smallest relation between sets (C,D) of flat simple terms such that:
(a) (C,D) is well-nested if for every C0[~a0 �~b0] ∈ C:

∀C[~a �~b] ∈ C, ~b0 ∩ ~a = ∅
and ∀D[~c � ~t] ∈ D, ~b0 ∩ ~c = ∅

(b) (C,D) is well-nested if for every C0[~a0 �~b0] ∈ C:
(i) For all C[~a �~b] ∈ C, there exist two if-contexts C ′i, C ′′i such that:

C[~a �~b] =R if C0[~a0 �~b0] then C ′i[~a′ �~b′] else C ′′i[~a′′ �~b′′]

where ~a′,~a′′ ⊆ ~a\~b0 and ~b′,~b′′ ⊆ ~b.
(ii) For every D[~c � ~t] ∈ D, there exist two if-contexts D′i, D′i such that:

D[~c � ~t] =R if C0[~a0 �~b0] then D′i[~c′ � ~t′] else D′′i[~c′′ � ~t′′]

where ~c′,~c′′ ⊆ ~c\~b0 and ~t′,~t′′ ⊆ ~t.
(iii) The following couples of sets are well-nested:({

C ′i[~a′ �~b′] | C[~a �~b] ∈ C
}
,
{
D′i[~c′ � ~t′] | D[~c � ~t] ∈ D

})({
C ′′i[~a′′ �~b′′] | C[~a �~b] ∈ C

}
,
{
D′′i[~c′′ � ~t′′] | D[~c � ~t] ∈ D

})
Proposition 17. If (C,D) is such that for all Ci[~ai �~bi] ∈ C:

∀Cj [~aj �~bj ] ∈ C, ~bi ∩ ~aj = ∅
and ∀Dj [~cj � ~tj ] ∈ D, ~bi ∩ ~cj = ∅

Then (C,D) verifies the properties (i),(ii) and (iii) above.

Proof. Trivial by taking C ′ij ≡ C ′′ij ≡ Cj .

a) Main Lemma: We introduce now some tools used in the proof of the main lemma of this subsection, before stating
and proving this lemma.

Definition 37. We let pos(t) be the set of positions of p, and head be the partial function defined on terms such that for all
f ∈ F , for all terms ~t, head(f(~t)) ≡ f .

Definition 38. For all conditional contexts C0, C1, we let C0 t C1 be the conditional context, if it exists, defined as follows:
pos(C1 t C2) = pos(C0) ∩ pos(C1) and for all position p in pos(C0 t C1):

(C0 t C1)|p ≡


a if head((C0)|p) ≡ head((C1)|p) ≡ a (a ∈ F ∪N )

[]x if (C0)|p ≡ []x ∧
(
head((C1)|p) ≡ []x ∨ head((C1)|p) ≡ a

)
(a ∈ F ∪N )

[]x if (C1)|p ≡ []x ∧
(
head((C0)|p) ≡ []x ∨ head((C0)|p) ≡ a

)
(a ∈ F ∪N )

If such a conditional context does not exist then we let C0 t C1 be the special element undefined. We also let:

undefined t C0 ≡ C0 t undefined ≡ undefined

Example 8. For all conditionals a, b, c, d, e, f and terms t0, . . . , t3 , if we let:

C0 ≡ a

 []x

c d


t0 e

t1 t2

t3

C1 ≡ []y b

c d


t0 []z

t1 t2

t3

C2 ≡ a

[]w

t0 e

t1 t2

t3
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Then we have:

C0 t C1 ≡ []y []x

c d


t0 []z

t1 t2

t3

C1 t C2 ≡ []y

[]w

t0 []z

t1 t2

t3

C0 t C2 ≡ C2

Definition 39. We let v be the relation on conditional contexts defined as follows: for all conditional contexts C0, C1, we let
C0 v C1 hold if pos(C1) ⊆ pos(C0) and for all position p in pos(C1):

if head((C1)|p) ≡

{
a then head((C0)|p) ≡ a (a ∈ F ∪N )

[]x then head((C0)|p) ≡ a ∨ head((C0)|p) ≡ []x (a ∈ F ∪N )

Moreover we let C0 v undefined for all conditional context C0 (and undefinedv undefined).

Example 9. Using the conditional contexts defined in Example 8, we have, for example, the following relations:

C0 v C2 v

[]v

[]w

t0 e

t1 t2

t3

v

a

[]w

t0 []u

t1 t2

t3
v

[]v

[]w

t0 []u

t1 t2

t3

v

Let Scc be the set of conditional contexts extended with undefined.

Proposition 18. (Scc,t,v) is a semi-lattice. That is we have the following properties:
(i) t is associative, commutative, idempotent.

(ii) v is an order (i.e. reflexive, transitive and antisymmetric).
(iii) For all C0, C1 ∈ Scc, we have C0v (C0 tC1) and C1v (C0 tC1). Moreover (C0 tC1) is the least upper-bound of C0

and C1.

Proof. These properties are straightforward to show, we are only going to give the proof that (C0tC1) is the least upper-bound
of C0 and C1. Assume that there is C such that:

C0 v C v C0 t C1 C1 v C v C0 t C1

If C0tC1 ≡ undefined then one can check that C ≡ undefined. Otherwise we know that pos(C0tC1) = pos(C0)∩pos(C1),
and that:

pos(C0) ⊇ pos(C) ⊇ pos(C0 t C1) pos(C1) ⊇ pos(C) ⊇ pos(C0 t C1)

Hence pos(C) = pos(C0 t C1). Using the fact that C v C0 t C1 we know that for all position p ∈ pos(C), if head((C0 t
C1)|p) = a (with a ∈ F ∪N ) then head(C|p) = a. If head((C0tC1)|p) = []x then either head(C|p) = []x or head(C|p) = a
(with a ∈ F ∪ N ). In the former case there is nothing to show, in the the latter case observe that head((C0 t C1)|p) = []x
implies that either head((C0)|p) = []x or head((C1)|p) = []x. W.l.o.g assume head((C0)|p) = []x. Then using the fact that
C0 v C, we know that head((C0)|p) = []x implies that head((C0)|p) = []x, absurd.

Therefore for all p ∈ pos(C), head(C|p) = head((C0tC1)|p). Moreover pos(C) = pos(C0tC1), hence C ≡ C0tC1.

Proposition 19. For all C0, C1 ∈ Scc, if C0 v C1 and if:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ≡ []x ⇒ (C0)|p ≡ (C0)|p′

then cond-st(C1 ↓R) ∩ T (Fs,N ) ⊆ cond-st(C0).
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Proof. Assume that C0 v C1, with C0, C1 6= undefined (the case C0 6= undefined or C1 6= undefined is easy to handle,
with the convention that cond-st(undefined) = ∅), and that:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ≡ []x ⇒ (C0)|p ≡ (C0)|p′ (7)

First we show that we can extend this property as follows:

∀p, p′ ∈ pos(C1), (C1)|p ≡ (C1)|p′ ⇒ (C0)|p ≡ (C0)|p′ (8)

Let q = p · q0 and q = p′ · q0 be positions in pos(C1). Since (C0)|p ≡ (C0)|p′ , we know that head((C1)|q) ≡ head((C1)|q′).
• If head((C1)|q) ≡ a (with a ∈ F ∪ N ) then, from the fact that C0 v C1 we get that head((C0)|q) ≡ a, and that

head((C0)|q′) ≡ a.
• If head((C1)|q) ≡ []x then using (7) we get that (C0)|p ≡ (C0)|p′ .
Let →R′ be →R without the non left-linear rules:

if x then y else y → y dec({x}rpk(y), sk(y))→ x if w then (if w then x else y) else z → if w then x else z

if w then x else (if w then y else z)→ if w then x else z

We then mimic all reduction →R on C1 by a reduction on C0, while maintaining v and the invariant of (7). Mimicking rules
in →R is easy as they are left-linear. To mimic rules in (→R \ →R′), we use (8). Formally, we show by induction on the
length of the reduction sequence that for all C ′1 such that C1 →∗R C ′1, there exists C ′0 such that C ′0vC ′1, (7) holds for C ′0, C

′
1

and C0 →∗R C ′0.
Therefore let C ′1 be in R-normal form such that C1 →∗R C ′1. Let C ′0 be such that C ′0 v C ′1,(7) holds for C ′0, C

′
1 and

C0 →∗R C ′0. C ′1 is of the form D[~b,~b[] � ~u] where ~b, ~u are if-free and in R-normal form, ~b does not contain any hole variable
and ~b[] is a vector of hole variables. Therefore cond-st(C1 ↓R) ∩ T (Fs,N ) = cond-st(C ′1) ∩ T (Fs,N ) = ~b. We conclude by
observing that ~b ⊆ cond-st(C ′0), and that cond-st(C ′0) ⊆ cond-st(C0) by Proposition 14.

Lemma 17. For all P `npf t ∼ t′, for all h, l, the following couple of sets is well-nested:({
β ↓R| β ≤h,l

c (t, P )
}
,
{
γ ↓R| γ ≤h,l

l (t, P )
})

Proof. We do this proof in the case h = ε. The other cases are identical.
We consider an arbitrary ordering (βi)1≤i≤imax of {β | β ≤h,l

c (t, P )} and (γm)1≤m≤mmax of {γ | γ ≤h,l
l (t, P )}.

Using Lemma 16, we know that all i 6= i0, there exists a conditional context β̃i such that:

βi ≡ β̃i [βio ] ∧ leave-st(βi0 ↓R) ∩ cond-st
(
β̃i,l

)
= ∅

From now on we use β
(i0)
i to denote this conditional context, and []i0 the hole variable used in the conditional contexts

{β(i0)
i | i}. We similarly define γ(i0)

m and we have:

γm ≡ γ̃m [βio ] ∧ leave-st(βi0 ↓R) ∩ cond-st (γ̃m) = ∅

We extend this notation by having j range between −1 ≤ j < nmax (resp. −1 ≤ j < mmax), and having β(−1)
i ≡ βi (resp.

γ
(−1)
m ≡ γm).

Consider the following set S:{(
(tj≤nβ

(lj)
i )i, (tj≤nγ(lj)

m )m

)
| (lj)j distinct indices ∧ l0 ≡ −1

}
Using Proposition 18.(iii) we know that for all i 6= lj0 :

β
(lj0 )
i v tj≤nβ

(lj)
i ∧ β

(lj0 )
i v tj≤nγ(lj)

m

Using Proposition 19 we know that for all j, o and for all i 6= lj0 :

cond-st
(
β

(lj0 )
i

)
⊇ cond-st

(
tj≤nβ

(lj)
i ↓R

)
∧ cond-st

(
γ

(lj0 )
m

)
⊇ cond-st

(
tj≤nγ(lj)

m ↓R
)

Which implies that:

leave-st(βi0 ↓R) ∩ cond-st
(
tj≤nβ

(lj)
i ↓R

)
= ∅ ∧ leave-st(βi0 ↓R) ∩ cond-st

(
tj≤nγ(lj)

m ↓R
)

= ∅ (9)

Moreover it is quite simple to show that for all (lj)j≤n+1, for all i 6= ln+1:

tj≤n+1β
(lj)
i ≡

(
tj≤nβ

(lj)
i

)
{[]ln+1

/ tj≤n β
(lj)
n+1}
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Therefore:

tj≤nβ
(lj)
i =R

(
tj≤n+1β

(lj)
i

)
{tj≤nβ

(lj)
n+1/[]ln+1

}

=R if
(
tj≤nβ

(lj)
n+1

)
then

(
tj≤n+1β

(lj)
i

)
{true/[]ln+1}

else
(
tj≤n+1β

(lj)
i

)
{false/[]ln+1

}

(10)

Consider the following set S ′:{((
tj≤nβ

(lj)
i {ej/[]lj} ↓R

)
i
,
(
tj≤nγ(lj)

m {ej/[]lj} ↓R
)
m

)
| (lj)j distinct indices ∧ (ej)j ∈ {true, false}n

}
We show by decreasing induction on n, starting from n = imax + 1, that all the elements of S ′ are well-nested.

b) Base case: If n = nmax + 1 then from (9) we get that for all sequence (ej)j in {true, false}n, for all j 6= i:

leave-st(βj ↓R) ∩ cond-st
((
tj≤nβ(j)

i

)
{ej/[]j} ↓R

)
= ∅

Moreover we have:
leave-st

((
tj≤nβ(j)

i

)
{ej/[]j} ↓R

)
⊆ {βoi | o}

Hence we get that the following set is well-nested (case (a)):((
tj≤nβ(j)

i {ej/[]j} ↓R
)
i
,
(
tj≤nγ(j)

m {ej/[]j} ↓R
)
m

)
c) Inductive Case: If n ≤ nmax then from (10) we get that for all sequence (lj)j≤n+1, for all sequence (elj )j in

{true, false}n, for all j 6= i:(
tj≤nβ

(lj)
i

)
{elj/[]lj | j ≤ n} =R

if
((
tj≤nβ

(lj)
ln+1

)
{elj/[]lj | j ≤ n}

)
then

(
tj≤n+1β

(lj)
i

)
{elj/[]lj | j ≤ n}{true/[]ln+1

}

else
(
tj≤n+1β

(lj)
i

)
{elj/[]lj | j ≤ n}{false/[]ln+1}

Let eln+1 ≡ true (resp. eln+1 ≡ false). We get from (9) that for all o and i 6= ln+1:

leave-st(βln+1
↓R)∩ 6∈ cond-st

((
tj≤n+1β

(lj)
i

)
{elj/[]lj} ↓R

)
= ∅

We can do a similar reasoning on γi to show that for all o:

leave-st(βln+1 ↓R) ∩ cond-st
((
tj≤n+1γ

(lj)
i

)
{elj/[]lj} ↓R

)
= ∅

Moreover by induction hypothesis we know that:(((
tj≤n+1β

(lj)
i

)
{elj/[]lj} ↓R

)
i
,
((
tj≤n+1γ

(lj)
i

)
{elj/[]lj} ↓R

)
i

)
is well-nested for eln+1

≡ true and eln+1
≡ false. We deduce from this that the following set is well nested (case b):(((

tj≤nβ
(lj)
i

)
{elj/[]lj} ↓R

)
i
,
((
tj≤nγ

(lj)
i

)
{elj/[]lj} ↓R

)
i

)
d) Conclusion: Recall that β(l0)

i ≡ β(−1)
i ≡ βi. We conclude the proof of this lemma by observing that({

Ch
i

[
~bh
i � {β

h,o
i | o}

]
| i
}
,
{
Ch
m

[
~bh
m � {γh,o

m | o}
]
| m
})

is the couple of sets: (((
tj≤0β

(lj)
i

)
{elj/[]lj} ↓R

)
i
,
((
tj≤0γ

(lj)
i

)
{elj/[]lj} ↓R

)
i

)
which is in S ′, and therefore well-nested.
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C. Spurious Conditionals

Definition 40. An if-free conditional b is said to be spurious in a term t if b ↓R 6∈ cond-st(t ↓R).

Definition 41. A set of positions is said to be spurious in a term t if it is non-empty and t[true/x | x ∈ S] =R t[false/x |
x ∈ S] =R t. A spurious set is minimal (resp. maximal) if it has not strict spurious subset (resp. overset), and a spurious set
is rooted if there exists p ∈ S such that ∀p′ ∈ S, p ≤ p′ (i.e. is a common ancestor of all positions in S).

Example 10. Let a ≡ eq(A, 0) and b ≡ eq(B, 0) be two conditionals. Consider the following term t:

if b then if a then if b then T else U
else V

else if a then T
else if a then V else V

Then the conditional b is spurious in t, since b is not a subterm of t ↓R≡ if a then T else V . Moreover the conditional a is a
subterm of t ↓R, hence is spurious. Nonetheless, the set of position S = {220} is spurious. Indeed we have:

if b then if a then if b then T else U
else V

else if a then T
else if a

220
then V else V

=R

if b then if a then if b then T else U
else V

else if a then T

else if true
220

then V else V

=R

if b then if a then if b then T else U
else V

else if a then T

else if false
220

then V else V

a) Spurious Conditionals to Spurious Sets: Knowing that a conditional a is spurious in a term t does not necessarily
mean that we know a spurious set of positions S such that for all p ∈ S, t|p ≡ a. If b is in R-normal form this is easy, but
terms in proof form are not in R-normal form. The following proposition shows that such a set of positions exists, under some
conditions.

Proposition 20. Let ~a,~b,~c be if-free conditionals in R-normal form. Let t be the term:

t ≡ B
[
~c �
(
~w, if C[~b � ~a] then u else v

)]
Let a ∈ ~a be a spurious conditional in t such that:
• a 6∈ ~b ∪ {true, false} ∪ cond-st(u ↓R) ∪ cond-st(v ↓R).
• a 6∈ ρ where ρ is the set of conditionals appearing on the path from the root to (if C[~b � ~a] then u else v).

