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e Eavesdrop
e Forge messages
We focus on:

m Mutual authentication between the user (UE) and the network (HN).
m Unlinkability of the user.

We do not model the antenna: we have a two party protocol.
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Sequence Numbers

Authentication
Authentication protocols need to prevent message replays. In 4G-AKA:
m The service provider uses a random challenge.

m The mobile phone uses a sequence number SQN:

m Incremented after each successful session.
m Tracked by the user and the service provider (SQN, and SQN,).
= De-synchronization possible.
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|1D7 k, SQN, |

(n,saN, @ Hi(n), Hi({sany, n)))

bmac + check-mac

bsqn + check-range(sQny, sQNy)

bmac A bsan

SQN, < SQNy

H&(n)

“bmac
|

“Auth-Failure”

bmac A _‘bSQN [

(sQN, @ HP"(n), Hy™ ({san, , n)))

If the mac is valid:

SQNy < SQNy + 1

.
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Not confidentiality of the user identity

The ID is sent in plain text!

4G-AKA solution

Use a temporary identity TMP-ID instead of the permanent identity 1D:
m The network has a mapping from TMP-IDs to IDs.
m Each TMP-ID should be used at most once.
m The network assigns new TMP-ID after each successful session.
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bmac < check mac
bsqn < check range(sQny, sQNy)

bmac A bSQN

HZ(n)

—bmac “Auth-Failure”
[

bmac A _‘bSQN [

(sQN, ® HP*(n), Hy™ ({san, , n)))

If the mac is valid:

SQNy < SQNy + 1

A

ASSIGN-TMP-ID
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Confidentiality of the user identity

The 1D is protected as long as the protocol does not fail.
= This only works against a passive adversary.
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The 1MSI Catcher Attack [Strobel, 2007]

VE TMP-ID or ID AttjCker

1
[ .
| If TMP-ID received

“Permanent-ID-Request”

1D

Why this is a major attack

m Reliable: the attack always works.
m Easy to deploy: only need an antenna.

m Large scale: not targeted.
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The 5G-AKA protocol
5G-AKA is the next version of AKA (drafts are available [3GPP, 2018]).

3GPP fix for 5G-AKA
Simply encrypt the permanent identity by sending {ID}pkN
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bmac + check mac SQN, < SQN, +j

bsqn +— check range(sQny, sQNy)

bmac A bSQN

- = HE(n)

E}j “Auth-Failure”
|
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If the mac is valid:
SQN, ¢ SQN, + 1

ASSIGN-TMP-ID
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s it enough?
For confidentiality of the 1D, yes.

For unlinkability, no.
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The Failure Message Attack [Arapinis et al., 2012]

UE(1p
(ia) tauth = (n,SQN, @ Hi(n), Hi((sQNy, n))) HN
Hi(n)
UE(1Dg) Attacker
1 Lauth
If 1Dg 7 DA “Auth-Failure”
I
If IDg = ID B B
D8 = IDA | 4 e = (5N, @ HZ*(n), HL* ((sQN, , n)))
| |

Unlinkability attack

The adversary knows if it interacted with IDA or IDg.
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Objective

Design a modified version of AKA, called AKAT, that:
m Provides some form of unlinkability.
m Satisfies the design and efficiency constraints of 5G-AKA.

m |s proved secure.
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The AKA™T Protocol

Design Constraints

AKAT should be as efficient as the 5G-AKA:

m Random number generation (user): at most one nonce per session,
and only if no TMP-ID is assigned.

m The user can use only one-way functions and asymmetric encryption.

m Network complexity: try to have only three messages per session.
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Key Ideas |The Failure Message Attack |
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Key Ideas Behind AKA™

m Postpone re-synchronization to the next session: {(ID, SQNy)}, .
N
m No re-synchronization message — no failure message attack.

m No extra randomness for the user.
m Add a challenge n from the HN when using the permanent identity.
UE HN

n

({(, saNu)}y s Mack, (({(1D, saNu) by 5 n)))
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Architecture of AKA™

AKA™T Sub-Protocols

m 1D sub-protocol uses the encrypted permanent identity.
m allows to re-synchronize the UE and the HN.

m TMP-ID sub-protocol uses a temporary identity.
m ASSIGN-TMP-ID assigns a fresh temporary identity to the UE.

