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Authentication and Key Agreement Protocol

UE SN HN

Wireless channel Secure channel (TLS)

• Eavesdrop
• Forge messages

We focus on:
Mutual authentication between the user (UE) and the network (HN).
Unlinkability of the user.

We do not model the antenna: we have a two party protocol.
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Sequence Numbers

Authentication
Authentication protocols need to prevent message replays. In 4g-aka:

The service provider uses a random challenge.
The mobile phone uses a sequence number sqn:

Incremented after each successful session.
Tracked by the user and the service provider (sqnu and sqnn).

⇒ De-synchronization possible.
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UE

id, k, sqnu

HN

id, k, sqnn

id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check-mac
bsqn ← check-range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

4g-aka
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Privacy in 4g-aka

Not confidentiality of the user identity

The id is sent in plain text!

4g-aka solution
Use a temporary identity tmp-id instead of the permanent identity id:

The network has a mapping from tmp-ids to ids.
Each tmp-id should be used at most once.
The network assigns new tmp-id after each successful session.
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UE

id,tmp-id, k, sqnu

HN

id,tmp-id, k, sqnn

tmp-id or id

〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check mac
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sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)
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Privacy in 4g-aka

Confidentiality of the user identity

The id is protected as long as the protocol does not fail.

=⇒ This only works against a passive adversary.
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The imsi Catcher Attack [Strobel, 2007]

UE Attackertmp-id or id

“Permanent-ID-Request”
If tmp-id received

id

Why this is a major attack

Reliable: the attack always works.
Easy to deploy: only need an antenna.
Large scale: not targeted.
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Privacy in 5g-aka

The 5g-aka protocol

5g-aka is the next version of aka (drafts are available [3GPP, 2018]).

3GPP fix for 5G-AKA
Simply encrypt the permanent identity by sending {id}pkn
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UE

id,tmp-id, k, pkn, sqnu

HN

id,tmp-id, k, skn, sqnn

tmp-id or {id}pkn〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
bmac ← check mac
bsqn ← check range(sqnu, sqnn)

sqnn ← sqnn + 1

sqnu ← sqnn
H2

k(n)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉
If the mac is valid:
sqnn ← sqnu + 1

bmac ∧ ¬bsqn

assign-tmp-id

5g-aka
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Privacy in 5g-aka

Is it enough?

For confidentiality of the id, yes.

For unlinkability, no.
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Unlinkability

Unlinkability Attack

Even if the id is hidden, an attacker may link sessions of the same user.

Example of an Unlinkability Scenario

F

A

A

B

B

A

C

B

D

B

E

B

F

∼
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The Failure Message Attack [Arapinis et al., 2012]

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.
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Objective

Objective

Design a modified version of aka, called aka+, that:
Provides some form of unlinkability.

Satisfies the design and efficiency constraints of 5g-aka.
Is proved secure.
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The aka+ Protocol

Design Constraints

aka+ should be as efficient as the 5g-aka:
Random number generation (user): at most one nonce per session,
and only if no tmp-id is assigned.

The user can use only one-way functions and asymmetric encryption.
Network complexity: try to have only three messages per session.
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Key Ideas

Key Ideas Behind aka+

Postpone re-synchronization to the next session: {〈id , sqnu〉}pkn
.

No re-synchronization message =⇒ no failure message attack.
No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.
UE HN

n〈
{〈id , sqnu〉}pkn

, Mac1
km(〈{〈id , sqnu〉}pkn

, n〉)
〉

UE(idA) HNtauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
H2

k(n)

UE(idB) Attacker
tauth

“Auth-Failure”
If idB 6= idA

tre-sync ≡
〈
sqnu ⊕ H5,∗

k (n) , H1,∗
k (〈sqnu , n〉)

〉If idB = idA

The Failure Message Attack
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Architecture of aka+

aka+ Sub-Protocols

id sub-protocol uses the encrypted permanent identity.
allows to re-synchronize the UE and the HN.

tmp-id sub-protocol uses a temporary identity.
assign-tmp-id assigns a fresh temporary identity to the UE.

id Sub-Protocol tmp-id Sub-Protocol

assign-tmp-id Sub-Protocol
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Security Proofs

Objective

Formally prove that aka+ satisfies:
mutual authentication.
unlinkability.