Then we have:

B
[
~c �
(
~w, if C[~b � ~a] then u else v

)]
=R B

[
~c �
(
~w, if C[~b � ~a′, true] then u else v

)]
where ~a′ = ~a\{a}.

Proof. We recall that:
t ≡ B

[
~c �
(
~w, if C[~b � ~a] then u else v

)]
We start with the simple observation that:

if C[~b � ~a] then u else v =R if a then if C[~b � ~a′, true] then u else v

else if C[~b � ~a′, false] then u else v

Let Cu[~bu � ~tu] and Cv[~bv � ~tv] be the R-normal forms of u and v. Let Cl, Cr be such that :

if C[~b � ~a′, true] then u else v =R Cl[~bu,~bv,~b,~a
′ � ~tu,~tv]

if C[~b � ~a′, false] then u else v =R Cr[~bu,~bv,~b,~a
′ � ~tu,~tv]
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Since a 6∈ cond-st(u ↓R), cond-st(v ↓R) we know that a 6∈ ~bu,~bv . Moreover since ~a′ = ~a\{a} and a 6∈ ~b we know that
a 6∈ ~bu,~bv,~b,~a′. Therefore:

a 6∈ cond-st(Cl[~bu,~bv,~b,~a′ � ~tu,~tv]) and a 6∈ cond-st(Cr[~bu,~bv,~b,~a′ � ~tu,~tv]) (11)

In a second time we get rid in Cl and Cr of all the conditionals appearing in ρ. We let ~a l and ~a r be such that:

~a l ⊆ ~bu,~bv,~b,~a′\ρ ∧ ~a r ⊆ ~bu,~bv,~b,~a′\ρ (12)

and C ′l , C
′
r such that:

B
[
~c �
(
~w,Cl[~bu,~bv,~b,~a

′ � ~tu,~tv]
)]

=R B
[
~c �
(
~w,C ′l [~a

l � ~tu,~tv]
)]

(13)

B
[
~c �
(
~w,Cr[~bu,~bv,~b,~a

′ � ~tu,~tv]
)]

=R B
[
~c �
(
~w,C ′r[~a

r � ~tu,~tv]
)]

(14)

Therefore we deduce from (11) and (12) that a 6∈ ~a l and a 6∈ ~a r.
b) Case 1: If there exists c0 ∈ ~c such that the path ρ from the root of t to if C[~b � ~a] then u else v contains one of the

following shapes, where solid edges represent one element of the path ρ, and dotted edges represent a summary of a part of
the path ρ.

c0

c0

(A)

c0

c0

(B)

true

(C)

false

(D)

In these four cases the result is easy to show. Since the proof are very similar we only describe case (A): in that case we know
that there exists a decomposition of B,~c and ~w into, respectively, B1, . . . , B5, ~c1, . . . ,~c5 and ~w1, . . . , ~w5 such that:

B
[
~c �
(
~w, if C[~b � ~a] then u else v

)]
≡

B1

~c1 �
~w1,

if c0 then B2 [~c2 � ~w2]

else B3

~c3 �
~w3,

if c0 then B4

[
~c4 �

(
~w4, if C[~b � ~a] then u else v

)]
else B5 [~c5 � ~w5]






We can then rewrite the term B4

[
~c4 �

(
~w4, if C[~b � ~a] then u else v

)]
using:

if b then u else (if b then v else w)→∗R if b then u else (if b then v′ else w) ( for all term v′)

which yields the following term (we framed in red the part where the rewriting occurs):

B
[
~c �
(
~w, if C[~b � ~a] then u else v

)]
=R

B1

~c1 �
~w1,

if c0 then B2 [~c2 � ~w2]

else B3

~c3 �
~w3,

if c0 then B4

[
~c4 �

(
~w4, if C[~b � ~a′, true] then u else v

)]
else B5 [~c5 � ~w5]






c) Case 2:: Let s be such that t ≡ s[if C[~b � ~a] then u else v]. If none of the shapes of Case 1 occurs, then we know
that there exists B′ such that s =R B′

[
~c �
(
~w, []

)]
and the path ρ′ from the root to [] is a subset of ρ and does not contain

duplicates, true and false. The existence of such a B′ is proved by induction on the number of duplicate conditionals, true
and false occurring on ρ′: indeed since the shape (A) and (B) (resp. (C) and (D)) are forbidden in ρ, we know that if we have
a duplicate (resp. true or false) then we can always rewrite B such that the hole containing s does not disappear.

Let ρ′ = c1, . . . , cn. In a second time we are going to take B′ as small as possible, i.e. only a branch c1, . . . , cn.
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Example of if-context B′:
c1

c2

w2 c3

cn

if C[~b � ~a] then u
else v

wn

w3

w1

Wet let ~w = w1, . . . , wn, and we have:

s =R B
′ [c1, . . . , cn � w1, . . . , wn, []]

We let ≺u be a total ordering on if-free conditional in R-normal form such that
the n+ 1 maximum elements are c1 ≺u · · · ≺ cn ≺u a. For all 1 ≤ i ≤ n, we let
Wi[~di � ~ei] be the R≺u -normal form of wi. We have:

s =R B
′
[
c1, . . . , cn �

(
Wi[~di � ~ei]

)
i≤n

, []

]
For all i, we let W ′i [~d

′
i � ~e ′i] be terms in R-normal form such that ~d ′i ∩ {cj | j ≤

i} = ∅ and:

s =R B
′
[
c1, . . . , cn �

(
W ′i [

~d ′i � ~e ′i]
)
i≤n

, []

]
Using (13) and (14) we get:

t =R B
′

[
c1, . . . , cn �

(
W ′i [

~d ′i � ~e ′i]
)
i≤n

,
if a then C ′l [~a

l � ~tu,~tv]
else C ′r[~a

r � ~tu,~tv]

]
It is then quite easy to show by induction on the length of the reduction sequence that there exists a sequence 1 ≤ i1 <

· · · < ik ≤ n and an if-context B′′ such that:(
B′

[
c1, . . . , cn �

(
W ′i [

~d ′i � ~e ′i]
)
i≤n

,
if a then C ′l [~a

l � ~tu,~tv]
else C ′r[~a

r � ~tu,~tv]

])
↓R≺u

=R B′′

[
ci1 , . . . , cik �

(
W ′ij [

~d ′ij � ~e
′
ij ]
)
j≤k

,

(
if a then C ′l [~a

l � ~tu,~tv]
else C ′r[~a

r � ~tu,~tv]

)
↓R≺u

]
We deduce from this that a is spurious in:

if a then C ′l [~a
l � ~tu,~tv] else C ′r[~a

r � ~tu,~tv]

Since a will stay the top-most conditional in the R-normal form of this term (because of the order ≺u we chose), and since
a 6= true a 6= false and a 6∈ ~a l,~a r, there is only one rule that can be applied: if a then x else x→ x. Consequently:

C ′l [~a
l � ~tu,~tv] =R C ′r[~a

r � ~tu,~tv]

Hence:

t =R B
′
[
c1, . . . , cn �

(
W ′i [

~d ′i � ~e ′i]
)
i≤n

, C ′l [~a
l � ~tu,~tv]

]
=R s

[
C ′l [~a

l � ~tu,~tv]
]

=R B
[
~c �
(
~w,C ′l [~a

l � ~tu,~tv]
)]

Hence using (13) we get:

t =R B
[
~c �
(
~w,Cl[~bu,~bv,~b,~a

′ � ~tu,~tv]
)]

=R B
[
~c �
(
~w, if C[~b � ~a′, true] then u else v

)]
d) Properties of R:

Proposition 21. For all simple term:

B
[(
Ci[~ai, a �~bi, a]

)
i
�
(
Dj [~cj , a � ~tj ]

)
j

]
such that a, (~ai,~bi)i, (~cj ,~tj)j are if-free and in R-normal form and a 6∈ ~ai ∪~bi ∪ ~cj , if:

t ∈ leave-st
((
B
[(
Ci[~ai, a �~bi, a]

)
i
�
(
Dj [~cj , a � ~tj ]

)
j

])
↓R
)

then:

t ∈ leave-st
((
B
[(
Ci[~ai, true �~bi, true]

)
i
�
(
Dj [~cj , true � ~tj ]

)
j

])
↓R
)

or t ∈ leave-st
((
B
[(
Ci[~ai, false �~bi, false]

)
i
�
(
Dj [~cj , false � ~tj ]

)
j

])
↓R
)
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Proof. We know that:

B
[(
Ci[~ai, a �~bi, a]

)
i
�
(
Dj [~cj , a � ~tj ]

)
j

]
=R if a then B

[(
Ci[~ai, true �~bi, true]

)
i
�
(
Dj [~cj , true � ~tj ]

)
j

]
Btrue

else B
[(
Ci[~ai, false �~bi, false]

)
i
�
(
Dj [~cj , false � ~tj ]

)
j

]
Bfalse

Let �u be a total order on if-free conditionals in R-normal form such that a is minimal. It is quite simple to show that:((
B
[(
Ci[~ai, a �~bi, a]

)
i
�
(
Dj [~cj , a � ~tj ]

)
j

])
↓R�u

)

≡



(
B
[(
Ci[~ai, true �~bi, true]

)
i
�
(
Dj [~cj , true � ~tj ]

)
j

])
↓R�u if Btrue =R Bfalse

if a then
((
B
[(
Ci[~ai, true �~bi, true]

)
i
�
(
Dj [~cj , true � ~tj ]

)
j

])
↓R�u

)
else

((
B
[(
Ci[~ai, false �~bi, false]

)
i
�
(
Dj [~cj , false � ~tj ]

)
j

])
↓R�u

) otherwise

The wanted result follows easily from Proposition 7

Proposition 22. For all simple terms:

C[~a �~b] Bl
[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
Br
[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

]
such that:
• For all x ∈ {l, r}, for all i, (~axi ,

~bxi ,~c
x
i ,~t

x
i )i are if-free and in R-normal form.

• ~a,~b are if-free, in R-normal form and (~a ∪~b) ∩ {true, false} = ∅.
• ~b ∩ (

⋃
x∈{l,r},i ~a

n
i ,
~bni ,~c

n
i ) = ∅.

• ~a ∩~b = ∅.
we have that for all x ∈ {l, r}:

t ∈ leave-st
((
Bx
[(
Cxi [~axi �~bxi ]

)
i
�
(
Dx
j [~cxj � ~txj ]

)
j

])
↓R
)

=⇒ t ∈ leave-st


 if C[~a �~b] then Bl

[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
else Br

[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

]
 ↓R


Proof. We prove this by induction on |~a|.

e) Base Case: The case x = l and x = r are exactly the same, therefore we assume that x = l. We have C[~a �~b] ≡ b,
where b is an if-free conditional. Let �u be any total order on if-free conditionals in R-normal form such that b is minimal.
We then let Dl[~al � ~tl] and Dr[~ar � ~tr] be the R�u -normal form of:

Bl
[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
and Br

[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

]
Since:

t ∈ leave-st
((
Bl
[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

])
↓R
)

we know by Proposition 7 that:
t ∈ leave-st

((
Dl[~al � ~tl]

)
↓R�u

)
(15)

Using the fact that (~ali,
~bli,~c

l
i,~t

l
i)i are if-free and in R-normal form, it is simple to show by induction on the length of the

reduction that ~al ⊆ (~ali,
~bli,~c

l
i)i. Together with the fact that b 6∈ (

⋃
x∈{l,r},i ~a

n
i ,
~bni ,~c

n
i ), this shows that b 6∈ ~al. Similarly

~ar ⊆ (~ari ,
~bri ,~c

r
i )i and b 6∈ ~ar.

We know that:
if b then Bl

[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
else Br

[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

] =R

if b then Dl[~al � ~tl]
else Dr[~ar � ~tr]︸ ︷︷ ︸

s
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Since b is and if-free conditional in R-normal form minimal for �u, since Dl[~al �~tl] and Dr[~ar �~tr] are in R�u -normal form
and since b 6∈ ~al ∪ ~ar, there is only one rule that may be applicable to s: if b then x else x→ x.

If the rule is not applicable then s is in R�u -normal form, (15) implies that t ∈ leave-st(s ↓R�u ), which by Proposition 7
shows that:

t ∈ leave-st


 if C[~a �~b] then Bl

[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
else Br

[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

]
 ↓R


If the rule is applicable then s ↓R�u≡ Dl[~al � ~tl]. (15) implies that t ∈ leave-st(s ↓R�u ), which by Proposition 7 shows the
wanted result.

f) Inductive Case: Assume that the result holds for m, and consider ~a of length m+ 1. Again w.l.o.g. we can take x = l.
Let a ∈ ~a, and ~a0 = ~a\a. We know that:
• There exist C ′[~a′ �~b′] and C ′′[~a′′ �~b′′] such that:

C[~a �~b] =R if a then C ′[~a′ �~b′] else C ′′[~a′′ �~b′′]

with ~a′ ∪ ~a′′ ⊆ ~a0 and ~b′ ∪~b′′ ⊆ ~b.
• For all x ∈ {l, r}, there exist C ′xi [~a′xi �~b′xi ] and C ′′xi [~a′′xi �~b′′xi ] such that:

Cxi [~axi �~bxi ] =R if a then C ′xi [~a′xi �~b′xi ] else C ′′xi [~a′′xi �~b′′xi ]

with ~a′xi ∪ ~a′′xi ⊆ ~axi \{a} and ~b′xi ∪~b′′xi ⊆ ~bxi ∪ {true, false}\{a}.
• For all x ∈ {l, r}, there exist D′x[~c′xj � ~t′xj ] and D′′x[~c′′xj � ~t′′xj ] such that:

Dx
j [~cxj � ~txj ] =R if a then D′xj [~c′xj � ~t′xj ] else D′′xj [~c′′xj � ~t′′xj ]

with ~c′xj ∪ ~c′′xj ⊆ ~cxj \{a} and ~t′xj ∪ ~t′′xj ⊆ ~txj ∪ {true, false}\{a}.
Using Proposition 21 we know that:

t ∈ leave-st
((
Bl
[(
C ′li [~a′li �~b′li ]

)
i
�
(
D′lj [~c′lj � ~t′lj ]

)
j

])
↓R
)

(16)

or t ∈ leave-st
((
Bl
[(
C ′′li [~a′′li �~b′′li ]

)
i
�
(
D′′lj [~c′′lj � ~t′′lj ]

)
j

])
↓R
)

(17)

Assume that we are in Case (16) (the other case is exactly the same). We can then rewrite the initial term as follows:

if C[~a �~b] then Bl
[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
else Br

[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

]
 s

=R

if a then if C ′[~a′ �~b′] then Bl
[(
C ′li [~a′li �~b′li ]

)
i
�
(
D′lj [~c′lj � ~t′lj ]

)
j

]
else Br

[(
C ′ri [~a′ri �~b′ri ]

)
i
�
(
D′rj [~c′rj � ~t′rj ]

)
j

] sl

else if C ′′[~a′′ �~b′′] then Bl
[(
C ′′li [~a′′li �~b′′li ]

)
i
�
(
D′′lj [~c′′lj � ~t′′lj ]

)
j

]
else Br

[(
C ′′ri [~a′′ri �~b′′ri ]

)
i
�
(
D′′rj [~c′′rj � ~t′′rj ]

)
j

]


s′

We start by checking that the induction hypothesis can be applied to the red framed term sl. The first two conditions are trivial,
let us check the last two ones:
• Since ~a′ ⊆ ~a and ~b′ ⊆ ~b, it is easy to check that ~a′ ∩~b′ = ∅.
• Since:

~a′xi ⊆ ~axi ~b′xi ⊆ ~bxi ∪ {true, false} ~c′xj ⊆ ~cxj
we know that: (⋃

i,x∈{l,r} ~a
′x
i ,
~b′xi ,~c

′x
i

)
⊆
(⋃

i,x∈{l,r} ~a
x
i ,
~bxi ,~c

x
i

)
∪ {true, false}

From the fact that ~b ∩ (
⋃
x∈{l,r},i ~a

x
i ,
~bxi ,~c

x
i ) = ∅ and ~b ∩ {true, false} = ∅ we deduce that:

~b ∩
(⋃

i,x∈{l,r} ~a
′x
i ,
~b′xi ,~c

′x
i

)
= ∅
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Finally since ~b′ ⊆ ~b we get:
~b′ ∩

(⋃
i,x∈{l,r} ~a

′x
i ,
~b′xi ,~c

′x
i

)
= ∅

Hence by induction hypothesis:

t ∈ leave-st


 if C ′[~a′ �~b′] then Bl

[(
C ′li [~a′li �~b′li ]

)
i
�
(
D′lj [~c′lj � ~t′lj ]

)
j

]
else Br

[(
C ′′ri [~a′′ri �~b′′ri ]

)
i
�
(
D′′rj [~c′′rj � ~t′′rj ]

)
j

]
 ↓R

 (18)

Moreover as ~a′ ∪ ~a′′ ⊆ ~a0 = ~a\{a} and ~a ∩~b = ∅, we know that:

a 6∈ ~a′ ∪ ~a′′ ∪~b′ ∪~b′′ ∪
(⋃

i,x∈{l,r} ~a
n
i ,
~bni ,~c

n
i

)
Since:

~a′xi ∪ ~a′′xi ⊆ ~axi ~b′xi ∪~b′′xi ⊆ ~bxi ∪ {true, false} ~c′xj ∪ ~c′′xj ⊆ ~cxj

and using the fact that a 6∈ {true, false}, we get from (18) that:

a 6∈ ~a′ ∪ ~a′′ ∪~b′ ∪~b′′ ∪
(⋃

i,x∈{l,r} ~a
′n
i ,
~b′ni ,~c

′n
i

)
∪
(⋃

i,x∈{l,r} ~a
′′n
i ,~b′′ni ,~c′′ni

)
Hence we can apply again the induction hypothesis (with m = 1) to s′, which shows that t ∈ leave-st(s′ ↓R) ≡ leave-st(s ↓R
).

g) Sufficient Conditions for Non Spuriousness of Leaves: We now give sufficient conditions to show that a leave term is
not spurious.

