
The 5G-AKA Authentication Protocol Privacy

Adrien Koutsos
LSV, CNRS, ENS Paris-Saclay

June 19, 2019



1 The 4g-aka and 5g-aka Protocols
The 4g-aka Protocol
The imsi Catcher Attack
The 5g-aka Protocol
Unlinkability Attack Against 5g-aka

2 The aka+ Protocol
Design Constraints
Key Ideas

3 Security Proofs
σ-Unlinkability
Security of the aka+ Protocol

4 Conclusion

2



1 The 4g-aka and 5g-aka Protocols
The 4g-aka Protocol
The imsi Catcher Attack
The 5g-aka Protocol
Unlinkability Attack Against 5g-aka

2 The aka+ Protocol
Design Constraints
Key Ideas

3 Security Proofs
σ-Unlinkability
Security of the aka+ Protocol

4 Conclusion

3



Authentication and Key Agreement Protocol

UE SN HN

Wireless channel Secure channel (TLS)

• Eavesdrop
• Forge messages

We focus on:
Mutual authentication between the user (UE) and the network (HN).
Unlinkability of the user.

We do not model the antenna: we have a two party protocol.

4



Authentication and Key Agreement Protocol

UE SN HN

Wireless channel Secure channel (TLS)

• Eavesdrop
• Forge messages

We focus on:
Mutual authentication between the user (UE) and the network (HN).
Unlinkability of the user.

We do not model the antenna: we have a two party protocol.

4



Authentication and Key Agreement Protocol

UE SN HN

Wireless channel Secure channel (TLS)

• Eavesdrop
• Forge messages

We focus on:
Mutual authentication between the user (UE) and the network (HN).
Unlinkability of the user.

We do not model the antenna: we have a two party protocol.

4



Authentication and Key Agreement Protocol

UE SN HN

Wireless channel Secure channel (TLS)

• Eavesdrop
• Forge messages

We focus on:
Mutual authentication between the user (UE) and the network (HN).
Unlinkability of the user.

We do not model the antenna: we have a two party protocol.

4



Sequence Numbers

Authentication
Authentication protocols need to prevent message replays. In 4g-aka:

The service provider uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the service provider (sqnu and sqnn).

⇒ De-synchronization possible.

5



Sequence Numbers

Authentication
Authentication protocols need to prevent message replays. In 4g-aka:

The service provider uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the service provider (sqnu and sqnn).

⇒ De-synchronization possible.

5



Sequence Numbers

Authentication
Authentication protocols need to prevent message replays. In 4g-aka:

The service provider uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the service provider (sqnu and sqnn).

⇒ De-synchronization possible.

5



UE

id, k, sqnu

HN

id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac
bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4g-aka

6



UE

id, k, sqnu

HN

id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac
bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4g-aka

6



UE

id, k, sqnu

HN

id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac
bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4g-aka

6



UE

id, k, sqnu

HN

id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac
bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4g-aka

6



UE

id, k, sqnu

HN

id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac
bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4g-aka

6



Privacy in 4g-aka

Not confidentiality of the user identity

The id is sent in plain text!

4g-aka solution
Use a temporary identity tmp-id instead of the permanent identity id:

The network has a mapping from tmp-ids to ids.
Each tmp-id should be used at most once.
The network assigns new tmp-id after each successful session.

7



Privacy in 4g-aka

Not confidentiality of the user identity

The id is sent in plain text!

4g-aka solution
Use a temporary identity tmp-id instead of the permanent identity id:

The network has a mapping from tmp-ids to ids.
Each tmp-id should be used at most once.
The network assigns new tmp-id after each successful session.

7



UE

id,tmp-id, k, sqnu

HN

id,tmp-id, k, sqnn

tmp-id or id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check mac
bsqn ← check range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id

4g-aka

8



Privacy in 4g-aka

Confidentiality of the user identity

The id is protected as long as the protocol does not fail.

=⇒ This only works against a passive adversary.

9



Privacy in 4g-aka

Confidentiality of the user identity

The id is protected as long as the protocol does not fail.
=⇒ This only works against a passive adversary.

9



The imsi Catcher Attack [Strobel, 2007]

UE Attackertmp-id or id

“Permanent-ID-Request”
If tmp-id received

id

Why this is a major attack

Reliable: the attack always works.
Easy to deploy: only need an antenna.
Large scale: not targeted.