[ID Sub-Protocol ] [TMP—ID Sub—ProtocoI]

[ASSIGN—TMP—ID Sub—ProtocoI]
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Security Proofs

Objective

Formally prove that AKA™ satisfies:
m mutual authentication.

m unlinkability — o-unlinkability.
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The o-Unlinkability Property

Two Indistinguishable Executions

Each time the 1D sub-protocol is used, we can change the user’s identity.

T O Lo

1D sub-protocol O TMP-ID sub-protocol
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Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:
m Messages are modeled by (first-order) terms.
m A security property P ~ Q is modeled by a formula ip ~ wyg.
m Implementation assumptions and cryptographic hypothesis are
modeled by axioms Ax.
m We have to show that Ax |= ip ~ ug.



Theorem

Theorem

The AKA™ protocol is o-unlinkable for an arbitrary number of agents
and sessions when:

m The asymmetric encryption { }— is IND-CCA;.

m Hand H" (resp. Mac'—Mac®) satisfy jointly the PRF assumption.
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Conclusion

m While 5G-AKA prevents the IMSI-catcher attack, several known
unlinkability attacks still applies.

We gave a new unlinkability attack against PRIV-AKA.

We proposed the AKA™ protocol, which tries to satisfy the design
constraints of 5G-AKA.

We defined the notion of o-unlinkability.
We proved in the BC logic that AKA™ is o-unlinkability.
We also proved that AKA™ provides mutual authentication.



Thanks for your attention
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The Encrypted 1D Replay Attack [Fouque et al., 2016]

UE(Da) {IDA}pk I-||I\I
I N
I I
UE(1pg) {IDB}pkN {IDA}pkN HN

/

tath = (n,sQN, @ Hi(n), HE((sQNy, n)))

If
IDg 7# IDA Failure Message
I

If IDg = IDA

taccept = Hﬁ(n)




The Encrypted 1D Replay Attack [Fouque et al., 2016]

VE(DA) (DA}, AN
| |
UE(1pg) {IDB}pkN / {IDA}pkN HN
tauth = (n,sQN, @ Hy(n), Hi((seny, n)))
If
IDg 7 IDA Failure Message
|
If IDg = ID
;u fuceent = HE(n)
| |

Unlinkability attack

The adversary knows if it interacted with 1Da or IDg.



UE HN

I ID, TMP-ID, k, SQN,, I I ID, TMP-ID, k, SQN I

TMP-ID or ID

|| if TMP-ID was used: TMP-ID ¢ UnSet ||

<n , SQNy B HE(") s Hi“SQNN ’ n)))

Input x: SQNy — SQNy +z]
nR, SQNg < m1(x), m2(x) ® Hy(nr)
bmac < Hi((sQNg , nR)) = m3(x)
bsaw ¢ range(sQNy, SQNg)

bmac /A bsan

SQN, < SQNg

HZ(ng)
]

—bmac “Auth-Failure”
|

bmac A —bsan |

(san, @ Hy"(nr) , HE " ((saxy, , nR)))

Input y:

SQNg < mi(y) @ HY (n)

if Hy " ((sQng, n)) = m2(y) then sQN, < sQNg +1
I

. .