Proposition 23. For all simple term:
s ≡ A

[
~d �
(
Bl

[
(βi,l)i � (γj,l)j

])
l

]
such that:
(i) ~d are if-free and in R-normal form, and for all i, j, l, cond-st(βi,l ↓R) ∩ ~leave-st(βi,l ↓R) = ∅.

(ii)
(
~d ∪
⋃
i leave-st(βi,l ↓R)

)
∩ {true, false} = ∅.

(iii) For every positions p < p′ in A[_ � (Bl)l] such that s|p ≡ ζ and s|p′ ≡ ζ ′, we have leave-st(ζ ↓R)∩ leave-st(ζ ′ ↓R) = ∅.
(iv) For all l, for all i, j, leave-st(βi,l ↓R) ∩ leave-st(βj,l ↓R) 6= ∅ implies that βi,l ≡ βj,l.
(v) For all l, the following couple of sets is well-nested:(

{βi,l ↓R| i} , {γj,l ↓R| j}j
)

for all l, j, there exists t ∈ ~tj,l such that t ∈ leave-st(s ↓R).

Proof. For all l, i, j, we let Ci,l[], Dj,l[] be if-contexts and ~ai,l, ~bi,l,~cj,l, ~tj,l be if-free terms in R-normal form such that:

~ai,l ≡ cond-st(βi,l ↓R) ~bi,l ≡ leave-st(βi,l ↓R) ~ci,l ≡ cond-st(γj,l ↓R) ~ti,l ≡ leave-st(γj,l ↓R)

βi,l ↓R ≡ Ci,l[~ai,l �~bi,l] γj,l ↓R ≡ Dj,l[~cj,l � ~tj,l]

We start by showing that this is the case if ~d = ∅ and A ≡ [] in the first part of the proof, and then will deal with the general
case in the second part.

h) Part 1: Since ~d = ∅ we know that:

s ≡ B
[(
Ci[~ai �~bi]

)
i
�
(
Dj [~cj � ~tj ]

)
j

]
satisfying conditions (i) to (v).

We let nested-if(B) be the maximum number of nested if then else , and ~a0 be the conditionals of the basic conditional
at the root of B. We prove the proposition by induction on (nested-if(B),|~a0|), ordered with the lexicographic ordering.

i) Part 1: Base Case: The base case is simple: it suffices to notice that since ~c,~t are if-free and in R-normal form:

leave-st(s ↓R) = leave-st(D[~c � ~t] ↓R) ⊆ ~t

This is a simple proof by induction on the length of the reduction sequence.
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j) Part 1: First Inductive Case: Assume that the property holds for (n, ω) and lets show that it holds for (n + 1, 0).
Consider:

s ≡ if b0 then Bl
[(
Cli [~a

l
i �~bli]

)
i
�
(
Dl
j [~c

l
j � ~tlj ]

)
j

]
else Br

[(
Cri [~ari �~bri ]

)
i
�
(
Dr
j [~c

r
j � ~trj ]

)
j

]
where Bl and Br are such that nested-if(Bl) ≤ n and nested-if(Br) ≤ n. Using the well-nested condition, we know that for
all i 6= 0, x ∈ {l, r}, there exists two if-context C ′xi , C

′′x
i such that:

Cxi [~axi �~bxi ] =R if b0 then C ′xi [~a′xi �~b′xi ] else C ′′xi [~a′′xi �~b′′xi ]

where ~a′xi ,~a
′′x
i ⊆ ~axi \b0 and ~b′xi ,~b

′′x
i ⊆ ~bxi . Similarly for all j, x ∈ {l, r}, we know that there exists two if-context D′xj , D

′′x
j

such that:
Dx
j [~cxj � ~txj ] =R if b0 then D′xj [~c′xj � ~t′xj ] else D′′xj [~c′′xj � ~t′′xj ]

where ~c′xj ,~c
′′x
j ⊆ ~cxj \b0 and ~t′xj ,~t

′′x
j ⊆ ~txj . We can rewrite the term s as follows:

s ≡ if b0 then Bl
[(
C ′li [~a′li �~b′li ]

)
i
�
(
D′lj [~c′lj � ~t′lj ]

)
j

]
sl

else Br
[(
C ′′ri [~a′′ri �~b′′ri ]

)
i
�
(
D′′rj [~c′′rj � ~t′′rj ]

)
j

]
sr

Using the induction hypothesis on the framed term sl (resp. sr), we know that for all j, there exists t ∈ ~t′lj ⊆ ~tlj (resp.
t ∈ ~t′rj ⊆ ~trj ) such that:

t ∈ leave-st
(
Bl
[(
C ′li [~a′li �~b′li ]

)
i
�
(
D′lj [~c′lj � ~t′lj ]

)
j

])
↓R(

resp. t ∈ leave-st
(
Br
[(
C ′′ri [~a′′ri �~b′′ri ]

)
i
�
(
D′′rj [~c′′rj � ~t′′rj ]

)
j

])
↓R
)

We now want to apply Proposition 22 to show that t ∈ leave-st(s ↓R). The only difficulty lies in showing that:

b0 ∩
(⋃

i ~a
′l
i ,~a
′′r
i ,
~b′li ,

~b′′ri ,~c
′l
i ,~c
′′r
i

)
= ∅

We know that b0 ∩
(⋃

i ~a
′l
i ,~a
′′r
i ,~c

′l
i ,~c
′′r
i

)
= ∅ (since ~a′li ⊆ ~ali\{b0}, . . . ), so it only remains to show that b0 6∈

⋃
i
~b′li ,

~b′′ri . This
follows from the hypothesis (iii), since b0 is at the root of B and therefore for all i, b0 6∈ ~bli ⊇ ~b′li (resp. b0 6∈ ~bri ⊇ ~b′′ri ).

k) Part 1: Second Inductive Case: Now assume that the property holds for (n + 1,k) and lets show that it holds for
(n+ 1,k + 1). Consider:

s ≡ if C0[~a0 �~b0] then Bl
[(
Ci[~ai �~bi]

)
i∈Il
�
(
Dj [~cj � ~tj ]

)
j∈Jl

]
else Br

[(
Ci[~ai �~bi]

)
i∈Ir
�
(
Dj [~cj � ~tj ]

)
j∈Jr

]
where Bl and Br are such that of nested-if(Bl) ≤ n, nested-if(Br) ≤ n, and |~a0| = k + 1.

We are looking for m such that for all j, ~am ∩~bj = ∅, ~bm ⊆ ~a0 and ~am,~bm ⊆ ~a0,~b0.
• If there exists k0 such that ~a0 ∩~bk0 6= ∅ then we know that ~ak0 ,~bk0 ⊆ ~a0 and ~ak0 ,~bk0 ⊂ ~a0,~b0. We repeat this process

and build a sequence (kl)l such that for all l, ~akl+1
,~bkl+1

⊆ ~akl and ~akl+1
,~bkl+1

⊂ ~akl ,~bkl .
This sequence is necessarily finite. Let lmax it length and let m = klmax−1. We know that for all j, ~am∩~bj = ∅ (otherwise
we could extend the sequence). Moreover we know that ~bm ⊆ ~a0 and ~am,~bm ⊂ ~a0,~b0.

• If for all k0, ~a0 ∩~bk0 = ∅ then we take m = 0.
Using the well-nested hypothesis, we know that for all j ∈ I l ∪ Ir, there exist two if-context C ′j , C

′′
j such that:

Cj [~aj �~bj ] =R if Cm[~am �~bm] then C ′j [~a
′
j �~b′j ] else C ′′j [~a′′j �~b′′j ]

where ~a′j ,~a
′′
j ⊆ ~aj\~bm and ~b′j ,~b

′′
j ⊆ ~bj . Similarly there exist two if-context D′j , D

′′
j such that:

Dj [~cj � ~tj ] =R if Cm[~am �~bm] then D′j [~c
′
j � ~t′j ] else C ′′j [~c′′j � ~t′′j ]

where ~c′j ,~c
′′
j ⊆ ~aj\~bm and ~t′j ,~t

′′
j ⊆ ~tj .
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We let Bltrue (resp. Brtrue) be the if-context obtained from Bl (resp. Br) by replacing every conditional hole []i that is mapped
to Cm[~am �~bm] in s by its then branch. Similarly we define Blfalse (resp. Brfalse) by replacing every conditional hole []i that
is mapped to Cm[~am �~bm] in s by its else branch. By consequence:

s ≡ if Cm[~am �~bm] then if C ′0[~a′0 �~b′0] then Bltrue

[(
C ′i[~a

′
i �~b′i]

)
i∈Iltrue

�
(
D′j [~c

′
j � ~t′j ]

)
j∈Jltrue

]
else Brtrue

[(
C ′i[~a

′
i �~b′i]

)
i∈Irtrue

�
(
D′j [~c

′
j � ~t′j ]

)
j∈Jrtrue

] strue

else if C ′′0 [~a′′0 �~b′′0 ] then Blfalse

[(
C ′′i [~a′′i �~b′′i ]

)
i∈Ilfalse

�
(
D′′j [~c′′j � ~t′′j ]

)
j∈Jlfalse

]
else Brfalse

[(
C ′′i [~a′′i �~b′′i ]

)
i∈Irfalse

�
(
D′′j [~c′′j � ~t′′j ]

)
j∈Jrfalse

] sfalse

We then have the following property: J l = J ltrue ∪ J lfalse, and Jr = Jrtrue ∪ Jrfalse.
We want to show that for all j ∈ J l ∪ Jr, ∃t ∈ ~tj . t ∈ leave-st(s ↓R). Let j ∈ J l (the proof for j ∈ Jr is similar), then

either j ∈ J ltrue or j ∈ J lfalse. In the former case we apply the induction hypothesis to strue, and in the latter to sfalse. Lets
check that the premises hold for strue (the same proof works for sfalse):
• (i) and (ii) trivially hold.
• (iii) is simple, as we only removed some nodes from the if-context and (iii) is stable by embedding.
• Checking that (iv) holds is straightforward. Assume that there exists i, j ∈ I ltrue ∪ Irfalse ∪ {0} such that ~b′i ∩~b′j 6= ∅. Since
~b′i ⊆ ~bi and ~b′j ⊆ ~bj we know that ~bi ∩~bj 6= ∅. Therefore Ci[~ai �~bi] ≡ Cj [~aj �~bj ]. Hence w.l.o.g. we can assume that:

C ′i[~a
′
i �~b′i] ≡ C ′j [~a′j �~b′j ] and C ′′i [~a′′i �~b′′i ] ≡ C ′′j [~a′′j �~b′′j ]

• Using the inductive property of well-nested couples (item (iv)) we know that the following couple of sets is well-nested:({
C ′i[~a

′
i �~b′i] | i ∈ I l ∪ Ir ∪ {0}

}
,
{
D′j [~c

′
j � ~t′j ] | j ∈ J l ∪ Jr

}
j

)
Since if (C,D) is well-nested and C′ ⊆ C ∧ D′ ⊆ D then (C′,D′) is well-nested, we know that the following couple of
sets is well-nested: ({

C ′i[~a
′
i �~b′i] | i ∈ I ltrue ∪ Irtrue ∪ {0}

}
,
{
D′j [~c

′
j � ~t′j ] | j ∈ J ltrue ∪ Jrtrue

}
j

)
Since ~a′0 ⊂ ~a0 (resp. ~a′′0 ⊂ ~a0), we can apply the induction hypothesis to strue (resp sfalse), which shows that for all j ∈ J ltrue
(resp. j ∈ Jrtrue), there exists t ∈ ~t′j such that t ∈ leave-st(strue ↓R) (resp. t ∈ leave-st(sfalse ↓R)).

Let S = I l ∪ Ir ∪ {0} ∪ J l ∪ Jr. Let Sm be the subset of I l ∪ Ir ∪ {0} such that for all i ∈ Sm, Ci[~ai �~bi] ≡ Cm[~am �~bm]
and S′ = S\Sm. We now want to apply Proposition 22 to show that t ∈ leave-st(s ↓R). The only difficulty lies in showing
that:

bm ∩
(⋃

i∈S′ ~a
′
i,~a
′′
i ,
~b′i,
~b′′i ,~c

′
i,~c
′′
i

)
= ∅

We know that bm ∩
(⋃

i∈S′ ~a
′
i,~a
′′
i ,~c
′
i,~c
′′
i

)
= ∅ (since ~a′i ⊆ ~ai\~bm, . . . ), so it only remains to show that:

~bm ∩
⋃
i∈S′

~b′i,
~b′′i = ∅ (19)

Using hypothesis (iv) we know that for all i ∈ S,~bi ∩~bm 6= ∅ implies i ∈ Sm. Therefore since ~b′i ⊆ ~bi (resp. ~b′′i ⊆ ~bi), if
~bm ∩~b′i 6= ∅ (resp. ~bm ∩~b′′i 6= ∅) then i ∈ Sm. Since S′ = S\Sm, we know that (19) holds.

l) Part 2: The proof of the general case is exactly the same than the one we did for the first inductive case of Part 1.
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APPENDIX VI
IF-FREE CONDITIONALS

Given an if-free term s in R-normal form, s can be rewritten using R into a more complex term:

u ≡ C
[(
Di

[
~ai �~bi

])
i
� ~t
]

that is not if-free. Basically, the following proposition shows that as long as the term u does not contain true and false
conditionals, the term s will always appear in the right-most and left-most branches of C. This is actually an invariant
preserved by the term rewriting system R without the rules:

if true then v else w → w if false then v else w → w

Proposition 24. For all if-free term s in R-normal form, if s =R C
[(
Di

[
~ai �~bi

])
i
� ~t
]

where:

• ~t ∪
⋃
i(~ai ∪~bi) are if-free and in R-normal form.

• Let i be such that Di

[
~ai �~bi

]
is a term appearing on the left-most (resp. right-most) branch of C. Then false 6∈ ~ai ∪~bi

(resp. true 6∈ ~ai ∪~bi).
Then the left-most (resp. right-most) element of ~t is s.

Proof. If suffices to show that the existence of a decomposition satisfying these two properties is preserved by →R, which is
simple. We conclude by observing that since s is if-free, the only decomposition of s ↓R into C

[(
Di

[
~ai �~bi

])
i
� ~t
]

is such

that C ≡ []. Hence ~t is a single element u, and u ≡ s ↓R≡ s.

We are now ready to prove Proposition 6, which we recall below.

Proposition. Let b an if-free conditional in R-normal, with b 6≡ false (resp. b 6≡ true). Then there exists no derivation of
b ∼ false (resp. b ∼ true) in A�.

Proof. We prove only that there is no derivation of b ∼ false in A� (the proof that there is no derivation of b ∼ true in A�
is exactly the same). We prove this by contradiction. Let b an if-free conditional in R-normal form, and let P be such that
P `npf b ∼ false. We choose b such that P is of minimal size.

First the minimality of the derivation implies that for all h ∈ index(P ), for all b0 such that b0 ≤h
cs (b, P ) or b0 ≤h

cs (false, P ),
b0 6= false. Let H = cs-pos(P ). We now focus on the left-most branch of the proof:

. . .

(
bhl bhr

bh

)
h∈H

βp0

βpn

γ . . .

. . .

. . .

. . .

