The 5G-AKA Authentication Protocol Privacy

Adrien Koutsos LSV, CNRS, ENS Paris-Saclay

June 19, 2019

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attack Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas

3 Security Proofs

- σ -Unlinkability
- Security of the AKA⁺ Protocol

4 Conclusion

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attack Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas

3 Security Proofs

- σ -Unlinkability
- Security of the AKA⁺ Protocol

4 Conclusion

We focus on:

- Mutual authentication between the user (UE) and the network (HN).
- Unlinkability of the user.

We focus on:

- Mutual authentication between the user (UE) and the network (HN).
- Unlinkability of the user.

We do not model the antenna: we have a two party protocol.

Sequence Numbers

Authentication

Authentication protocols need to prevent message replays. In $\rm 4G\textsc{-}AKA$:

Sequence Numbers

Authentication

Authentication protocols need to prevent message replays. In 4G-AKA:

- The service provider uses a random challenge.
- The mobile phone uses a sequence number SQN:

Sequence Numbers

Authentication

Authentication protocols need to prevent message replays. In 4G-AKA:

- The service provider uses a random challenge.
- The mobile phone uses a sequence number SQN:
 - Incremented after each successful session.
 - \blacksquare Tracked by the user and the service provider (${\rm SQN}_{\rm U}$ and ${\rm SQN}_{\rm N}).$
 - \Rightarrow De-synchronization possible.

Not confidentiality of the user identity

The ID is sent in plain text!

Not confidentiality of the user identity

The ID is sent in plain text!

4G-AKA solution

Use a temporary identity TMP-ID instead of the permanent identity ID:

- The network has a mapping from TMP-IDs to IDs.
- **Each** TMP-ID should be used at most once.
- The network assigns new TMP-ID after each successful session.

Confidentiality of the user identity

The ID is protected as long as the protocol does not fail.

Confidentiality of the user identity

The ID is protected as long as the protocol does not fail. \implies This only works against a passive adversary.

The IMSI Catcher Attack [Strobel, 2007]

The IMSI Catcher Attack [Strobel, 2007]

Why this is a major attack

- Reliable: the attack always works.
- Easy to deploy: only need an antenna.
- Large scale: not targeted.

The 5G-AKA protocol

5G-AKA is the next version of AKA (drafts are available [3GPP, 2018]).

The 5G-AKA protocol

5G-AKA is the next version of AKA (drafts are available [3GPP, 2018]).

3GPP fix for 5G-AKA

Simply encrypt the permanent identity by sending $\{ID\}_{pk_{v}}$

Is it enough?

Is it enough?

For confidentiality of the ${\rm ID},$ yes.

Is it enough?

For confidentiality of the ${\rm ID},$ yes.

For unlinkability, no.

Unlinkability Attack

Even if the ID is hidden, an attacker may link sessions of the same user.

Unlinkability Attack

Even if the ID is hidden, an attacker may link sessions of the same user.

Unlinkability Attack

Even if the ID is hidden, an attacker may link sessions of the same user.

Unlinkability Attack

Even if the ID is hidden, an attacker may link sessions of the same user.

Unlinkability Attack

Even if the ID is hidden, an attacker may link sessions of the same user.

The Failure Message Attack [Arapinis et al., 2012]

The Failure Message Attack [Arapinis et al., 2012]

The Failure Message Attack [Arapinis et al., 2012]

The Failure Message Attack [Arapinis et al., 2012]

Unlinkability attack

The adversary knows if it interacted with ID_A or ID_B .

Objective

Objective

Design a modified version of ${\rm AKA},$ called ${\rm AKA}^+,$ that:

Provides some form of unlinkability.

Objective

Objective

Design a modified version of ${\rm AKA},$ called ${\rm AKA}^+,$ that:

- Provides some form of unlinkability.
- Satisfies the design and efficiency constraints of 5G-AKA.

Objective

Objective

Design a modified version of ${\rm AKA},$ called ${\rm AKA}^+,$ that:

- Provides some form of unlinkability.
- Satisfies the design and efficiency constraints of 5G-AKA.
- Is proved secure.

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attack Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas

3 Security Proofs

- σ -Unlinkability
- Security of the AKA⁺ Protocol

The AKA⁺ Protocol

Design Constraints

 AKA^+ should be as efficient as the 5G-AKA:

Random number generation (user): at most one nonce per session, and only if no TMP-ID is assigned.

The AKA⁺ Protocol

Design Constraints

 AKA^+ should be as efficient as the 5G-AKA:

- Random number generation (user): at most one nonce per session, and only if no TMP-ID is assigned.
- The user can use only one-way functions and asymmetric *encryption*.

The AKA⁺ Protocol

Design Constraints

 AKA^+ should be as efficient as the 5G-AKA:

- Random number generation (user): at most one nonce per session, and only if no TMP-ID is assigned.
- The user can use only one-way functions and asymmetric *encryption*.
- Network complexity: try to have only three messages per session.