UE HN

D, TMP-ID, k, pky, SQN,, I 1D, TMP-ID, k, sky, SQN, I

TMP-ID or {ID}78

|| if TMP-1D was used: TMP-ID < UnSet ||

(n,sany @ Hi(n) , H((sany , n)))

Input x: SQNy < SQNy +Z]
nR, SQNg < m1(x), m2(x) © Hp(nR)
bmac = Hk({SQNr , NR)) = m3(x)
baqw 4~ range(sQNy, sQNg)

bmac A bSQN

o)

—bmac “Auth-Failure”
||

bmac A —bsan |

(san, @ HE’*(nR), Hi’*((sQNL. . nR)))

Input y:

SQNR < mi(y) @ Hy* ()

if Ho((sang, n)) = ma(y) then sQN, < sQNg + 1
I

. .
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state” statey
n

HN

<{<ID7 SQNU>}:Eh ) Macig“{(le SQN!:>}:§N ’ n>)>

1D
Sub-Protocol
(Simplified)

@N” —SQN, +1 bmac ¢ check-mac

bine = bmac A SQN,; > sQNY

sessiony, < n
TMP-ID}

if bmac then authenticated 1D

if bine then sQNy < SQN, + 1

MP-ID

b
Macky ((n, sax, + 1)) i

H if check-mac then authenticated HN H




UE,»

1D
statey

I statey I

HN

TMP-IDy

valid-tmp, < false

TMP-ID
Sub-Protocol
(Simplified)

b, <~ TMP-IDY = TMP-IDy # U
if by, then TMP-IDY < UnSet
sessiony < n

nSet

<n ,SQNy @ Hyo (n),

Macdn ((n, sanyy, TMP—IDU>)>

| bio

if bacc then sQN, < sqQN, +1

bace < check-mac A range(sQNy, SQNY)

bac |

Macﬁﬁ(n)

bmac < check-mac
if bmac then authenticated 1D
bine ¢ bmac A session) = n

if binc then sQNy < sQNy
'l'A\IP—H)L!) <— TMP-1D

+1

.




The ASSIGN-TMP-ID Sub-Protocol (Simplified)

UE, HN

state;” stateyx

(TMP-1D @ Hiw (n) , Macg ((TMP-ID, n)))

bacc + check-mac
TMP-1Dy < if bace then TMP-ID else UnSet
valid-tmp,, < bacc

. .




1D

HN(j
v Sub-Protocol

H Input ng: b-auth, < ng H

({0, sav,)} . Macky ({10, sax0)}0%, . ne)))

Ny <= SQN, + 1 Input y:

(DR, SQNg) « dec(m1(y), sky)

biac < m2(y) = Maciin ((m1(y) , ')
AIDR = ID

bine <= bMac /A SQNg > SQNY

if bymac then b-auth’,, e-auth’, + 1D

[

if binc then sQNy  « sQNg +1
sessiony, < n’

TMP-ID), 4~ TMP-ID’

; bma
Mac ((n/, saxg +1)) e

Input z:
bok < z = Macgin ({b-authy , SQN,))
e-auth, < if by, then b-auth, else fail

. .




UE(1D)

HNG)

I statey I

valid-tmp,,

TMP-1Dy |

&I mp, + false

Input x:
by = TMP-IDY = x A TMP-ID), # UnSet
if by, then TMP-ID) < UnSet

b-auth!, « D

sessiony, < n’

TMP-ID
Sub-Protocol

<rr‘ LSQN” @ Hyoo (), Maci"z((n’ ,SQNI, TMP-IDL"))>

[ b

Input y:

SQNy

R, SQNR ¢ T1(y), m2(y) @ Hien (nR)

bace ¢ 73(y) = Macis ({nk , SQNg , TMP-ID)))
A range(SQN,, SQNR)

if bacc then b-authy, e-authy « ng

if =bacc then b-authy,e-auth, + fail

4 SQN, +1

haocJ

Macf (nr)

Input z:

biac - (b-authl = D) A (z = Macjs (W)

bine ¢ biiac A session’ = n/

if byjac then e-auth) < D

if bjne then sQNi ¢ sQNE + 1
TMP-ID® = TMP-1D/




The ASSIGN-TMP-ID Sub-Protocol

UE HN()
state;”

. . o -authy = 1D
(TMP-10Y ® Hiwo ('), Macg ((TmP-107 , 1)) eauthy =

Input x:

TMP-IDR = m1(x) @ Him (e-authy)

bace (TI'Q(X) = Maci:z((TMP—IDR, e-authU>))
A (e-authy # fail)

TMP-IDy 4 if bacc then TMP-IDR else UnSet

valid-tmp,, < bacc

n n
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New Attack on the PRIV-AKA Protocol

The PRIV-AKA Protocol

The authors of [Fouque et al., 2016] propose a new protocol, PRIV-AKA
(claimed unlinkable).