10



The imsi Catcher Attack [Strobel, 2007]

UE Attackertmp-id or id

“Permanent-ID-Request”
If tmp-id received

id

Why this is a major attack

Reliable: the attack always works.
Easy to deploy: only need an antenna.
Large scale: not targeted.

10



Privacy in 5g-aka

The 5g-aka protocol

5g-aka is the next version of aka (drafts are available [3GPP, 2018]).

3GPP fix for 5G-AKA
Simply encrypt the permanent identity by sending {id}pkn

11



Privacy in 5g-aka

The 5g-aka protocol

5g-aka is the next version of aka (drafts are available [3GPP, 2018]).

3GPP fix for 5G-AKA
Simply encrypt the permanent identity by sending {id}pkn

11



UE

id,tmp-id, k, pkn, sqnu

HN

id,tmp-id, k, skn, sqnn

tmp-id or {id}pkn〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check mac
bsqn ← check range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id

5g-aka

12



Privacy in 5g-aka

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.

13



Privacy in 5g-aka

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.

13



Privacy in 5g-aka

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.

13



Unlinkability

Unlinkability Attack

Even if the id is hidden, an attacker may link sessions of the same user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

14



Unlinkability

Unlinkability Attack

Even if the id is hidden, an attacker may link sessions of the same user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

14



Unlinkability

Unlinkability Attack

Even if the id is hidden, an attacker may link sessions of the same user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

14



Unlinkability

Unlinkability Attack

Even if the id is hidden, an attacker may link sessions of the same user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

14



Unlinkability

Unlinkability Attack

Even if the id is hidden, an attacker may link sessions of the same user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

14



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

15



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

15



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

15



The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

15



Objective

Objective

Design a modified version of aka, called aka+, that:
Provides some form of unlinkability.

Satisfies the design and efficiency constraints of 5g-aka.
Is proved secure.

16



Objective

Objective

Design a modified version of aka, called aka+, that:
Provides some form of unlinkability.
Satisfies the design and efficiency constraints of 5g-aka.

Is proved secure.

16



Objective

Objective

Design a modified version of aka, called aka+, that:
Provides some form of unlinkability.
Satisfies the design and efficiency constraints of 5g-aka.
Is proved secure.

16



1 The 4g-aka and 5g-aka Protocols
The 4g-aka Protocol
The imsi Catcher Attack
The 5g-aka Protocol
Unlinkability Attack Against 5g-aka

2 The aka+ Protocol
Design Constraints
Key Ideas

3 Security Proofs
σ-Unlinkability
Security of the aka+ Protocol

4 Conclusion

17



The aka+ Protocol

Design Constraints

aka+ should be as efficient as the 5g-aka:
Random number generation (user): at most one nonce per session,
and only if no tmp-id is assigned.

The user can use only one-way functions and asymmetric encryption.
Network complexity: try to have only three messages per session.

18



The aka+ Protocol

Design Constraints

aka+ should be as efficient as the 5g-aka:
Random number generation (user): at most one nonce per session,
and only if no tmp-id is assigned.
The user can use only one-way functions and asymmetric encryption.

Network complexity: try to have only three messages per session.

18



The aka+ Protocol

Design Constraints

aka+ should be as efficient as the 5g-aka:
Random number generation (user): at most one nonce per session,
and only if no tmp-id is assigned.
The user can use only one-way functions and asymmetric encryption.
Network complexity: try to have only three messages per session.

18



Key Ideas

Key Ideas Behind aka+

Postpone re-synchronization to the next session: {〈id , sqnu〉}pkn
.

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

19



Key Ideas

Key Ideas Behind aka+

Postpone re-synchronization to the next session: {〈id , sqnu〉}pkn
.

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

19



Key Ideas

Key Ideas Behind aka+

Postpone re-synchronization to the next session: {〈id , sqnu〉}pkn
.

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

19



Key Ideas

Key Ideas Behind aka+

Postpone re-synchronization to the next session: {〈id , sqnu〉}pkn
.

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

19



Key Ideas

Key Ideas Behind aka+

Postpone re-synchronization to the next session: {〈id , sqnu〉}pkn
.