Let l ∈ label(P ). First we show that for all β ≤ε,lc (b, P ), β 6=R false.
Assume that this is not the case, let β =R false and β′ be such that
(β, β′) ≤ε,lc∼c (b ∼ false, P ). If β =R β′ =R false then there is an easy
proof cut elimination which yields a smaller proof P ′ of b ∼ false.
Hence assume β′ 6=R false. If β =R false then leave-st(β ↓R) =
{false} = leave-st(false ↓R). As β is a normalized basic conditional, using
Proposition 16 we have β ≡ false.
There exists a derivation of β ∼ β′ in FAs

∗ · Dup∗ · CCA2. Since β ≡ false,
no rules in FAs are applied. Therefore the derivation is only an application
of CCA2, which is not possible.
Similarly we do not have β 6=R false and β′ =R false.
Using Proposition 16 we know that β 6=R false implies that for all
u ∈ leave-st(β ↓R), u 6≡ false. Moreover by assumptions, for all a ∈
cond-st(β ↓R), a 6≡ false.
We let (γ, γ′) ≤ε,ll (b ∼ false, P ) be the left-most elements (as shown in
the Figure). For all a ∈ cond-st(γ ↓R), a 6≡ false. Hence if we let u0 ∈
leave-st(γ ↓R) be the left-most leave element of γ ↓R, then by Proposition 24
we know that u0 ≡ b.
Similarly, by applying the exact same reasoning to the other side, we know
that the left-most leaf element u′0 of γ′ ↓R is false, and by Proposition 16
we get that γ′ ≡ false. Since there exists a derivation of γ ∼ γ′ in FAs

∗ ·
Dup∗ · CCA2, no rule in FAs is applied. Therefore the derivation is only an
application of CCA2. Contradiction.
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We can then ensure that any proof P of t ∼ t′ is not containing a CS� or BFA application on true or false: if we have a CS�

or BFA application on (true, true) or (false, false) then there is a proof cut elimination without it yielding a smaller proof, and
the previous proposition ensures that there are no CS� or BFA application on (true, b), (b, true), (false, b) or (b, false) (with
b 6=R false, true).

Proposition 25. For all P `npf t ∼ t′, there exists P ′ such that P ′ `npf t ∼ t′ and for all l ∈ label(P ′), h ∈ index(P ′), x ∈
{l, r} we have:

∀β ∈
(

(≤hx,l
c ∪ ≤hx

cs )(t, P ′)
)
∪
(

(≤hx,l
c ∪ ≤hx

cs )(t′, P ′)
)
, {false, true} ∩ leave-st(β ↓R) = ∅

Proof. We can construct a proof P ′ from P through simple proof cut eliminations such that:

{(true, true), (false, false)} ∩ (≤hx,l
c∼c (t ∼ t′, P )∪ ≤hx

cs∼cs (t ∼ t′, P )) = ∅

Then using Proposition 6 we know that for all:

(β, β′) ∈ (≤hx,l
c∼c (t ∼ t′, P )∪ ≤hx

cs∼cs (t ∼ t′, P ))

the conditionals β and β′ are such that β 6=R false and β′ 6=R false (same with true). Finally if β 6=R false then one can
easily check that for all u ∈ leave-st(β ↓R), u 6≡ false (idem with true).

We recall that showed in Lemma 2 that if `AFAs
b, b ∼ b′, b′′ then b′ ≡ b′′. We are now ready to give the proof of Lemma 9,

which generalize this to the case where `npf b, b ∼ b′, b′′, but only when b, b′, b′′ are if-free.

Lemma (9). For all a, a′, b, c such that their R-normal forms are if-free and such that a =R a′, if P `npf a, a′ ∼ b, c then
b =R c.

Proof. Let t ≡ 〈a , a〉 and t′ ≡ 〈b , c〉, we know that there exists P ′ such that P ′ `npf t ∼ t′ since P `npf a, a′ ∼ b, c.
Moreover using Proposition 25 we know that for all h ∈ index(P ), for all l, x:

∀β ∈
(

(≤hx,l
c ∪ ≤hx,l

cs )(t, P ′)
)
∪
(

(≤hx,l
c ∪ ≤hx,l

cs )(t′, P ′)
)
, {false, true} ∩ leave-st(β ↓R) = ∅

Let (γ, γ′) ≤ε,ll (t ∼ t′, P ) be the left-most elements of t and t′. By Proposition 24 we know that 〈a , a〉 ↓R∈ leave-st(γ ↓R)
and 〈b , c〉 ↓R∈ leave-st(γ′ ↓R). More precisely we know that 〈b , c〉 is the left-most element of γ′ ↓R.

Since γ ∼ γ′ is provable in FAs
∗ · Dup∗ · CCA2, we know that there exists γ1, γ2, γ

′
1, γ
′
2 such that they are SPl -normalized

basic terms and γ =R 〈γ1 , γ2〉, γ′ =R 〈γ′1 , γ′2〉, and the formula γ1, γ2 ∼ γ′1, γ′2 is provable in FAs
∗ · Dup∗ · CCA2.

Moreover a ∈ leave-st(γ1 ↓R) and a ∈ leave-st(γ2 ↓R), hence leave-st(γ1 ↓R) ∩ leave-st(γ2 ↓R) 6= ∅. Using Proposition 16
we deduce that γ1 ≡ γ2.

Therefore there exists a proof of γ1, γ1 ∼ γ′1, γ′2 in FAs
∗ · Dup∗ · CCA2, and by Lemma 2 we get that γ′1 ≡ γ′2.

We conclude by observing that since 〈b , c〉 is the let-most element of γ′ ↓R, b (resp. c) is the left-most element of γ′1 (resp.
γ′2). Therefore b ≡ c.

Definition 42. For all term t, we let <Sbc t be the set of S-normalized basic conditional appearing in t, defined inductively by:

• If t is a S-normalized simple term C[~b � ~u], then:

<Sbc t = ~b ∪
(
<Sbc

~b
)
∪
(
<Sbc ~u

)
• If t is a S-normalized basic term B[~w, (αi)i, (decj)j ], then:

<Sbc t =
⋃
i

<Sbc αi ∪
⋃
j

<Sbc decj

• For all S-encryption oracle call t ≡ {u}rpk, then:

<Sbc t = <Sbc u

• For all S-decryption oracle call C[~b � ~u], let s, sk such that terms in ~u are of the form 0(dec(s[(αi), (decj)j ], sk)) or
dec(s[(αi), (decj)j ], sk), and u is if-free. Then:

<Sbc t = ~b ∪
(
<Sbc

~b
)
∪
⋃
i

<Sbc αi ∪
⋃
j

<Sbc decj
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Proposition 26. For all term β such that β is a S-normalized basic term, S-normalized simple term, S-decryption oracle call
or S-encryption oracle call we have:

cond-st(β) =
⋃
u<Sbcβ

leave-st(u)

Proof. We prove this by induction on the order <Sind.
a) Base Case: If β is minimal for <Sind, then we have the following cases:

• S-decryption oracle call: β is of the form C[~b�~u], and there exists s, sk such that terms in ~u are of the form 0(dec(s, sk))
or dec(s, sk), and u is if-free. Moreover by minimality of β the vector of terms ~b must be empty, since for all b ∈ ~b, b
is a S-normalized basic term.
Hence cond-st(β) = ∅. Finally since β is minimal there are no u such that u <Sbc β.

• S-encryption oracle call case cannot happen, as β would not be minimal.
• S-normalized basic term: β contains no if then else symbol, hence cond-st(β) = ∅. Moreover since β is minimal there

are no u such that u <Sbc β.
• S-normalized simple term case cannot happen, as β would not be minimal.

b) Inductive Case: Let β be such that for all β′ 6= β, if β′ <Sind β then the property holds for β′.
• S-normalized basic term: β is of the form B[~w, (αi)i, (decj)j ]. The result is then immediate by induction hypothesis and

using the definition of cond-st(·) and <Sbc:

cond-st(β) =
⋃
i

cond-st(αi) ∪
⋃
j

cond-st(deci) (By definition of cond-st(·))

=
⋃
i

⋃
u<Sbcαi

leave-st(u) ∪
⋃
j

⋃
u<Sbcdecj

leave-st(u) (By induction hypothesis)

=
⋃
u<Sbcβ

leave-st(u) (By definition of <Sbc)

• S-decryption oracle call: t is of the form C[~b � ~u], where there exists s, sk such that terms in ~u are of the form
0(dec(s[(αi), (decj)j ], sk)) or dec(s[(αi), (decj)j ], sk), and u is if-free. Then:

cond-st(β) =
⋃
i

cond-st(αi) ∪
⋃
j

cond-st(deci) ∪ cond-st(~g) ∪ leave-st(~g)

(By definition of cond-st(·))

=
⋃
i

⋃
u<Sbcαi

leave-st(u) ∪
⋃
j

⋃
u<Sbcdecj

leave-st(u) ∪
⋃
u<Sbc~g

leave-st(u) ∪ leave-st(~g)

(By induction hypothesis: remark that guards in ~g are S-normalized basic terms s.t. ~g ≤Sbt β)

=
⋃
u<Sbcβ

leave-st(u) (By definition of <Sbc)

• S-encryption oracle call: t is of the form {s}rpk, then:

cond-st(β) = cond-st(s) (By definition of cond-st(·))

=
⋃
u<Sbcs

leave-st(u) (By induction hypothesis)

=
⋃
u<Sbcβ

leave-st(u) (By definition of <Sbc)

• S-normalized simple term: t is of the form C[~b � ~v]. Then:

cond-st(β) = cond-st(~b) ∪ cond-st(~v) ∪ leave-st(~b) (By definition of cond-st(·))

=
⋃
u<Sbc

~b

leave-st(u) ∪
⋃
u<Sbc~v

leave-st(u) ∪ leave-st(~b) (By induction hypothesis)

=
⋃
u<Sbcβ

leave-st(u) (By definition of <Sbc)
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Proposition 27. Let P `npf t ∼ t′. Then for all h, l for all β ≤h,l
bt (t, P ), cond-st(β) ∩ leave-st(β) = ∅.

Proof. Let h, l and β ≤h,l
bt (t, P ) be such that cond-st(β) ∩ leave-st(β) 6= ∅. By Proposition 26 this means that there exists a

Sl-normalized basic term u <Slbc β such that leave-st(u) ∩ leave-st(β) 6= ∅.
Using Proposition 16 we know that u ≡ β. But u <Slbc β implies that u is a strict subterm of β. Absurd.

Definition 43. Let P `npf t ∼ t′, we know that t is of the form:

t ≡ C
[(

bhl bhr
bh

)
h∈H
�
(
Dl

[
(β)β≤ε,lc (t,P ) � (γ)γ≤ε,ll (t,P )

])
l∈L

]
For all l, we let:
• δcs-pathε,l(t, P ) be the directed path of conditional occurring from the root of t to Dl[] in P .
• δcs-path∼

ε,l(t ∼ t′, P ) be the directed path of pairs of conditionals occurring from the root of (t, t′) to Dl[] in P .
We extend this to all h ∈ index(P ), x ∈ {l, r} by having:

δcs-pathhx,l(t, P ) = δcs-pathε,l(b,extractx(h, P ))

and δcs-path∼
hx,l(t ∼ t′, P ) = δcs-path∼

ε,l(b ∼ b′,extractx(h, P ))

where extractx(h, P ) is a proof of b ∼ b′.

Lemma 18. Let P `npf t ∼ t′. There exists P ′ such that P ′ `npf t ∼ t′ and for all h ∈ index(P ′) with h 6= ε, for all x ∈ {l, r},
if we let h = hx and P h = extractx(h, P ′) be the proof of bh ∼ b′h then for all l ∈ label(P h):
(a) The proof P h does not use the {BFA(b, b′)} rules.
(b) cs-pathh,l(t, P ) (resp. cs-pathh,l(t′, P )) does not contain two occurrences of the same conditional.
(c) For all γ ≤h,l

l (t, P ′), (bh ↓R) ∈ leave-st(γ ↓R) and for all γ′ ≤h,l
l (t′, P ′), (b′h ↓R) ∈ leave-st(γ′ ↓R).

(d) For all β ≤ε,lc (t, P ′), leave-st(β ↓R) ∩ cs-pathε,l(t, P ) = ∅ (same for t′).
(e) For all γ ≤ε,ll (t, P ′), leave-st(t ↓R) ∩ leave-st(γ ↓R) 6= ∅ (same for t′).

Proof. Using Proposition 25, we know that we have P such that P `npf t ∼ t′ and for all l ∈ label(P ), h ∈ index(P ), x ∈ {l, r}
we have:

∀β ∈
(

(≤hx,l
c ∪ ≤hx,l

cs )(t, P )
)
∪
(

(≤hx,l
c ∪ ≤hx,l

cs )(t′, P )
)
, {false, true} ∩ leave-st(β ↓R) = ∅ (20)

First we start by rewriting the proof P so that all CS application are of the form:

b, (ui)i ∼ b′, (u′i)i b, (vi)i ∼ b′, (v′i)i
(if b then ui else vi)i ∼ (if b′ then u′i else v′i)i

CS
(21)

We prove by induction on n, starting with the inner-most CS conditionals, that there exists P such that P `npf t ∼ t′, (20) is
true for P and the following properties hold for all h, h′ ∈ index(P ):
(i) If if-depthP (h) ≥ n then the extractl(h, P ) and extractr(h, P ) do not use the {BFA(b, b′)} rules.

(ii) If if-depthP (h) ≥ n then for all x, l, cs-pathhx,l(t, P ) and cs-pathhx,l(t′, P ) do not contain two occurrences of the same
conditional.

(iii) If if-depthP (h) ≥ n then for all x, if extractx(h, P ) is the proof of b ∼ b′ then for all l, for all γ ≤hx,l
l (t, P ),

(b ↓R) ∈ leave-st(γ ↓R) and for all γ′ ≤hx,l
l (t′, P ), (b′ ↓R) ∈ leave-st(γ′ ↓R).

(iv) If if-depthP (h) < n then for all h, h′ ∈ index(P ) such that h ≤ h′, if we let h′′ be such that h′ = h · h′′ and x be such
that h′′ ∈ index(extractx(h, P )), then for all x′, for all l ∈ label(extractx′(h′, P )), we have

δcs-pathhx,l(t, P ) ⊇ δcs-pathh
′
x′ ,l(t, P )

Let nmax be the maximal if-depth in the proof of t ∼ t′:

nmax = max
h∈index(P )

if-depthP (h)

c) Base Case:: We are going to show that the invariants hold at nmax + 1. Invariants (i), (ii) and (iii) are obvious, since
there exists no h such that if-depthP (h) ≥ nmax + 1; and invariant (iv) is a consequence of the rewriting done in (21).

d) Inductive Case:: Assume that the property holds for n+ 1 and let us show that it holds for n.
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δcs-pathh0,l(t, P )

•b

β

δ~ρ

•
b

FAs

δcs-pathh0,l(t′, P )

•b′

β′

δ
~ρ ′

•
b′

FAs

{CS�(b, b′)}

{BFA(b, b′)}

A�

Fig. 12. Corresponding occurrences of b and b′ in the proof of Lemma 18

e) Step 1: Let l ∈ label(P ) and h0 ∈ h-branch(l) such that if-depthP (h0) = n. Let x0 ∈ {l, r} and h0 = h0x0
. We start

by showing that for all l, for all β ≤h0,l
c (t, P ), if there exists b ∈ cs-pathh0,l(t, P ) such that b ∈ leave-st(β ↓R) then there

exists (b, b′) ∈ cs-pathh0,l
∼ (t, P ) and β′ such that (β, β′) ≤h0,l

c∼c (t ∼ t′, P ) and:
• b′ ∈ leave-st(β′ ↓R).
• The directed path δ~ρ (resp. δ~ρ ′) of the conditionals occurring from the root of β ↓R (resp. β′ ↓R) to the leave b (resp. b′)

is such that δ~ρ ⊆ δcs-pathh0,l(t, P ) (resp. δ~ρ ′ ⊆ δcs-pathh0,l(t, P )).
This is described in Fig. 12.