A

A

A

B

6∼

tmp-id sub-protocol
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The σ-Unlinkability Property

Two Indistinguishable Executions

Each time the id sub-protocol is used, we can change the user’s identity.

A

A

B

B

A

A

B

C

B

C

B

C

∼

id sub-protocol tmp-id sub-protocol
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Modeling

The Bana-Comon Model [Bana and Comon-Lundh, 2014]
The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

A security property P ∼ Q is modeled by a formula ~uP ∼ ~uQ .
Implementation assumptions and cryptographic hypothesis are
modeled by axioms Ax.
We have to show that Ax |= ~uP ∼ ~uQ .
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Theorem

Theorem
The aka+ protocol is σ-unlinkable for an arbitrary number of agents
and sessions when:

The asymmetric encryption {_}__ is ind-cca1.

H and Hr (resp. Mac1–Mac5) satisfy jointly the prf assumption.
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Conclusion

While 5g-aka prevents the imsi-catcher attack, several known
unlinkability attacks still applies.

We gave a new unlinkability attack against priv-aka.
We proposed the aka+ protocol, which tries to satisfy the design
constraints of 5g-aka.
We defined the notion of σ-unlinkability.
We proved in the BC logic that aka+ is σ-unlinkability.
We also proved that aka+ provides mutual authentication.
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Thanks for your attention
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The Encrypted id Replay Attack [Fouque et al., 2016]

UE(idA) HN{idA}pkn

UE(idB) HN{idB}pkn
/

{idA}pkn

tauth ≡
〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Failure MessageIf idB 6= idA

taccept ≡ H2
k(n)

If idB = idA

Unlinkability attack

The adversary knows if it interacted with idA or idB.
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UE

id,tmp-id, k, sqnu

HN

id,tmp-id, k, sqnn

tmp-id or id

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)
bmac ← H1

k(〈sqnR , nR〉) = π3(x)
bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗

R ← π1(y)⊕ H5,∗
k (n)

if H1,∗
k (〈sqn∗

R , n〉) = π2(y) then sqnn ← sqn∗
R + 1

bmac ∧ ¬bsqn

4g-aka
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UE

id,tmp-id, k, pkn, sqnu

HN

id,tmp-id, k, skn, sqnn

tmp-id or {id}ne
pkn

if tmp-id was used: tmp-id← UnSet〈
n , sqnn ⊕ H5

k(n) , H
1
k(〈sqnn , n〉)

〉
Input x:
nR, sqnR ← π1(x), π2(x)⊕ H5

k(nR)
bmac ← H1

k(〈sqnR , nR〉) = π3(x)
bsqn ← range(sqnu, sqnR)

sqnn ← sqnn + 1

sqnu ← sqnR
H2

k(nR)

bmac ∧ bsqn

“Auth-Failure”
¬bmac

〈
sqnu ⊕ H5,∗

k (nR) , H1,∗
k (〈sqnu , nR〉)

〉
Input y:
sqn∗

R ← π1(y)⊕ H5,∗
k (n)

if H1,∗
k (〈sqn∗

R , n〉) = π2(y) then sqnn ← sqn∗
R + 1

bmac ∧ ¬bsqn

5g-aka
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UEid

stateidu

HN

staten
n〈

{〈id , sqnu〉}ne
pkn

, Mac1
kidm

(〈{〈id , sqnu〉}ne
pkn

, n〉)
〉

sqnu ← sqnu + 1 bMac ← check-mac
if bMac then authenticated id

bInc ← bMac ∧ sqnu ≥ sqnid
n

if bInc then sqnid
n ← sqnu + 1

sessionid
n ← n

tmp-idid
n ← tmp-id

Mac2
kidm

(〈n , sqnu + 1〉)
bMac

if check-mac then authenticated HN

id
Sub-Protocol
(Simplified)
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UEid

stateidu

HN

staten

tmp-idu
valid-tmpu

valid-tmpu ← false bid ← tmp-idid
n = tmp-idu 6= UnSet

if bid then tmp-idid
n ← UnSet

sessionid
n ← n

〈
n , sqnid

n ⊕ Hkid(n) , Mac3
kidm

(〈n , sqnid
n , tmp-idu〉)