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack

19



Architecture of aka+

aka+ Sub-Protocols

id sub-protocol uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id sub-protocol uses a temporary identity.
assign-tmp-id assigns a fresh temporary identity to the UE.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol

20



Architecture of aka+

aka+ Sub-Protocols

id sub-protocol uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id sub-protocol uses a temporary identity.

assign-tmp-id assigns a fresh temporary identity to the UE.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol

20



Architecture of aka+

aka+ Sub-Protocols

id sub-protocol uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id sub-protocol uses a temporary identity.
assign-tmp-id assigns a fresh temporary identity to the UE.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol

20



1 The 4g-aka and 5g-aka Protocols
The 4g-aka Protocol
The imsi Catcher Attack
The 5g-aka Protocol
Unlinkability Attack Against 5g-aka

2 The aka+ Protocol
Design Constraints
Key Ideas

3 Security Proofs
σ-Unlinkability
Security of the aka+ Protocol

4 Conclusion

21



Security Proofs

Objective

Formally prove that aka+ satisfies:
mutual authentication.
unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol

22



Security Proofs

Objective

Formally prove that aka+ satisfies:
mutual authentication.
unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol

22



Security Proofs

Objective

Formally prove that aka+ satisfies:
mutual authentication.
unlinkability =⇒ σ-unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol

22



The σ-Unlinkability Property

Two Indistinguishable Executions

Each time the id sub-protocol is used, we can change the user’s identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

23



The σ-Unlinkability Property

Two Indistinguishable Executions

Each time the id sub-protocol is used, we can change the user’s identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

23



The σ-Unlinkability Property

Two Indistinguishable Executions

Each time the id sub-protocol is used, we can change the user’s identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

23



The σ-Unlinkability Property

Two Indistinguishable Executions

Each time the id sub-protocol is used, we can change the user’s identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol

23



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula ~uP ∼ ~uQ .
Implementation assumptions and cryptographic hypothesis are
modeled by axioms Ax.
We have to show that Ax |= ~uP ∼ ~uQ .

24



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.
A security property P ∼ Q is modeled by a formula ~uP ∼ ~uQ .

Implementation assumptions and cryptographic hypothesis are
modeled by axioms Ax.
We have to show that Ax |= ~uP ∼ ~uQ .

24



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.
A security property P ∼ Q is modeled by a formula ~uP ∼ ~uQ .
Implementation assumptions and cryptographic hypothesis are
modeled by axioms Ax.

We have to show that Ax |= ~uP ∼ ~uQ .

24



Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.
A security property P ∼ Q is modeled by a formula ~uP ∼ ~uQ .
Implementation assumptions and cryptographic hypothesis are
modeled by axioms Ax.
We have to show that Ax |= ~uP ∼ ~uQ .

24



Theorem

Theorem
The aka+ protocol is σ-unlinkable for an arbitrary number of agents
and sessions when:

The asymmetric encryption {_}__ is ind-cca1.

H and Hr (resp. Mac1–Mac5) satisfy jointly the prf assumption.

25



Conclusion

While 5g-aka prevents the imsi-catcher attack, several known
unlinkability attacks still applies.

We gave a new unlinkability attack against priv-aka.
We proposed the aka+ protocol, which tries to satisfy the design
constraints of 5g-aka.
We defined the notion of σ-unlinkability.
We proved in the BC logic that aka+ is σ-unlinkability.
We also proved that aka+ provides mutual authentication.

26



Conclusion

While 5g-aka prevents the imsi-catcher attack, several known
unlinkability attacks still applies.
We gave a new unlinkability attack against priv-aka.

We proposed the aka+ protocol, which tries to satisfy the design
constraints of 5g-aka.
We defined the notion of σ-unlinkability.
We proved in the BC logic that aka+ is σ-unlinkability.
We also proved that aka+ provides mutual authentication.

26



Conclusion

While 5g-aka prevents the imsi-catcher attack, several known
unlinkability attacks still applies.
We gave a new unlinkability attack against priv-aka.
We proposed the aka+ protocol, which tries to satisfy the design
constraints of 5g-aka.

We defined the notion of σ-unlinkability.
We proved in the BC logic that aka+ is σ-unlinkability.
We also proved that aka+ provides mutual authentication.

26



Conclusion

While 5g-aka prevents the imsi-catcher attack, several known
unlinkability attacks still applies.
We gave a new unlinkability attack against priv-aka.
We proposed the aka+ protocol, which tries to satisfy the design
constraints of 5g-aka.
We defined the notion of σ-unlinkability.

We proved in the BC logic that aka+ is σ-unlinkability.
We also proved that aka+ provides mutual authentication.

26



Conclusion

While 5g-aka prevents the imsi-catcher attack, several known
unlinkability attacks still applies.
We gave a new unlinkability attack against priv-aka.
We proposed the aka+ protocol, which tries to satisfy the design
constraints of 5g-aka.
We defined the notion of σ-unlinkability.
We proved in the BC logic that aka+ is σ-unlinkability.
We also proved that aka+ provides mutual authentication.