Let β ≤h0,l
c (t, P ) and b ∈ cs-pathh0,l(t, P ) such that b ∈ leave-st(β ↓R). We know that there exists b′ and β′ such that

(b, b′) ∈ cs-pathh0,l
∼ (t, P ) and (β, β′) ≤h0,l

c∼c (t ∼ t′, P ).
Let h ∈ cs-pos(extractx0

(h0, P )) and x be the direction taken in l at h be such that extract(h, P ) is the rule CS�(b, b′).
We know that extractx(h, P ) is a proof of a ∼ a′, where a =R b and a′ =R b

′. As if-depth(h) = n+ 1 we know by induction
hypothesis (i) that extractx(h, P ) does not uses {BFA(b, b′)}. Hence the set ≤ε,ll (a,extractx(h, P )) is the singleton {γl} and
the set ≤ε,ll (a′,extractx(h, P )) is the singleton {γ′l}. Let H = index(extractx(h, P )), we have:

a ≡ C
[
(bg)g∈H � (γla)la

]
a′ ≡ C

[
(b′g)g∈H �

(
γ′la
)
la

]
By induction hypothesis (iii) we know that b ∈ leave-st(γl ↓R) and b′ ∈ leave-st(γ′l ↓R). γl and β are Sl-normalized basic

terms, hence using Proposition 16 we know that β ≡ γl. We can extract from the branch l of P a proof of γl, β ∼ γ′l, β
′

in FAs
∗ · Dup∗ · CCA2. Therefore, using Lemma 2, we get that β′ ≡ γ′l . Since b′ ∈ leave-st(γ′l ↓R), we deduce that b′ ∈

leave-st(β′ ↓R). This concludes the proof of the first bullet point.
By induction hypothesis (iv) we know that

δcs-path(h0)x0 ,l(t, P ) ⊇ δcs-pathhx,l(t, P ) ∧ δcs-path(h0)x0 ,l(t′, P ) ⊇ δcs-pathhx,l(t′, P )

By definition of ~ρ, cond-st(γl ↓R) ⊇ ~ρ. More precisely, using the facts that a ≡ C [(bg)g∈H � (γl)l] and since cond-st(a ↓R
) = {b}, and invariant (ii), we can show that δ~ρ ⊆ δcs-pathhx,l(t, P ). By consequence, δ~ρ ⊆ δcs-path(h0)x0 ,l(t, P ). Similarly
we show that δ~ρ ′ ⊆ δcs-path(h0)x0 ,l(t′, P ).

f) Step 2: By doing some proof cut elimination, we can guarantee that for all l, for all β ≤h0,l
c (t, P ):

leave-st(β ↓R) ∩ cs-pathh0,l(t, P ) = ∅

Assume this is not the case: using Step 1 we have:
δ~ρ ⊆ δcs-path(h0)x0 ,l(t, P ) ∧ δ

~ρ ′ ⊆ δcs-path(h0)x0 ,l(t′, P )
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Therefore we can rewrite β and β′ into, respectively, b and b′ (this is possible because we have an inclusion between the
directed paths, not just the paths). We can then rewrite b and b′ into true if we are on the then branch of b and b′ (i.e. x = l),
and false if we are on the else branch (i.e. x = r). Finally we get rid of true and false using R, and check that the resulting
proof verifies (20) and the induction invariants.

g) Step 2 b.: Then we show that we can assume that (ii) holds through some proof rewriting, while maintaining invariant
(iv).

Let (a, a′), (b, b′) ≤h0
cs∼cs (t, P ) such that a ≡ b and they are on the same branch l. Since they are on the same branch, we

can extract a proof Q `npf a, a ∼ a′, b′. Moreover a ↓R, a′ ↓R, b′ ↓R are if-free, therefore by Lemma 9 we have a′ ≡ b′. We
then do our standard proof cut elimination to get rid of the duplicate. We need to make sure that this ensure that invariant (iv)
at rank n holds for Q: this follows from the fact that invariant (iv) holds for P at rank n+ 1 and that the cut takes place at
depth n.

h) Step 3: We then show that (iii) holds. Let bh0 , b′h0 be such that extractx0(h, P ) `npf bh0 ∼ b′h0 . We know that:

bh0 ≡ C
[(

bhl bhr
bh

)x

)
h∈Hh0

�
(
Dh0

l

[
(β)

β≤h0,l
c (t,P )

� (γ)
γ≤h0,l

l (t,P )

])
l∈Lh0

]
where Hh0 = cs-pos(extractx0(h0, P )) and Lh0 = label(extractx0(h0, P )).

To prove that for all l, for all γ ≤h0,l
l (t, P ), we have bh0 ↓R∈ leave-st(γ ↓R), we only need to show that the hypotheses

of Proposition 23 hold for bh0 (then we do the same thing with b′h0 to show that for all γ′ ≤h0,l
l (t′, P ) we have b′h0 ↓R∈

leave-st(γ′ ↓R)):
• (23.i): the only difficulty lies in proving that for all β ≤h0,l

c (t, P ), cond-st(β ↓R) ∩ leave-st(β ↓R) = ∅, which is shown
in Proposition 27.

• (23.ii): this is a consequence of the fact that (20) holds for P .
• (23.iii): for pairs in (cs-pathh0,l(t, P ))2 this was shown in Step 2 b. For couples of positions in Dh0

l ×D
h0

l we have a
proof cut elimination: let p < p′ be the positions in bh0 of β0, β1 ≤h0,l

c (t, P ) on the same branch such that leave-st(β0)∩
leave-st(β1) 6= ∅. By Proposition 16 we know that β0 ≡ β1. Let β′0, β

′
1 be the conditionals at positions, respectively, p

and p′ in b′h0 . We know that (β0, β
′
0), (β1, β

′
1) ≤h0,l

c (t ∼ t′, P ). We can extract from P a proof of:

β0, β0 ∼ β′0, β′1
in FAs

∗ ·Dup∗ ·CCA2, hence using Lemma 2 we get that β′0 ≡ β′1. Therefore we can do the following proof cut elimination:
if p′ is on the then branch of p then we can rewrite β1 and β′1 into true in, respectively, bh0 and b′h0 . We then rewrite
the two terms using R to remove the true conditionals. This yields a new proof Q in proof normal form, such that (20)
and the induction invariants hold. We do a similar cut elimination with false if p′ is in the else of p.
Finally the result proven at Step 2 shows that we do not have cross cases cs-pathh0,l(t, P )×Dh0

l .
• (23.iv): this is a consequence of Corollary 1.(i).
• (23.v): this is a consequence of Lemma 17.

i) Step 4: We conclude by showing that we can get rid of the {BFA(b, b′)} applications.
Using Corollary 1.(ii) and the proof Q constructed at Step 3, we know that for all γ, γ′ ≤h0,l

l (t, Q), γ ≡ γ′ (and the same
holds for (t′, Q)). Therefore there is a proof cut elimination that allows us to remove all {BFA(b, b′)} applications, by rewriting:

Dl

[
_ � (γ)

γ≤h0,l
l (t,Q)

]
and Dl

[
_ � (γ′)

γ≤h0,l
l (t′,Q)

]
into, respectively, γ0 and γ′0 (where γ0 ≤h0,l

l (t, Q) and γ′0 ≤
h0,l
l (t′, Q)).

j) Conclusion: To conclude, we can first observe that the properties (a),(b) and (c) are implied by, respectively, (i), (ii)
and (iii) for n = 0. The proof that (d) (resp. (e)) holds is exactly the same than the one we did at Step 2 (resp. Step 3).
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APPENDIX VII
BOUNDING THE BASIC TERMS

A. α-Bounded Conditionals

We are ready to do the final proof cut eliminations, which will yield derivation of bounded size w.r.t. |t ↓R |+ |t′ ↓R |. To
bound the size of cut-free derivations, we are going to bound the size of all normalized basic terms and case-study conditionals
appearing in such derivations. To do this, we first introduce the notion of (t, P )-α-bounded terms, where P `npf t ∼ t′, and
then prove that (t, P )-α-bounded terms are of bounded size w.r.t. |t ↓R | + |t′ ↓R |. Basically, a term β in ≤h,l

bt (t, P ) or
cs-pathh,l(t, P ) is (t, P )-α-bounded if we are in one of the following case:
• β is a normalized basic term, and β has a leaf term appearing in st(t ↓R). Since β is uniquely characterized by its leaf

terms, this bound β.
• Let β′ be the term matching β on the right. If β′ shares a leaf term with st(t′ ↓R), then, by the previous observation, β′

is bounded. Since β and β′ differ only by the content of their encryptions, this also bound β.
• If β is a case-study conditional (i.e. in cs-pathh,l(t, P )), and if there exists a (t, P )-α-bounded normalized basic term ε

such that β appears in ε’s leaf terms. Indeed, since ε is bounded, it has finitely many leaf terms, which are of bounded
size. Hence β is also of bounded size.

• If β is a normalized basic terms used in the sub-proof of b ∼ b′, where b and b′ are (t, P )-α-bounded case-study
conditionals, and if b appears in β’s leaf terms. Again, since β is uniquely characterized by any of its leaf terms, and
since b is bounded, we know that β is bounded.

• Finally, if β is a decryption guard of some decryption oracle call d, where d appears in a (t, P )-α-bounded normalized
basic term ζ. Since ζ is bounded, and since β is a sub-term of ζ, the term β is also bounded.

We formally define what is a (t, P )-α-bounded terms.

Definition 44. For all P `npf t ∼ t′, the set of (t, P )-α-bounded terms is the smallest subset of:{
β | ∃h, l. β ≤h,l

bt (t, P )
}
∪
{
b | ∃h. b ∈ cs-pathh,l(t, P )

}
such that for all h, l, for all β (≤h,l

bt ∪cs-pathh,l) (t, P ), β is (t, P )-α-bounded if:
• Base case: h = ε and leave-st(β ↓R) ∩ st(t ↓R) 6= ∅.
• Base case: h = ε and there exists β′ such that:

(β, β′) (≤ε,ll∼l ∪ ≤
ε,l
c∼c ∪cs-pathε,l) (t ∼ t′, P )

and leave-st(β′ ↓R) ∩ st(t′ ↓R) 6= ∅.
• Inductive case, same label: β ∈ cs-pathh,l(t, P ) and there exists ε ≤h,l

bt (t, P ) such that ε is (t, P )-α-bounded and
β ∈ leave-st(ε ↓R).

• Inductive case, different labels: β ≤h,l
bt (t, P ), there exists h′ such that h ∈ cs-pos(h′) and b ∈ cs-pathh′,l(t, P ) such

that b is (t, P )-α-bounded and b ∈ leave-st(β ↓R).
• Inductive case, guard: β ≤h,l

bt (t, P ), there exists ε ≤h,l
bt (t, P ) such that:

– ε ≡ B[~w , (αi)i, (decj)j ] is (t, P )-α-bounded.
– β is a guard of a SPl -decryption oracle call d ∈ (decj)j .

We continue our proof cut eliminations, starting from the derivations constructed in Lemma 18. We let P `npf
α t ∼ t′ be the

restriction of `npf to derivations satisfying the properties guaranteed by Lemma 18 which use only (t, P )-α-bounded terms.
Moreover, we require that no basic conditionals appears twice on the same branch.

Definition 45. For all proof P , term t, t′, we write P `npf
α t ∼ t′ if:

(I) P `npf t ∼ t′ and the properties (a) to (e) of Lemma 18 hold.
(II) The following sets are sets of, respectively, (t, P )-α-bounded and (t′, P )-α-bounded terms:{

β | ∃h, l. β ≤h,l
bt (t, P ′)

}
∪
{
b | ∃h. b ≤h

cs (t, P ′)
}{

β′ | ∃h, l. β′ ≤h,l
bt (t′, P ′)

}
∪
{
b′ | ∃h. b′ ≤h

cs (t′, P ′)
}

(III) For every l ∈ label(ε), for every path ~ρ of SPl -normalized basic conditional from the root of t to some leave, ~ρ does not
contain any duplicates. The same property must hold for t′.

We can now give the proof of Lemma 10, which we recall below.

Lemma (10). `npf
α is complete with respect to `npf.
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Proof. Let P be such that P `npf t ∼ t′, where P is obtained using Lemma 18. Therefore P satisfies the item (I) of
Definition 45. Now, we are going to build from P a proof P ′ of t ∼ t′ that satisfies the item (II) and (III) of Definition 45.

We are going to show that, if there exists β in:{
β | ∃h, l. β ≤h,l

bt (t, P ′)
}
∪
{
b | ∃h. b ≤h

cs (t, P ′)
}

such that β is not (t, P )-α-bounded, then there is a cut elimination removing β (we describe the cut elimination used later in
the proof). Moreover, the resulting proof will have a smaller number of basic terms which are not (t, P )-α-bounded, hence
we will conclude by induction. First, we want to pick a term β maximal for a carefully chosen relation.

a) Order <g: Let <g be the transitive closure of the relation �g on:⋃
h∈index(P )

{
(β,h) | ∃l.β ≤h,l

bt (t, P )
}
∪

⋃
h∈index(P )

{
(b,h) | ∃l.b ∈ cs-pathh,l(t, P )

}
defined by:

(ζ,h)�g (ζ ′,h′) iff


h = h′ ∧ ζ, ζ ′ ≤h,l

bt (t, P ) ∧ ζ is a guard of some decryption oracle call d ∈ st(ζ ′)

h = h′ ∧ ζ ∈ cs-pathh,l(t, P ) ∧ ζ ′ ≤h,l
bt (t, P ) ∧ ζ ∈ leave-st(ζ ′ ↓R)

h > h′ ∧ ζ ≤h,l
bt (t, P ) ∧ ζ ′ ∈ cs-pathh′,l(t, P ) ∧ ζ ′ ∈ leave-st(ζ ↓R)

First we show that <g is a strict order. As it is transitive, we just need to show that it is an antisymmetric relation. For all h,
the restriction <h

g of <g to: {
(β,h) | ∃l.β ≤h,l

bt (t, P )
}
∪
{

(b,h) | ∃l.b ∈ cs-pathh,l(t, P )
}

is a strict order, as it is included in the embedding relation. To show that <g is a strict order on its full domain, we simply
use the facts that for all h, <h

g is a strict order and that when we go from the domain of <h
g to the domain of <h′

g , we have
h′ > h.

W.l.o.g. we assume that (β,h) is maximal for <g among the set of terms that are not (t, P )-α-bounded. Consider an arbitrary
l such that h ∈ h-branch(l). Since β is not (t, P )-α-bounded, we know that if β is a guard of some decryption oracle call
d ∈ st(ζ) with ζ ≤h,l

bt (t, P ), then ζ is not (t, P )-α-bounded. By maximality of β, it follows that if β ≤h,l
bt (t, P ) then β is not

a decryption guard of any ζ ≤h,l
bt (t, P ).

b) Case h = ε: First we are going to describe what to do for h = ε. From Lemma 18.(e), we know that for every
l ∈ label(P ), for all γ ≤ε,ll (t, P ), the basic term γ is (t, P )-α-bounded. Therefore β 6≤ε,ll (t, P ). Moreover, from Lemma 18.(d)
we get that β ≤ε,lc (t, P ) and β ∈ cs-pathε,l(t, P ) are mutually exclusive. Putting everything together, we have three cases:

(i) either β (6≤ε,ll ∪ ≤
ε,l
c ) (t, P ) and β 6∈ cs-pathε,l(t, P ).

(ii) or β ( 6≤ε,ll ∪ 6≤
ε,l
c ) (t, P ) and β ∈ cs-pathε,l(t, P ).

(iii) β ( 6≤ε,ll ∪ 6≤
ε,l
c ) (t, P ) and β 6∈ cs-pathε,l(t, P ).

We first focus on case i. We explain how to deal with ii and iii later.
• i, Part 1 Assume that we are in case i). Let β′ be such that (β, β′) (≤ε,lc∼c) (t ∼ t′, P ). Since β is not (t, P )-α-bounded

we know that for all u ∈ leave-st(β ↓R), for all u′ ∈ leave-st(β′ ↓R), u and u′ are spurious in, respectively, t and t′. We
let:

t ≡ C
[
~b cs �Dl

[
(βi)i∈J � (γm)m∈M

]
,∆
]

t′ ≡ C
[
~b ′cs �Dl

[
(β′i)i∈J � (γ′m)m∈M

]
,∆′
]

where, for every i ∈ J , (βi, β
′
i) ≤

ε,l
c∼c (t ∼ t′, P ), and for every m ∈ M , (γm, γ

′
m) ≤ε,ll∼l (t ∼ t′, P ). Moreover, we

assume that for every i ∈ J , the hole []i (which is mapped to βi) appears exactly once in Dl. We define the set of indices
I = {i ∈ J | β ≡ βi}. Using Corollary 1.(i), we know that:

I = {i ∈ J | leave-st(β ↓R) ∩ leave-st(βi ↓R) 6= ∅}

We know that we have a proof of (βi)i∈I ∼ (β′i)i∈I in the fragment F(FAs
∗ · Dup∗ · CCA2). Therefore:

∀b, b′ ∈ {β′i | i ∈ I}, b ≡ b′ ≡ β′ (22)

Indeed, if |I| = 1 then this is obvious, and if |I| > 1 we use Lemma 2 (since all the terms on the left are the same). We let
I ′ = {i ∈ J | β′ ≡ β′i}. Using the same proof than for I , we know that I ′ = {i ∈ J | leave-st(β′ ↓R)∩ leave-st(β′i ↓R) 6=
∅}. We deduce from this that:

∀b, b′ ∈ {βi | i ∈ I ′}, b ≡ b′ ≡ β (23)
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From (22) we get that I ⊆ I ′ and conversely from (23) we get that I ′ ⊆ I . Therefore we have the equality I = I ′.
• i, Part 2 For every i 6∈ I , using Lemma 15 on β we know that there exists β̃i[] such that:

β̃i[β] ≡ βi and leave-st(β ↓R) ∩ cond-st(β̃i[] ↓R) = ∅
Similarly, for every m ∈M , there exists γ̃m[] such that:

γ̃m[β] ≡ γm and leave-st(β ↓R) ∩ cond-st(γ̃m[] ↓R) = ∅
Then we have:

t ≡ C
[
~b cs �

(
Dl

[
(βi)i∈J � (γm)m∈M

]
,∆
)]