〉 bid

bacc ← check-mac ∧ range(sqnu, sqnid
n )

if bacc then sqnu ← sqnu + 1

Mac4
kidm

(n)
bacc

bMac ← check-mac
if bMac then authenticated id
bInc ← bMac ∧ sessionid

n = n
if bInc then sqnid

n ← sqnid
n + 1

tmp-idid
n ← tmp-id

tmp-id
Sub-Protocol
(Simplified)
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The assign-tmp-id Sub-Protocol (Simplified)

UEid

stateidu

HN

staten

〈tmp-id⊕ Hr
kid(n) , Mac5

kidm
(〈tmp-id , n〉)〉

bacc ← check-mac
tmp-idu ← if bacc then tmp-id else UnSet
valid-tmpu ← bacc
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UE

stateidu

HN(j)

staten
nj

Input nR: b-authu ← nR〈
{〈id , sqnu〉}ne

pkn
, Mac1

kidm
(〈{〈id , sqnu〉}ne

pkn
, nR〉)

〉
sqnu ← sqnu + 1 Input y:

〈idR , sqnR〉 ← dec(π1(y), skn)
bid

Mac ← π2(y) = Mac1
kidm(〈π1(y) , nj〉)

∧ idR = id

bid
Inc ← bid

Mac ∧ sqnR ≥ sqnid
n

if bid
Mac then b-authjn, e-auth

j
n ← id

if bid
Inc then sqnid

n ← sqnR + 1
sessionid

n ← nj

tmp-idid
n ← tmp-idj

Mac2
kidm

(〈nj , sqnR + 1〉)
bMac

Input z:

bok ← z = Mac2
kidm

(〈b-authu , sqnu〉)
e-authu ← if bok then b-authu else fail

id
Sub-Protocol
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UE(id)

stateidu

HN(j)

staten

tmp-idu
valid-tmpu

valid-tmpu ← false Input x:
bid ← tmp-idid

n = x ∧ tmp-idid
n 6= UnSet

if bid then tmp-idid
n ← UnSet

b-authjn ← id
sessionid

n ← nj

〈
nj , sqnid

n ⊕ Hkid(nj) , Mac3
kidm

(〈nj , sqnid
n , tmp-idid

n 〉)
〉 bid

Input y:
nR, sqnR ← π1(y), π2(y)⊕ Hkid(nR)

bacc ← π3(y) = Mac3
kidm(〈nR , sqnR , tmp-idu〉))

∧ range(sqnu, sqnR)

if bacc then b-authu, e-authu ← nR

sqnu ← sqnu + 1

if ¬bacc then b-authu, e-authu ← fail

Mac4
kidm

(nR)
bacc

Input z:

bid
Mac ← (b-authjn = id) ∧ (z = Mac4

kidm
(nj))

bid
Inc ← bid

Mac ∧ sessionid
n = nj

if bid
Mac then e-authjn ← id

if bid
Inc then sqnid

n ← sqnid
n + 1

tmp-idid
n ← tmp-idj

tmp-id
Sub-Protocol
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The assign-tmp-id Sub-Protocol

UE

stateidu

HN(j)

staten

〈tmp-idj ⊕ Hr
kid(n

j) , Mac5
kidm

(
〈
tmp-idj , nj

〉
)〉

e-authid
n = id

Input x:
tmp-idR ← π1(x)⊕ Hr

kidm
(e-authu)

bacc ←
(
π2(x) = Mac5

kidm(〈tmp-idR , e-authu〉)
)

∧ (e-authu 6= fail)
tmp-idu ← if bacc then tmp-idR else UnSet
valid-tmpu ← bacc
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New Attack on the priv-aka Protocol

The priv-aka Protocol
The authors of [Fouque et al., 2016] propose a new protocol, priv-aka
(claimed unlinkable).

Unlinkability Attack (four sessions)

We found an attack to permanently de-synchronize the user:
Run a session but keep the last message t1.
Re-synchronize the user and the network.
Re-iterate the last two steps to get a second message t2.
Send both t1 and t2, which increments sqnn by two.
The user is permanently de-synchronized =⇒ unlinkability attack.
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priv-aka [Fouque et al., 2016]
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