26



Thanks for your attention

27



References I

[3GPP, 2018] 3GPP (2018).
TS 33.501: Security architecture and procedures for 5G system.

[Arapinis et al., 2012] Arapinis, M., Mancini, L. I., Ritter, E., Ryan, M.,
Golde, N., Redon, K., and Borgaonkar, R. (2012).
New privacy issues in mobile telephony: fix and verification.
In the ACM Conference on Computer and Communications Security,
CCS’12, pages 205–216. ACM.

[Bana and Comon-Lundh, 2014] Bana, G. and Comon-Lundh, H. (2014).
A computationally complete symbolic attacker for equivalence properties.

In 2014 ACM Conference on Computer and Communications Security,
CCS ’14, pages 609–620. ACM.

1



References II

[Fouque et al., 2016] Fouque, P., Onete, C., and Richard, B. (2016).
Achieving better privacy for the 3GPP AKA protocol.
PoPETs, 2016(4):255–275.

[Strobel, 2007] Strobel, D. (2007).
IMSI catcher.
Ruhr-Universität Bochum, Seminar Work.

2



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

3



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

3



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

3



The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.

3



UE

id,tmp-id, k, sqnu

HN

id,tmp-id, k, sqnn

tmp-id or id

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)
bmac ← H1

k(〈sqnR , nR〉) = π3(x)
bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗

R ← π1(y)⊕ H5,∗
k (n)

if H1,∗
k (〈sqn∗

R , n〉) = π2(y) then sqnn ← sqn∗
R + 1

bmac ∧ ¬bsqn

4g-aka

4



UE

id,tmp-id, k, pkn, sqnu

HN

id,tmp-id, k, skn, sqnn

tmp-id or {id}ne
pkn

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)
bmac ← H1

k(〈sqnR , nR〉) = π3(x)
bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗

R ← π1(y)⊕ H5,∗
k (n)

if H1,∗
k (〈sqn∗

R , n〉) = π2(y) then sqnn ← sqn∗
R + 1

bmac ∧ ¬bsqn

5g-aka

5



UEid

stateidu

HN

staten
n〈

{〈id , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈id , sqnu〉}ne
pkn

, n〉)
〉

sqnu ← sqnu + 1 bMac ← check-mac
if bMac then authenticated id

bInc ← bMac ∧ sqnu ≥ sqnid
n

if bInc then sqnid
n ← sqnu + 1

sessionid
n ← n

tmp-idid
n ← tmp-id

Mac2
kidm

(〈n , sqnu + 1〉)
bMac

if check-mac then authenticated HN

id
Sub-Protocol
(Simplified)

6



UEid

stateidu

HN

staten

tmp-idu
valid-tmpu

valid-tmpu ← false bid ← tmp-idid
n = tmp-idu 6= UnSet

if bid then tmp-idid
n ← UnSet

sessionid
n ← n

〈
n , sqnid

n ⊕ Hkid(n) , Mac3
kidm

(〈n , sqnid
n , tmp-idu〉)

〉 bid

bacc ← check-mac ∧ range(sqnu, sqnid
n )

if bacc then sqnu ← sqnu + 1

Mac4
kidm

(n)
bacc

bMac ← check-mac
if bMac then authenticated id
bInc ← bMac ∧ sessionid

n = n
if bInc then sqnid

n ← sqnid
n + 1

tmp-idid
n ← tmp-id

tmp-id
Sub-Protocol
(Simplified)

7



The assign-tmp-id Sub-Protocol (Simplified)

UEid

stateidu

HN

staten

〈tmp-id⊕ Hr
kid(n) , Mac5

kidm
(〈tmp-id , n〉)〉

bacc ← check-mac
tmp-idu ← if bacc then tmp-id else UnSet
valid-tmpu ← bacc

8



UE

stateidu

HN(j)

staten
nj

Input nR: b-authu ← nR〈
{〈id , sqnu〉}ne

pkn
, Mac1

kidm
(〈{〈id , sqnu〉}ne

pkn
, nR〉)

〉
sqnu ← sqnu + 1 Input y:

〈idR , sqnR〉 ← dec(π1(y), skn)
bid

Mac ← π2(y) = Mac1
kidm(〈π1(y) , nj〉)