≡ C
[
~b cs �

(
Dl

[(
(β)i∈I , (β̃i[β])i 6∈I

)
� (γ̃m[β])m∈M

]
,∆
)]

Let Cβ [~bβ � ~uβ ] ≡ β ↓R. We have:

Dl

[(
(β)i∈I , (β̃i[β])i6∈I

)
� (γ̃m[β])m∈M

]
=R if Cβ [~bβ � ~uβ ] then Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃m[true])m∈M

]
else Dl

[(
(false)i∈I , (β̃i[false])i 6∈I

)
� (γ̃m[false])m∈M

]
Since ~uβ = leave-st(β ↓R), for every u ∈ ~uβ , i ∈ J and m ∈ M , we know that u 6∈ cond-st(β̃i[] ↓R) and u 6∈
cond-st(γ̃m[] ↓R). Let ~ρ be the conditionals appearing on the path from the root of t to Dl[_]. Using Lemma 18.(d), we
know that ~uβ ∩ ~ρ = ∅. Let (uo)o∈O be such that ~u ≡ (uo)o∈O. By applying Proposition 20 to all u we know that:

C

~b cs �
 if Cβ

[
~bβ � ~uβ

]
then Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃i[true])m

]
else Dl

[(
(false)i∈I , (β̃i[false])i 6∈I

)
� (γ̃i[false])m

],∆


=R C

~b cs �
 if Cβ

[
~bβ � (true)o

]
then Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃i[true])m

]
else Dl

[(
(false)i∈I , (β̃i[false])i6∈I

)
� (γ̃i[false])m

],∆


=R C
[
~b cs �

(
Dl

[(
(true)i∈I , (β̃i[true])i 6∈I

)
� (γ̃i[true])m

]
,∆
)]

(24)

• i, Part 2.b We do exactly the same thing on the other side: for all i 6∈ I we know that there exists β̃′i[] such that:

β̃′i[β
′] ≡ β′i and leave-st(β′ ↓R) ∩ cond-st(β̃′i[] ↓R) = ∅

And, for every m ∈M , there exists γ̃′m[] such that:

γ̃′m[β′] ≡ γ′m and leave-st(β′ ↓R) ∩ cond-st(γ̃′m[] ↓R) = ∅
Then by the same reasoning we have:

t′ ≡ C
[
~b ′cs �

(
Dl

[
(β′i)i � (γ′m)m∈M

]
,∆′
)]

≡ C
[
~b ′cs �

(
Dl

[(
(β′)i∈I , (β̃

′
i[β
′])i6∈I

)
� (γ̃′m[β′])m∈M

]
,∆′
)]

=R C
[
~b ′cs �

(
Dl

[(
(true)i∈I , (β̃

′
i[true])i 6∈I

)
� (γ̃′m[true])m∈M

]
,∆′
)]

(25)

Observe that corresponding sub-terms of (24) and (25) can be matched to corresponding sub-terms of t and t′. It is
straightforward to build a proof of the equivalence of (24) and (25) using P , except for the CCA2 applications side-
conditions. We argue why the side-conditions carry over from the derivation P later in the proof.

• ii and iii The case ii works similarly to the case i, except that we use Lemma 9 instead of Lemma 2. The case iii is
exactly like the case i when taking I = ∅.
c) Case h 6= ε: In that case, thanks to Lemma 18.(a), we know that β 6≤h,l

c (t, P ). We have three cases:
(a) either β ≤h,l

l (t, P ): using Lemma 18.(c), there exists h0, b
h such that h ∈ cs-pos(h0), bh ∈ cs-pathh0,l(t, P ) and

(bh ↓R) ∈ leave-st(β ↓R). Since h ∈ cs-pos(h0) implies that h0 < h, we know that β <g bh. We then have two cases.
Either bh is (t, P )-α-bounded, and then using the inductive case for different labels of the definition of (t, P )-α-bounded
terms, we know that β is (t, P )-abounded. Absurd. Or bh is not (t, P )-α-bounded, which contradicts the maximality of β
among the set of terms which are not (t, P )-abounded. Absurd.

(b) either β 6≤h,l
l (t, P ) and β ∈ cs-pathh,l(t, P ): this case is done exactly like case (ii).

(c) either β 6≤h,l
l (t, P ) and β 6∈ cs-pathh,l(t, P ): this case is done exactly like case (iii).
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d) Valid Proof Rewriting: We do the rewritings described above for every h such that (β,h) is maximal for <g , and for
every l such that β ≤h,l

bt (t, P ) or β ∈ cs-pathh,l(t, P ), simultaneously. It remains to check that this is a valid cut elimination.
The only difficulty lies in checking that all the side-conditions of the CCA2 axiom hold. This is tedious, but here are the key
ingredients:
• β is not a guard, and the encryptions that need to be guarded in a decryption are invariant by our proof cut elimination.

Therefore decryptions that were well-guarded before are still well-guarded after the cut.
• We did the proof rewriting simultaneously for all h such that (β,h) is maximal for <g . Consider h′ such that (β,h′)

is not maximal for <g: then there exists h such that (β,h) is maximal for <g and h < h′. Therefore, the sub-proof at
index h′ is removed by the proof rewriting. This ensure that, for all branch l where a rewriting occurred, we removed all
occurrences of β. Therefore, if an encryption used to contain β then all occurrences of this encryption have been rewritten
in the same way. This guarantees that the freshness condition on encryption randomness still holds.

• The length constraints on encryption oracle calls still holds thanks to the branch invariance property of the length predicate
EQL(_, _).
e) Conclusion: This concludes the proof of the second bullet point of the definition `npf

α . The third bullet point is much
simpler. We want to show that for all l ∈ label(ε), for every path ~ρ of SPl -normalized basic conditional from the root of t
to some leave, ~ρ does not contain any duplicates. We show this by proof cut elimination as follows: let (β, β′0) ≤ε,lc∼c (t, P )
and (β, β′1) ≤ε,lc∼c (t, P ), using Lemma 2 we have β′0 ≡ β′1. Since they are on the same branch, one may rewrite the lowest
occurrence of β and β′0 into their then branch (we could also use the else branch). This yield a smaller proof, and one can
check that all the other properties are invariant of this proof cut elimination. We directly concludes by induction.

B. Bounding the Number of Nested Basic Conditionals

We use the previous lemma to bound the number of basic conditionals appearing in a proof P `npf
α t ∼ t′. Looking at

the definition of (t, P )-α-bounded terms, one may try to show that for every β ∈ (≤h,l
bt (t, P ) ∪ cs-pathh,l(t, P )), if β is

(t, P )-α-bounded then there exists u ∈ leave-st(β ↓R) such that u ∈ st(t ↓R) ∪ st(t′ ↓R). Since st(t ↓R) ∪ st(t′ ↓R) is finite,
and since a basic term is uniquely characterized by any of its leaves, this would allow us to bound the number of basic terms
appearing in P `npf

α t ∼ t′.
Unfortunately, this is not always the case. Indeed, consider (β, β′) ≤h,l

c (t ∼ t′, P ) such that β′ has a leaf term appearing
in t′, but β shares no leaf term with β′ nor t:

leave-st(β ↓R) ∩ leave-st(β′ ↓R) = ∅ leave-st(β ↓R) ∩ st(t ↓R) = ∅ leave-st(β′ ↓R) ∩ st(t′ ↓R) 6= ∅

β′ is α-bounded since it shares a leaf term with t′, and using the second case, β is α-bounded too. But β shares no leaf term
with t and t′.

Still, we can bound β. Since (β, β′) ≤h,l
c (t ∼ t′, P ), we observe that β ≡ B[~w , (αi)i, (decj)j ] and β′ ≡

B[~w , (α′i)i, (dec′j)j ]. Using the fact that leave-st(β′ ↓R) ∩ st(t′ ↓R) and that β is a Sl-normalized basic term, we know
that every leaf u ∈ leave-st(β ↓R) is in st(t′ ↓R), modulo the content of the Sl-encryption oracle calls. This motivate the
introduction of the notion of leaf frame.

a) Leaf frame: Let β be a Sl-normalized basic term, and u, v ∈ leave-st(β ↓R) be leaf terms of β. Then u and v only
differ by their encryptions. That is, if one replace all the zero decryptions 0(dec(_, sk)) by dec(_, sk), and all the leaves of
encryptions {m}n

pk by {[]α}n
pk (where α is the unique term of El such that α ≡ {_}n

pk) in u and in v then you get the same
context. We formalize this below, and use it to generalize Proposition 16.

Definition 46. Let P `npf
α t ∼ t′ and l be a branch label in label(P ). We define the left leaf frame l-framePl of β ∈ (≤h,l

bt
(t, P ) ∪ cs-pathh,l(t, P )) inductively as follows:

l-framePl (s) ≡


{[]α}n

pk if ∃α ≡ {m}n
pk ∈ EPl ∧ s ≡ {_}n

pk

dec(l-framePl (s), sk) if sk ∈ KPl ∧ s ≡ 0(dec(s, sk))

l-framePl (v) if s ≡ if b then u else v
f((l-framePl (ui))i) otherwise

We also let l-framePl (β) be l-framePl (β) where we make every hole variable appear at most once, by replacing a hole variable
[]α occurring at position p in β by []α,p.

We define the right leaf frame r-framePl (and its underlined version r-framePl ) of β ∈ (≤h,l
bt (t′, P ) ∪ cs-pathh,l(t′, P )),

using E ′Pl instead of EPl .

Remark 10. We have two remarks:
• We state some results only for l-frame. The corresponding results for r-frame are obtained by symmetry.
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• The hole variables in l-framePl (β) are annotated by both the position p of the hole and the encryption α that appears at p
in β. By consequence, if two normalized basic terms β and β′ are such that l-framePl (β) and l-framePl (β′) share a hole
variable []α,p, it means that β and β′ contain the same encryption α at the same position p. This is crucial, as we want
l-framePl to uniquely characterize normalized basic terms.

Example 11. For all SPl -decryption oracle call dec guarding dec(s[(αi)i, (decj)j ], sk), if for all i, αi ≡ {_}ni
pki

then:

l-framePl (dec) ≡ dec
(
s
[(
{[]αi}

ni
pki

)
i
,
(
l-framePl (decj)

)
j

]
, sk
)

We also give an example of l-framePl . Assuming that α0 ≡ {A}n0

pk and α1 ≡ {B}n1

pk are encryptions in EPl :

l-framePl (〈α0 , 〈α1 , α0〉〉) ≡ 〈{[]α0,00}n0

pk , 〈{[]α1,100}n1

pk , {[]α0,110}n0

pk〉〉

Proposition 28. Let P `npf
α t ∼ t′ and l ∈ label(P ). Let b be an if-free term in R-normal form. For every Sl-normalized basic

terms γ, if b ∈ leave-st(γ ↓R) then l-framePl (b) ≡ l-framePl (γ).

Proof. This is by induction on the size of γ.

Proposition 29. Let P `npf
α t ∼ t′ and l ∈ label(P ). For every Sl-normalized basic terms β, β′, if l-framePl (β) ≡ l-framePl (β′)

then β ≡ β′.

Proof. The proof is exactly the same than for Proposition 16.

Proposition 30. Let P `npf
α t ∼ t′ and l ∈ label(P ). For all h, if (b, b′) ≤h,l

cs∼cs (t ∼ t′, P ) then there exists h′ and
(γ, γ′) (≤h′,l

c∼c ∪ ≤h′,l
l∼l ) (t ∼ t′, P ) such that b ∈ leave-st(γ ↓R) and b′ ∈ leave-st(γ′ ↓R).

Proof. Let h, x be such that h = hx. Let h0 ∈ cs-pos(extractx(h, P )) and x0 be such that x0 is the direction taken in l at
position h0, and such that Q = extractx0(h0, P ) is a proof of b ∼ b′.

Using the fact that the sub-proofs of CS� conditionals of P do not use the BFA rule, we know that Q lies in the fragment:

F(CS� · FAs
∗ · Dup∗ · CCA2)

Let (γ, γ′) ≤ε,ll∼l (b ∼ b′, Q). Using the property (c) of Lemma 18 (which holds thanks to `npf
α ), we know that b ∈ leave-st(γ ↓R)

and b ∈ leave-st(γ′ ↓R).

Proposition 31. Let P `npf
α t ∼ t′ and l ∈ label(P ). For all h, if (β, β′) (≤h,l

c∼c ∪ ≤h,l
l∼l ∪cs-pathh,l

∼ ) (t ∼ t′, P ) then
l-framePl (β) ≡ r-framePl (β′).

Proof. First we deal with the case (β, β′) (≤h,l
c∼c ∪ ≤h,l

l∼l) (t ∼ t′, P ). We know that we can extract a proof Q (from P ) such
that Q `npf

α β ∼ β′ and Q is in the fragment F(FAs
∗ · Dup∗ · CCA2). The result follows from the definitions of l-framePl and

r-framePl .
Now we deal with the case (β, β′) (cs-pathh,l

∼ ) (t ∼ t′, P ). Using Proposition 30 we know that there exists h′ and
(γ, γ′) (≤h′,l

c∼c ∪ ≤h′,l
l∼l ) (t ∼ t′, P ) such that β ∈ leave-st(γ ↓R) and β′ ∈ leave-st(γ′ ↓R). Since β is if-free and in R-

normal form, we obtain that l-framePl (β) ≡ l-framePl (γ) by applying Proposition 28. Similarly r-framePl (β′) ≡ r-framePl (γ′).
Moreover, from the previous case, we get that l-framePl (γ) ≡ r-framePl (γ′). Hence l-framePl (β) ≡ r-framePl (β′).

Proposition 32. Let P `npf
α t ∼ t′ and l ∈ label(P ). For every Sl-normalized basic terms β, β′, l-framePl (β) ≡ l-framePl (β′)

if and only if l-framePl (β) ≡ l-framePl (β′).

Proof. This is obvious, since the hole variable annotations in l-framePl uniquely characterize both the position of the hole and
the encryption appearing at this position.

Proposition 33. Let P `npf
α t ∼ t′ and l ∈ label(P ). For every Sl-normalized basic terms β, β′ and substitutions θ, θ′, if

l-framePl (β)θ ≡ l-framePl (β′)θ′ then l-framePl (β) ≡ l-framePl (β′).

Proof. We prove this by induction on the size of β. The base case is trivial, lets deal with the inductive case. Let β and β′ be
SPl -normalized basic terms, we know that β ≡ B[~w , (αi)i, (decj)j ] where:
• for every i, αi ≡ {mi}ni

pki
∈ EPl .

• for every j, decj is a decryption oracle call for dec(sj , skj) in DPl .
Similarly, we have a decomposition of β′ into B′[~w ′, (α′i)i, (dec′j)j ]. By definition of l-framePl , and using the fact that
fresh(RPl ; ~w ), we have:

l-framePl (β) ≡ B[~w , ({[]αi}
ni
pki

)i,dec(l-framePl (sj), skj)]
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Similarly:
l-framePl (β′) ≡ B′[~w ′, ({[]α′i}

n′i
pk′i

)i,dec(l-framePl (s′j), sk′j)]

We have three cases:
• Either β ≡ {m}n

pk ∈ EPl . Then l-framePl (β) ≡ {[]β,0}n
pk. By definition of l-frame, and using the fact that l-framePl (β)θ ≡

l-framePl (β′)θ′, we get that β′ is of the form {m′}n
pk. We deduce from the freshness side condition of n that m′ ≡ m.

• Or β ≡ dec where dec is a SPl -decryption oracle call guarding dec(s, sk). Then l-framePl (β) ≡ dec(l-framePl (s), sk)µ,
where µ is the substitution that lifts positions of s into positions of dec(s, sk), i.e. for every α ∈ EPl and position
p ∈ pos(s):

µ([]α,p) ≡ []α,0·p

By definition of l-frame, and using the fact that l-framePl (β)θ ≡ l-framePl (β′)θ′ and that β′ is a SPl -normalized basic
term, we get that β′ is also some dec′ where dec′ is a SPl -decryption oracle call guarding dec(s′, sk).
Moreover we have l-framePl (s)µθ ≡ l-framePl (s′)µθ, and s, s′ are SPl -normalized basic terms. Hence by induction
hypothesis l-framePl (s) ≡ l-framePl (s′), which concludes this case.