Unlinkability Attack (four sessions)

We found an attack to permanently de-synchronize the user:
m Run a session but keep the last message t;.
m Re-synchronize the user and the network.
m Re-iterate the last two steps to get a second message t5.
m Send both t; and >, which increments SQN, by two.
|

The user is permanently de-synchronized = unlinkability attack.



PRIV-AKA [Fouque et al., 2016]

Client Server Operator
(skc., skop. pke). (Sanc, idxc), (TMSl,, LAL,) (TM™s1) (skc. skop, ske), (Sanop.c.idxop.c)

User Tdentity  Request
Rig

@

User Identity  Answer
1D[[Opy

@

Auth.  Vectors  Request
Val
-

®

Auth.  Vectors  Answer
{aviiyn

@

Auth.  Challenge
R} | Autn i} || AE.Encey ik (TMSI ligx @ )

Auth.  Response
Res

Update  Sequence  Number
- -




PRIV-AKA [Fouque et al., 2016]

Client

Operator

@: Compute the identifier:
If flagrmss := 0 then ID = TMSI.
Else, ID = PKE.Encpe(f5 (keys, Rig, IMSI, idxc)||Rig||IMSI idxc)-

flagrws) = 1.

@: Compute AK using R{#}.
Recover Sqn{i} (from AK).
Check Macg value.
Compute: IK, CK;
Retrieve the received index and the new TMSI.

If abort caused or the AE does not verify, set flagrys) := 1 and

increment: idxc idxc + 1.

Else, check validity of Sqn {1, i.e if one of the following
conditions is correct:
- Sanc = Sqgnfi}.

—  Sanc = inc(Sqn{™) andidx{ = idxc + 1.

If the first condition is accepted: reset the index idxc,
update the sequence number Sanc = inc(Sanc) -

If the second condition is accepted: idxc=idxc+1 .

Compute Res := F{ (keys, RU}, Sqn{'}, Ress, AMF ).
Update the internal index. Allocate the new TMSI.
flagrpst := 0.

@: Process the identifier ID:
If the identifier is a TMSI then Val =
IMSI. Otherwise, Val = (ID, Rig)-

@: Store {AV{i}r

Choose AV} one by one in order.
Then, it sends the authentication
challenge and the new couple

(TMSl,,, idx{i}) encrypted and
authenticated by the session keys.

®

client is verified (Res 2 Macc), then
they ask to the server the update
of its sequence number. Otherwise,
the protocol is aborted.

If the authentication of the

@: Verify the identity of the client with Val.

If this holds, retrieve idxc, set idxop,c := idxc
Generate (R{!},...,R{"}). Denote: keys := (skc, skop)-
Foreachi =1,...,n, compute:

Macs « Fi(keys, R{i} Sqn{i} Ress, AMF),
Macc « Fj (keys,R{i}, Sqn{'} Ress, AMF ),
CK « Fa(keys, R}, Sqn{i} Ress, AMF ),
IK  Fy(keys,R{i}, Sqn{i} Ress, AMF ),
AK ¢ Fs (keys,R{1}, Ress ),

Autn{?  (Sqni} & AK)|AMF||Macs,
Sqn{i} « inc(Sqnfi=1}) |

AV = (R}, CK, IK, Autn {1}, Macc, idx{}), with
San{1} := Sanop.c,

idx 11} = idxop,c , Vi#1,idx{? =0 .

End for.

@ : Update the sequence number:
Sanop,c + inc(Sanop,c). Reset the index idxop,c-
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