∧ idR = id

bid
Inc ← bid

Mac ∧ sqnR ≥ sqnid
n

if bid
Mac then b-authjn, e-auth

j
n ← id

if bid
Inc then sqnid

n ← sqnR + 1
sessionid

n ← nj

tmp-idid
n ← tmp-idj

Mac2
kidm

(〈nj , sqnR + 1〉)
bMac

Input z:

bok ← z = Mac2
kidm

(〈b-authu , sqnu〉)
e-authu ← if bok then b-authu else fail

id
Sub-Protocol

9



UE(id)

stateidu

HN(j)

staten

tmp-idu
valid-tmpu

valid-tmpu ← false Input x:
bid ← tmp-idid

n = x ∧ tmp-idid
n 6= UnSet

if bid then tmp-idid
n ← UnSet

b-authjn ← id
sessionid

n ← nj

〈
nj , sqnid

n ⊕ Hkid(nj) , Mac3
kidm

(〈nj , sqnid
n , tmp-idid

n 〉)
〉 bid

Input y:
nR, sqnR ← π1(y), π2(y)⊕ Hkid(nR)

bacc ← π3(y) = Mac3
kidm(〈nR , sqnR , tmp-idu〉))

∧ range(sqnu, sqnR)

if bacc then b-authu, e-authu ← nR

sqnu ← sqnu + 1

if ¬bacc then b-authu, e-authu ← fail

Mac4
kidm

(nR)
bacc

Input z:

bid
Mac ← (b-authjn = id) ∧ (z = Mac4

kidm
(nj))

bid
Inc ← bid

Mac ∧ sessionid
n = nj

if bid
Mac then e-authjn ← id

if bid
Inc then sqnid

n ← sqnid
n + 1

tmp-idid
n ← tmp-idj

tmp-id
Sub-Protocol

10



The assign-tmp-id Sub-Protocol

UE

stateidu

HN(j)

staten

〈tmp-idj ⊕ Hr
kid(n

j) , Mac5
kidm

(
〈
tmp-idj , nj

〉
)〉

e-authid
n = id

Input x:
tmp-idR ← π1(x)⊕ Hr

kidm
(e-authu)

bacc ←
(
π2(x) = Mac5

kidm(〈tmp-idR , e-authu〉)
)

∧ (e-authu 6= fail)
tmp-idu ← if bacc then tmp-idR else UnSet
valid-tmpu ← bacc

11



New Attack on the priv-aka Protocol

The priv-aka Protocol
The authors of [Fouque et al., 2016] propose a new protocol, priv-aka
(claimed unlinkable).

Unlinkability Attack (four sessions)

We found an attack to permanently de-synchronize the user:
Run a session but keep the last message t1.
Re-synchronize the user and the network.
Re-iterate the last two steps to get a second message t2.
Send both t1 and t2, which increments sqnn by two.
The user is permanently de-synchronized =⇒ unlinkability attack.

12



New Attack on the priv-aka Protocol

The priv-aka Protocol
The authors of [Fouque et al., 2016] propose a new protocol, priv-aka
(claimed unlinkable).

Unlinkability Attack (four sessions)

We found an attack to permanently de-synchronize the user:
Run a session but keep the last message t1.
Re-synchronize the user and the network.
Re-iterate the last two steps to get a second message t2.
Send both t1 and t2, which increments sqnn by two.
The user is permanently de-synchronized =⇒ unlinkability attack.

12



New Attack on the priv-aka Protocol

The priv-aka Protocol
The authors of [Fouque et al., 2016] propose a new protocol, priv-aka
(claimed unlinkable).

Unlinkability Attack (four sessions)

We found an attack to permanently de-synchronize the user:
Run a session but keep the last message t1.
Re-synchronize the user and the network.
Re-iterate the last two steps to get a second message t2.
Send both t1 and t2, which increments sqnn by two.
The user is permanently de-synchronized =⇒ unlinkability attack.

12



priv-aka [Fouque et al., 2016]

13



priv-aka [Fouque et al., 2016]

14



Licenses

Smart-phone icon: Gregor Hagedorn, CC-BY-SA-3.0
Database icon: Font Awesome, CC-BY-4.0

15


	The 4g-aka and 5g-aka Protocols
	The 4g-aka Protocol
	The imsi Catcher Attack
	The 5g-aka Protocol
	Unlinkability Attack Against 5g-aka

	The aka+ Protocol
	Design Constraints
	Key Ideas

	Security Proofs
	-Unlinkability
	Security of the AKA+ Protocol

	Conclusion
	Appendix