• Or we are not in one of the two cases above. Then, there exists f ∈ F \{if_then_else_, 0} s.t. β ≡ f(u1, . . . , un) and
β′ ≡ f(u′1, . . . , u

′
n), where u1, . . . , un and u′1, . . . , u

′
n are SPl -normalized basic term. Hence l-framePl (β) and l-framePl (β′)

both starts with the function symbol f .
Moreover, if we let, for very 1 ≤ i ≤ n, µi be the lifting substitution such that, for every α ∈ EPl and position p,
µi([]α,p) ≡ []α,i·p, then:

l-framePl (β) ≡ f(l-framePl (u1)µ1, . . . , l-framePl (un)µn) l-framePl (β′) ≡ f(l-framePl (u′1)µ1, . . . , l-framePl (u′n)µn)

We apply θ to the equations above, and use the fact that l-framePl (β)θ ≡ l-framePl (β′)θ:

f(l-framePl (u1)µ1θ, . . . , l-framePl (un)µnθ) ≡ l-framePl (β)θ

≡ l-framePl (β′)θ

≡ f(l-framePl (u′1)µ1θ, . . . , l-framePl (u′n)µnθ)

Hence, for every 1 ≤ i ≤ n, l-framePl (ui)µiθ ≡ l-framePl (u′i)µiθ. By induction hypothesis, we deduce that l-framePl (ui) ≡
l-framePl (u′i). Therefore l-framePl (β) ≡ l-framePl (β′).

Definition 47. We let <st be the strict, well-founded, subterm ordering.

b) Nested Sequences of Basic Conditionals: We want to bound the number of nested basic conditional appearing in
P `npf

α t ∼ t′. Using the contrapositive of Proposition 29, we know that when β <st β
′ we have l-framePl (β) 6≡ l-framePl (β′).

Moreover, using Proposition 32 and Proposition 33, we know that l-framePl (β) 6≡ l-framePl (β′) implies that l-framePl (β)θ 6≡
l-framePl (β′)θ′ (for every substitutions θ, θ′).

Therefore, for any sequence of nested SPl -normalized basic conditionals:

β1 <st · · · <st βn

and for any substitutions θ1, . . . , θn, we know that (l-framePl (βi)θi)1≤i≤n is a sequence of pair-wise distinct terms. Tu use
this, we prove that there there exists a sequence of substitutions θ1, . . . , θn such that:{

l-framePl (β1)θ1, . . . , l-framePl (βn)θn
}
⊆ B(t, t′)

where B(t, t′) is a set of bounded size w.r.t. |t|+|t′|. Since the (l-framePl (βi)θi)1≤i≤n are pair-wise distinct, using a pigeon-hole
argument we get that n ≤ |B(t, t′)|.

We outline the end of this sub-section. First, we define the set of terms B(t, t′), and show the existence of the substitutions
(θi)i. Then, we bound the size of B(t, t′). Finally, we bound the number of nested basic conditional n using a pigeon-hole
argument.

Definition 48. Let u be an if-free term. We let ζK(u) be the set of terms obtained from u by replacing some occurrences of
0(dec(w, sk)) by dec(w, sk) (where sk ∈ K), non-deterministically stopping at some encryptions. Formally:

ζK(u) =


{dec(v, sk) | w ∈ v ∈ ζK(w)} if u ≡ 0(dec(w, sk)) and sk ∈ K
{u} ∪ {{v}nr

pk(n) | v ∈ ζK(m)} if u ≡ {m}nr
pk(n) and sk(n) ∈ K

{f(v1, . . . , vn) | ∀i, vi ∈ ζK(ui)} otherwise, where u ≡ f(u1, . . . , un)
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Moreover, given a set of ground terms S, we let guardsK(S) be an over-approximation of the set of guards of terms in S:

guardsK(S) =
{

eq(s, α) | dec(s, sk(n)) ∈ S ∧ α ≡ {_}_
pk(n) ∈ st(s) ∧ sk(n) ∈ K

}
Definition 49. Let Sk(t) be the set of private keys appearing in t ↓R, i.e. Sk(t) = {sk(n) | sk(n) ∈ st(t ↓R)}. For every term
t, we let B(t) be the set:

B(t) =
⋃

K⊆Sk(t)

⋃
u ∈ st(leave-st(t ↓R))

∨u ∈ st(cond-st(t ↓R))

ζK(u) ∪ guardsK(ζK(u))

Moreover, we let B(t, t′) = B(t) ∪ B(t′).

Proposition 34. Let P `npf
α t ∼ t′ and l ∈ label(P ). Let β be a SPl -normalized basic conditional. Then, for every u ∈

leave-st(β ↓R), there exists θ such that l-framePl (β)θ ∈ ζK(u).

Proof. We show this by induction on |β|.
• If β is an encryption {m}n

pk ∈ EPl , then l-framePl (β) ≡ {[]β,0}n
pk and:

leave-st(β ↓R) =
{
{v}n

pk | v ∈ leave-st(m ↓R)
}

Let u ∈ leave-st(β ↓R), there exists um ∈ leave-st(m ↓R) such that u ≡ {um}n
pk. Let θ be the substitution mapping []β,0

to um. Then:
l-framePl (β)θ ≡ {um}n

pk ≡ u ∈ ζKPl (u)

• If β is a decryption oracle call in DPl for dec(s, sk), the:

leave-st(β ↓R) ⊆ {dec(us, sk) | us ∈ leave-st(s ↓R)} ∪ {0(dec(us, sk)) | us ∈ leave-st(s ↓R)}

Let u ∈ leave-st(β ↓R), there exists us ∈ leave-st(s ↓R) such that u ≡ dec(us, sk) or u ≡ 0(dec(us, sk)). Since s is a
SPl -normalized basic term, by induction hypothesis we have θ such that l-framePl (s)θ ∈ ζKPl (us). Moreover:

l-framePl (β) ≡ dec(l-framePl (s)µ, sk)

where µ is a renaming of hole variables. Let θ′ = µ−1θ, then:

l-framePl (β)θ′ ≡ dec(l-framePl (s)µµ−1θ, sk) ≡ dec(l-framePl (s)θ, sk) ∈ ζKPl (u)

• Otherwise, β ≡ f(β1, . . . , βn) where, for every 1 ≤ i ≤ n, βi is a SPl -normalized basic term. Then, using the fact that
β is a SPl -normalized basic term, we check that:

leave-st(β ↓R) ⊆ {f(v1, . . . , vn) | ∀i, vi ∈ leave-st(βi ↓R)}

Let u ∈ leave-st(β ↓R), there exists v1, . . . , vn such that for every 1 ≤ i ≤ n vi ∈ leave-st(βi ↓R) and u ≡ f(v1, . . . , vn).
By induction hypothesis, there exists θ1, . . . , θn such that for every 1 ≤ i ≤ n:

l-framePl (βi)θi ∈ ζKPl (vi)

For very 1 ≤ i ≤ n, let µi be the lifting substitution such that, for every α ∈ EPl and position p, µi([]α,p) ≡ []α,i·p. Then:

l-framePl (β) ≡ f(l-framePl (β1)µ1, . . . , l-framePl (βn)µn)

Observe that the substitutions (µiθi)1≤i≤n have disjoint domains. Let θ = µ1θ1 . . . µnθn. Then:

l-framePl (β)θ ≡ f(l-framePl (β1)µ1θ1, . . . , l-framePl (βn)µnθn)

We know that f cannot be the function symbol 0(_) (since FA cannot be applied on 0(_). It follows that:

f(l-framePl (β1)µ1θ1, . . . , l-framePl (βn)µnθn) ∈ ζKPl (u)

We lift the previous result to α-bounded conditionals.

Lemma 19. Let P `npf
α t ∼ t′, l a branch label in label(P ), h a proof index and β ∈ (≤h,l

bt (t, P ) ∪ cs-pathh,l(t, P )). If β is
(t, P )-α-bounded then there exists a substitution θ s.t. l-framePl (β)θ ∈ B(t, t′).

Proof. We prove this by induction on the well-founded order underlying the inductive definition of (t, P )-α-bounded terms.
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• Base case: Assume h = ε and leave-st(β ↓R)∩ st(t ↓R) 6= ∅. Let u ∈ leave-st(β ↓R)∩ st(t ↓R), we have u in R-normal
form and if-free, therefore u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R)). Moreover, by Proposition 34, there exists θ such that
l-framePl (β)θ ∈ ζKPl (u). Hence l-framePl (β)θ ∈ B(t, t′).

• Base case: Assume h = ε and there exists β′ such that:

(β, β′) (≤ε,ll∼l ∪ ≤
ε,l
c∼c ∪ ≤εcs∼cs) (t ∼ t′, P ) and leave-st(β′ ↓R) ∩ st(t′ ↓R) 6= ∅

By Proposition 31 we know that l-framePl (β) ≡ r-framePl (β′). By Proposition 32, we deduce that l-framePl (β) ≡
r-framePl (β′). From the previous case we know that there exists θ such that r-framePl (β′)θ ∈ B(t′). Therefore
l-framePl (β)θ ∈ B(t′).

• Inductive case, same label: Assume β ∈ cs-pathh,l(t, P ) and that there exists ε ≤h,l
bt (t, P ) such that ε is (t, P )-α-

bounded and β ∈ leave-st(ε ↓R). By induction hypothesis we have θ such that l-framePl (ε)θ ∈ B(t, t′). We know that
β is if-free and in R-normal form and that ε is a SPl -normalized basic term. Therefore, by Proposition 28, we have
l-framePl (β) ≡ l-framePl (ε). Hence, using Proposition 32, l-framePl (β)θ ∈ B(t, t′).

• Inductive case, different labels: Similar to the previous case.
• Inductive case, guard: If there exists ε ≤h,l

bt (t, P ) such that:
– ε ≡ B[~w , (αi)i, (decj)j ] is (t, P )-α-bounded.
– β is a guard of a SPl -decryption oracle call d ∈ (decj)j .

By induction hypothesis there exists θ such that l-framePl (ε)θ ∈ B(t, t′). Moreover let (pki)i and (ni)i be such that
∀i, αi ≡ {_}ni

pki
. Then:

l-framePl (ε) ≡ B
[
~w ,
(
{[]αi}

ni
pki

)
i
,
(
l-framePl (decj)

)
j

]
Therefore there exists a renaming of hole variables µ such that l-framePl (d)µθ ∈ st(l-framePl (ε)θ). Since B(t, t′) is closed
under st, this implies that:

l-framePl (d)µθ ∈ B(t, t′)

d is of the form dec(s, sk) where sk ∈ K. Since members of guardsK(_) are of the form eq(_, _), we know that there
exists some u ∈ st(leave-st(t ↓R)∪ cond-st(t ↓R)) such that l-framePl (d)µθ ∈ ζK(u). Since β is a guard of d, β is of the
form eq(s, α) where α is an encryption under key pk (corresponding to sk) and randomness n appearing directly in s.
It follows that:

l-framePl (d) ≡ dec(l-framePl (s), sk) l-framePl (β) ≡ eq(l-framePl (s), {[]α}n
pk)

Since α appears directly in s, and since l-framePl (d)µθ ∈ ζK(u), there exists θ′ such that:

l-framePl (β)θ′ ∈ guardsK(ζK(u)) ⊆ B(t, t′)

We now bound the size of B(t).

Proposition 35. For every term t, for every u ∈ B(t), we have |u| ≤ |t ↓R |. Moreover:

|B(t)| ≤ |t ↓R |2.2|t↓R|

Proof. An over-approximation of the set of terms ζK(u) is obtained from u by choosing a subset of positions of u where
decryptions over keys in K occur, and removing 0 before the subterms at these positions (if there is one). Hence each element
of ζK(u) is of size at most |u|. Moreover, for every u ∈ st(leave-st(t ↓R)∪cond-st(t ↓R)), we have u ∈ st(t ↓R), and therefore
|u| ≤ |t ↓R |. Therefore the set ζK(u) contains terms of size at most |t ↓R |.

Let dec(s, sk) ∈ ζK(u), then |dec(s, sk)| = |s|+ 3 and for every α appearing in s:

|eq(s, α)| = |s|+ |α|+ 1 ≤ 2|s|+ 1 ≤ 2|dec(s, sk)| ≤ 2|t ↓R |

Hence the set guardsK(ζK(u)) contains terms of size at most 2|t ↓R |. We deduce that for every v ∈ B(t), |v| ≤ 2|t ↓R |.
Moreover, by upper-bounding the positions of dec(s, sk) where an encryption might be, there are at most |s|−1 ≤ |t ↓R |−1
such α, independently of the set of keys K. It follows that:∣∣∣ ⋃

K⊆Sk(t)

guardsK(ζK(u))
∣∣∣ ≤ |ζK(u)|.(|t ↓R | − 1)
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Independently of the set of keys K chosen, we have at most |st(t ↓R)| ≤ |t ↓R | choices for u, and the set
⋃
K⊆Sk(t)

ζK(u)

contains at most 2|u| ≤ 2|t↓R| elements (we choose the positions where we remove 0s). Hence:∣∣∣ ⋃
K⊆Sk(t)

ζK(u) ∪ guardsK(ζK(u))
∣∣∣ ≤ ∣∣∣ ⋃

K⊆Sk(t)

ζK(u)
∣∣∣+
∣∣∣ ⋃
K⊆Sk(t)

guardsK(ζK(u))
∣∣∣

≤ |ζK(u)|+ (|t ↓R | − 1).|ζK(u)| ≤ |t ↓R |.2|t↓R|

By consequence:
|B(t)| ≤ |t ↓R |.|t ↓R |.2|t↓R| ≤ |t ↓R |2.2|t↓R|

Finally, we apply a pigeon-hole argument to bound the number of nested basic terms.

Lemma 20. Let P `npf
α t ∼ t′. Let l be a branch label in label(P ), h a proof index. Let (βi)i≤n such that for all i,

βi ≤h,l
bt (t, P ). If β1 <st · · · <st βn then n ≤ |B(t, t′)|.

Proof. For every i 6= j, we know, using Proposition 29, that l-framePl (βi) 6≡ l-framePl (βj). By Proposition 32, we deduce that
l-framePl (βi) 6≡ l-framePl (βj). Since P `npf

α t ∼ t′, we know that for every i, βi is (t, P )-α-bounded. Using Lemma 19, we
deduce that for every i, there exists a substitution θi such that:

l-framePl (βi)θi ∈ B(t, t′)

Using the contrapositive of Proposition 33, we have that for every i 6= j:

l-framePl (βi)θi 6≡ l-framePl (βj)θj

Therefore, by a pigeon-hole argument, n ≤ |B(t, t′)|.

C. Candidate Sequences

Let P `npf
α t ∼ t′. For all n ≤ |B(t, t′)|, we are going to define the set Un of normalized basic terms that may appear in P

using n nested basic terms. We then show that these sets are finite and recursive, and give an upper-bound on their size which
does not depend on n. This allows us to conclude by showing that the existence of a proof using our (complete) strategy is
decidable.

Definition 50. An α-context C is a context such that all holes appear below the encryption function symbol, with proper
randomness and encryption key. More precisely, for every position p ∈ pos(C), if C|p ≡ [] then p = p′ · 0 and there exist two
nonces n,nr such that C|p′ ≡ {[]}nr

pk(n).
Moreover, we require that every hole appears at most once.

Remark 11. For every β ≤h,l
bt (t, P ), the context l-framePl (β) is an α-context.

Let t and t′ be two ground terms. We now define what is a valid candidate sequence (Un,An)n∈N for t, t′. Basically, Un
corresponds to basic terms at nested depth n that could appear, on the left, in a proof of `npf

α t ∼ t′, while An is the set of
left encryptions oracle calls built using basic terms in Un−1.

Definition 51. Let t, t′ be two terms. A sequence of pairs of sets of ground terms (Un,An)n∈N is a valid candidate sequence
for t, t′ if:
• U0 = B(t, t′) and A0 = ∅.
• For n ≥ 0, An+1 can be any set of terms that satisfies the following constraints (with the convention that A−1 = ∅):
An+1 contains An, and for all α ∈ An+1\An, α ≡ {D[~b � ~u ]}nr

pk(np) where:

– ~b ∪ ~u are in Un−1 and there exists {_}nr
_ ∈ st(t ↓R) ∪ st(t′ ↓R).

– for every branch ~ρ ⊆ ~b of D[~b � ~u ], ~ρ does not contain duplicates.
– An does not contain any terms of the form {_}nr

_ .
• For n > 0, we let Un+1 is the set of term defined from Un and An as follows: Un+1 contains Un, plus any element that

can be obtained through the following construction:
– Take a α-context C such that there exists θ with Cθ ∈ B(t, t′).
– Let []1, . . . , []a be the variables of C, and let α1, . . . , αa be encryptions in An. For all 1 ≤ k ≤ a, let si be such

that {si}_
_ ≡ αi ∈ An.

– Let v0 ≡ C[(si)1≤i≤a]. Then let v be the term obtained from v0 as follows: take positions p1, · · · , po ∈ pos(C)
such that for all 1 ≤ i ≤ o, C|pi ≡ dec(_, ski) (where ski is a valid private key, i.e. of the form sk(ni)); for every
1 ≤ i ≤ o, replace in v0 the subterm dec(s, sk) at position p by D[~g � ~w ], where ~g are terms in Un of the form
eq(s, α) (with α ≡ {_}nα

_ ∈ An and α directly appears in s) and ∀w ∈ ~w , w ≡ dec(s, sk) or w ≡ 0(dec(s, sk)).
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Proposition 36. Let P `npf
α t ∼ t′. For l ∈ label(P ), there exists a valid candidate sequence (Un,An)n∈N for t, t′ such that:⋃

h

≤h,l
bt (t, P ) ⊆

⋃
n<|B(t,t′)|

Un and
⋃
h

cs-pathh,l(t, P ) ⊆
⋃

n<|B(t,t′)|

leave-st (Un ↓R)

Proof. First, we show that there exists a valid candidate sequence such that the inclusion holds when taking the union over N
on the right, and s.t. for every n, An contains only valid encryptions in EPl , i.e.:

S =
⋃
h

≤h,l
bt (t, P ) ⊆

⋃
n<+∞

Un and
⋃
n∈N
An ⊆ EPl (26)

Before starting the construction of the valid candidate sequence, we make some observations: if one fixes (An)n∈N, there is
at most one sequence (Un)n∈N such that (Un,An)n∈N is a valid candidate sequence.

Moreover this sequence is non-decreasing in (An)n∈N. More precisely, if (Un,An)n∈N and (U ′n,A′n)n∈N are valid candidate
sequences such that for every n, An ⊆ A′n, then for every n, Un ⊆ U ′n.

We now describe a procedure that recursively construct S ′ ⊆ S and a valid candidate sequence (Un,An)n∈N such that S ′ is
a subset of

⋃
n≤+∞ Un (eventually, we will show that S ′ = S). Moreover we require (An)n∈N to be minimal in the following

sense: if α ≡ C[~b � ~u ] is in An+1\An then there exists v ∈ ~b ∪ ~u such that v ∈ Un\Un−1 (in other words, we add new
encryptions in An as soon as we can).

Initially we take An = ∅ for every n, (Un)n∈N such that (Un,An)n∈N is a valid candidate sequence and S ′ = ∅. While
S ′ 6= S, we pick an element β in S\S ′ such that β is minimal for <st in S\S ′. Then we add β to S ′ and update (An)n∈N
as follows:

a) Case 1: If β is minimal for <st in S, we have β of the form B[~w , (αi)i∈I , (decj)j∈J ]. By minimality of β, we have
I = ∅ and for all j ∈ J , decj has no encryptions in EPl , and by consequence no guards. It follows that β is if-free and in
R-normal form, hence l-framePl (β) ≡ β. By consequence, using Lemma 19, we get that β ∈ B(t, t′) = U0 (since U0 does not
depends on the sets (An)n∈N).

b) Case 2: Let β such that for all β′ <st β, β′ ∈ S ′. Since S ′ ⊆ ∪n∈NUn, and since {β′ | β′ <st β} is finite, there exists
nm such that:

{β′ | β′ <st β} ∩
(
≤h,l

bt (t, P ) ∪ cs-pathh,l(t, P )
)
⊆

⋃
0≤n≤nm

Un

From Lemma 19 we have a substitution θ such that:

l-framePl (β)θ ∈ B(t, t′)

We then just need to show that we can obtain β from l-framePl (β) using the procedure defining Unm+1:
• For all encryption α ≡ {m}n

pk ∈ st(β)∩EPl , we know that m ≡ C[~b �~u ] where ~b, ~u <st β. Hence ~b, ~u are in ∪0≤n≤nmUn.
We then have two cases:

– either ∪n∈NAn already contains an encryption α′ with randomness n. Since ∪n∈NAn ⊆ EPl , and using the side-
condition of the CCA2 application, we know that α ≡ α′ ∈ ∪n∈NAn. By minimality of the (An)n∈N we know that
α ∈ Anm+1.

– or ∪n∈NAn does not contain an encryption with randomness n. Then we simply add α to An′ , where n′ ≤ nm + 1
is the smallest possible: we know that there exists such a n′ since adding α to An yields, after completion of the
(Un)n∈N, a valid candidate sequence (one can check that for all branch ~ρ of C[~b � ~u ], ~ρ does not contain duplicates,
using the third bullet point of the definition of `npf

α ).
Then we replace in l-framePl (β) the holes []α, _ by {C[~b � ~u ]}n

pk. This produce a term v0.
• Finally we also replace in v0 every occurrence of dec(_, sk) or 0(dec(_, sk)) in st(l-framePl (β)) by the corresponding
SPl -decryption oracle call, which is possible since the guards ~g of this decryption oracle calls are such that ~g <st β,
hence are in ∪0≤n≤nmUn.
c) Conclusion: We show that when S = S ′ we have:

S ∩
⋃

n<+∞
Un = S ∩

⋃
n<|B(t,t′)|

Un (27)

Assume that S ∩U|B(t,t′)|−1 ( S ∩U|B(t,t′)|, take β ∈ S ∩ (U|B(t,t′)|\U|B(t,t′)|−1). We know that β ≡ B[~w , (αi)i, (decj)j ] and
that there is an encryption α in (αi)i or in the encryptions of the (decj)j such that α ∈ A|B(t,t′)|−1\A|B(t,t′)|−2 (otherwise
β would be in S ∩ U|B(t,t′)|−1). Let α ≡ {C[~b � ~u ]}n

pk, by minimality of the (An)n∈N we know that there is some v ∈ ~b ∪ ~u
such that v ∈ U|B(t,t′)|−1\U|B(t,t′)|−2. Since β is in S and since v is a SPl -normalized basic term appearing in β we know
that v ∈ S. Let β0 ≡ β, β1 ≡ v, we have v ∈ S ∩ (U|B(t,t′)|−1\U|B(t,t′)|−2). By induction we can build a sequence of terms
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βn, for n ∈ {0, . . . , |B(t, t′)|} such that for all 0 ≤ n ≤ |B(t, t′)|, βn ∈ S ∩ (U|B(t,t′)|−i\U|B(t,t′)|−(i+1)) and βn+1 <st βn
(with the convention U−1 = ∅). We built a sequence of terms in S, strictly ordered by <st and of length |B(t, t′)| + 1. This
contradicts Lemma 20. Absurd.

To finish, it remains to show that: ⋃
h

cs-pathh,l(t, P ) ⊆
⋃

n<|B(t,t′)|

leave-st (Un ↓R)

Let b in
⋃

h cs-pathh,l(t, P ). Using Proposition 30 we know that there exists γ ≤h′,l
bt (t, P ) such that b ∈ leave-st(γ ↓R). Since

γ ∈
⋃
n<|B(t,t′)| Un ↓R, we have b ∈

⋃
n<|B(t,t′)| leave-st (Un ↓R).

Proposition 37. For all terms u, let Cu be the set of α-contexts:

Cu = {C | ∃θ. Cθ ≡ u ∧ every hole appears at most once}

and Cαu be Cu quotiented by the α-renaming of holes relation. Then |Cαu | ≤ 2|u|.

Proof. The set of contexts Cαu can be injected in the subsets of positions of u as follows: for every context C, associate to C
the set of positions of u such that C|p is a hole. This is invariant by α-renaming and uniquely characterizes C modulo hole
renaming. It follows that there are less element of Cαu than subsets of pos(u), i.e. 2|pos(u)| = 2|u|.

Proposition 38. Let t and t′ be two ground terms, N = |t ↓R | + |t′ ↓R |. For every valid candidate sequence (Un,An)n∈N
and n ∈ N:

|An| ≤ N |Un| ≤ N2.23.N

Proof. For every n, An contains only terms of the form α ≡ {m}nr
pk , where {_}nr

_ ∈ st(t ↓R)∪ st(t′ ↓R). Moreover, An cannot
contain two encryptions using the same randomness. Therefore |An| ≤ N .

For every n, the only leeway we have while constructing the terms in Un is in the choice of the α-context C, as the content
of the encryptions is determined by An−1, and the guards that are added are determined by Un−1. The α-context C is picked
in the following set: ⋃

u∈B(t,t′)

Cαu

which, using Proposition 35 and Proposition 37, we can bound by:∣∣∣ ⋃
u∈B(t,t′)

Cαu
∣∣∣ ≤

∑
u∈B(t,t′)

|Cαu | ≤
∑

u∈B(t,t′)

22.N ≤ N2.2N .22.N = N2.23.N

Proposition 39. Let t, t′ be two ground terms and N = |t ↓R | + |t′ ↓R |. For every valid candidate sequence (Un,An)n∈N
and n ∈ N:

∀u ∈
⋃

n<|B(t,t′)|

Un, |u| ≤ 2Q(N) . 24.N

Where Q(X) is a polynomial of degree 4.

Proof. Even though there are at most |B(t, t′)|.N2.23.N distinct basic terms appearing in branch l at proof index h, these
terms may be much larger. Let Un (resp. An) be an upper bound on the size of a term in Un (resp. An). Then for every
0 ≤ n < |B(t, t′)| and α ∈ An+1\An, α is of the form {C[~b �~u ]}n

pk, where ~b, ~u are in Un and C is such that no term appears
twice on the same branch. Recall that we call branch the ordered list of inner conditionals, which does not include the final
leaf. If follows that C is of depth at most |Un|+ 1, and therefore has at most 2|Un|+2− 1 conditional and leaf terms. To bound
|C[~b � ~u ]|, we need to bound the size of each of its internal and leaf terms, which we do using Un. We get:∣∣C[~b � ~u ]

∣∣ ≤ |C|+ |C| . Un ≤ 2.|C| . Un ≤ 2|Un|+3 . Un

since Un is greater than 1 (terms can not be of size 0). Therefore |α| ≤ 4+2|Un|+3 . Un. Using the bound from Proposition 38,
we can take:

An = 4 + 2N
2.23.N+3 . Un

Now let u ≡ C[(αi)i∈I , (decj)j∈J ] in Un+1\Un. We know that ∀i ∈ I, |αi| ≤ An. There are at most |C| hole occurrences
in C, hence |I| ≤ |C| and |J | ≤ |C|. To bound |u|, we also need to bound the size of the decryption guards. There are
at most N guards for each decryption (since only element of An may be guarded, and |An| ≤ N ), and each guard is in

77



Un, so of size bounded by Un. Moreover, guarded decryptions have at most N + 1 leaf, where each life is of size at most
|C[(αi)i∈I , ([])j∈J ]|+ 1 ≤ |C|+ |I|.An + 1. Hence every decryption’s size is upper-bounded by:

N +N.Un + (N + 1).(|C|+ |I|.An + 1)

Finally |C| is such that there there exists θ such that Cθ ∈ B(t, t′), hence |C| ≤ 2.N using Proposition 35. Hence, assuming
Un ≥ N (which will be the case):

|C[(αi)i∈I , (decj)j∈J ]| ≤ |C|+ |I|.An + |J |.(N +N.Un + (N + 1).(|C|+ |I|.An + 1))

≤ 2N + 2N.An + 2N.(N +N.Un + (N + 1).(2N + 2N.An + 1))

Seen as a multi-variate polynomial in N , An and Un, we have only monomials N , N.An, N2, N2.Un, N3 and N3.An. Hence
there exists a constant L such that:

u ≤ L.N3(An + Un) ≤ L.N3(4 + 2N
2.23.N+3.Un + Un)

Hence there exists some polynomial Q0 of degree two such that u ≤ 2Q0(N).23N

.Un. We let U0 = N , and Un+1 =
2Q0(N).23N

.Un. Then:

U|B(t,t′)|−1 ≤ 2|B(t,t′)|.Q0(N).23N

.Un ≤ 2N
2.2N .Q0(N).23N

.Un ≤ 2N
2.Q0(N).24N

.Un

Hence we have a polynomial Q(N) = N2.Q0(N), which is of degree four.

Corollary 2. Let P `npf
α t ∼ t′ and N = |B(t, t′)|. For l ∈ label(P ) and for all proof index h:

∀u ∈
(
≤h,l

bt (t, P ) ∪ cs-pathh,l(t, P )
)
, |u| ≤ 2Q(N) . 24.N

Proof. Direct consequence of Proposition 36 and Proposition 39.

To conclude, we only need to bound the number of nested CS� conditionals.

Proposition 40. Let P `npf
α t ∼ t′ and (hi)1≤i≤n be a sequence of indices of P such that for every 1 ≤ i < n, hi+1 ∈

cs-posP (hi) and h1 = ε. Then n ≤ |B(t, t′)|+ 1. Moreover |label(P )| ≤ 2|B(t,t′)|.

Proof. Let l ∈ label(P ) be such that hn ∈ h-branch(l). The proof consists in building an increasing sequence of SPl -normalized
basic terms β1 <st · · · <st βm from (hi)1≤i≤n of length m ≥ n. We then concludes using Lemma 20.

If hn 6= ε, then hn is of the form hnxn . We know that extractxn(hn, P ) is a proof of bn ∼ b′n in ACS�
. Moreover bn ↓R is in

cs-pathhn−1,l(t, P ) and is (t, P )-α-bounded. Be definition of (t, P )-α-bounded terms, we know that there exists (βn,j)1≤j≤kn
(with kn ≥ 1) such that:
• for all 1 ≤ j ≤ kn, βn,j ≤hn−1,l

bt (t, P ).
• bn ↓R∈ leave-st(βn,1 ↓R).
• βn,kn ≤

hn−1,l
l (t, P ).

• for all 1 ≤ j < kn, βn,j is a guard of a decryption in βn,j+1, and therefore βn,j <st βn,j+1.
If hn−1 6= ε, then since βn,kn ≤

hn−1,l
l (t, P ) is (t, P )-α-bounded, and since for any β ≤hn−1,l

bt (t, P ), βn,j is not a guard of
β, we know that we are in the inductive case with different labels of the definition of (t, P )-α-bounded terms. Therefore there
exists bn−1 ∈ cs-pathhn−2,l(t, P ) such that bn−1 ∈ leave-st(βn,kn).

We then iterate this process until we reach ε, building sequences (βi,j)1<i≤n,1≤j≤ki and (bi)1<i≤n. Since for all i, bi−1 ∈
leave-st(βi,ki ↓R) and bi−1 ∈ leave-st(βi−1,1 ↓R) we know, using Proposition 16, that βi,ki ≡ βi−1,1. Therefore we have:

βn,1 <st · · · <st βn,kn ≡ βn−1,1 <st · · · <st βn−1,kn−1
· · · <st β3,k3 ≡ β2,1 <st · · · <st β2,k2

Moreover, for all i we have ki ≥ 1, therefore we built an increasing sequence of SPl -normalized basic terms of length at least
n− 1. It follows, using Lemma 20, that n− 1 ≤ |B(t, t′)|.

To upper-bound |label(P )|, we only need to observe that we cannot have two CS� applications on the same conditional in a
given branch. Consider the binary tree associated to the CS� applications in P , labelled by the corresponding CS� conditionals
(say, on the left). Then this tree is of depth at most |B(t, t′)|, and therefore has at most 2|B(t,t′)| leaves.

Theorem (Main Result). The following problem is decidable:
Input: A ground formula ~u ∼ ~v.
Question: Is Ax ∧ ~u 6∼ ~v unsatisfiable?

Proof. Let ~u = u1, . . . , un, ~v = v1, . . . , vn and:

t ≡ 〈u1 , 〈. . . , 〈un−1 , un〉〉〉 t′ ≡ 〈v1 , 〈. . . , 〈vn−1 , vn〉〉〉
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Using the FA〈_ , _〉 axiom, we know that if ~u ∼ ~v is derivable then t ∼ t′ is derivable. Conversely, we show that t ∼ t′ is
derivable then ~u ∼ ~v is derivable. For every 3 ≤ i ≤ n, let ρi[] be the i-th projection defined using π1 and π2 by:

∀n > i ≥ 1, ρi ≡ π1(πi−1
2 ([])) ρn[] ≡ πn−1

2 ([])

Then:
t ∼ t′

(ρi[t])1≤i≤n ∼ (ρi[t
′])1≤i≤n

FA∗

~u ∼ ~v R

Hence t ∼ t′ is derivable iff ~u ∼ ~v is derivable. Moreover, the corresponding proof of ~u ∼ ~v is of polynomial size in the size
of the proof of t ∼ t′. Therefore w.l.o.g. we can focus on the case |~u | = |~v | = 1.

Let N = |st(t ↓R)| + |st(t′ ↓R)|. Using Proposition 40, we have bounded the number of branches of the proof tree (by
2N

2.2N ), and the number of nested CS� conditionals. For every branch, we non-deterministically guesses a set of α-bounded
basic terms that can appear in a proof P of P `npf

α t ∼ t′ using the valid candidate sequence algorithm (in polynomial time in
O(N.23.N .2Q(N).24.N

), using Proposition 38 and Proposition 39). Then the procedure guesses the rule applications, and checks
that the candidate derivation is a valid proof. This is done in polynomial time in the size of the candidate derivation. Remark
that to check whether the leaves are valid CCA2 instances we use the polynomial-time algorithm describe in Proposition 9.
Finally, since |t ↓R | is at most exponential with respect to |t|, this yields a 3-NEXPTIME decision procedure that shows the
decidability of our problem.
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