Key Ideas Behind ${\rm AKA}^+$

Key Ideas Behind ${\rm AKA}^+$

- Postpone re-synchronization to the next session: $\{ \langle ID, SQN_{U} \rangle \}_{pk_{u}}$.
 - No re-synchronization message \implies no failure message attack.
 - No extra randomness for the user.

Key Ideas Behind AKA⁺

- Postpone re-synchronization to the next session: $\{ \langle ID, SQN_{U} \rangle \}_{pk_{u}}$.
 - No re-synchronization message \implies no failure message attack.
 - No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.

Key Ideas Behind ${\rm AKA}^+$

- Postpone re-synchronization to the next session: $\{ \langle ID, SQN_{U} \rangle \}_{pk_{u}}$.
 - No re-synchronization message \implies no failure message attack.
 - No extra randomness for the user.

Add a challenge n from the HN when using the permanent identity.

Architecture of AKA⁺

${\rm AKA}^+$ Sub-Protocols

- ID sub-protocol uses the encrypted permanent identity.
 - allows to re-synchronize the UE and the HN.

 ${\rm ID} \ {\rm Sub-Protocol}$

Architecture of AKA⁺

AKA⁺ Sub-Protocols

- ID sub-protocol uses the encrypted permanent identity.
 allows to re-synchronize the UE and the HN.
- TMP-ID sub-protocol uses a temporary identity.

 ${\rm ID} \,\, {\rm Sub-Protocol}$

 ${\rm TMP}\text{-}{\rm ID}~Sub\text{-}Protocol$

Architecture of AKA⁺

${\rm AKA}^+$ Sub-Protocols

- ID sub-protocol uses the encrypted permanent identity.
 - allows to re-synchronize the UE and the HN.
- TMP-ID sub-protocol uses a temporary identity.
- ASSIGN-TMP-ID assigns a fresh temporary identity to the UE.

1 The 4G-AKA and 5G-AKA Protocols

- The 4G-AKA Protocol
- The IMSI Catcher Attack
- The 5G-AKA Protocol
- Unlinkability Attack Against 5G-AKA

2 The AKA⁺ Protocol

- Design Constraints
- Key Ideas

3 Security Proofs

- σ -Unlinkability
- Security of the AKA⁺ Protocol

Security Proofs

Objective

Formally prove that AKA⁺ satisfies:

- mutual authentication.
- unlinkability.

Security Proofs

Security Proofs

Objective

Formally prove that AKA⁺ satisfies:

- mutual authentication.
- unlinkability $\implies \sigma$ -unlinkability.

Two Indistinguishable Executions

Two Indistinguishable Executions

Two Indistinguishable Executions

Two Indistinguishable Executions

The Bana-Comon Model [Bana and Comon-Lundh, 2014] The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

The Bana-Comon Model [Bana and Comon-Lundh, 2014] The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- A security property $P \sim Q$ is modeled by a formula $\vec{u}_P \sim \vec{u}_Q$.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- A security property $P \sim Q$ is modeled by a formula $\vec{u}_P \sim \vec{u}_Q$.
- Implementation assumptions and cryptographic hypothesis are modeled by axioms Ax.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- A security property $P \sim Q$ is modeled by a formula $\vec{u}_P \sim \vec{u}_Q$.
- Implementation assumptions and cryptographic hypothesis are modeled by axioms Ax.
- We have to show that $Ax \models \vec{u}_P \sim \vec{u}_Q$.

Theorem

Theorem

The AKA⁺ protocol is σ -unlinkable for an arbitrary number of agents and sessions when:

- The asymmetric encryption {_}- is IND-CCA₁.
- H and H^r (resp. $Mac^{1}-Mac^{5}$) satisfy jointly the PRF assumption.

■ While 5G-AKA prevents the IMSI-catcher attack, several known unlinkability attacks still applies.

- While 5G-AKA prevents the IMSI-catcher attack, several known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.

- While 5G-AKA prevents the IMSI-catcher attack, several known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which tries to satisfy the design constraints of 5G-AKA.

- While 5G-AKA prevents the IMSI-catcher attack, several known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which tries to satisfy the design constraints of 5G-AKA.
- We defined the notion of σ -unlinkability.

- While 5G-AKA prevents the IMSI-catcher attack, several known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which tries to satisfy the design constraints of 5G-AKA.
- We defined the notion of σ -unlinkability.
- We proved in the BC logic that AKA^+ is σ -unlinkability.
- We also proved that AKA⁺ provides mutual authentication.

Thanks for your attention

References I

[3GPP, 2018] 3GPP (2018).
TS 33.501: Security architecture and procedures for 5G system.
[Arapinis et al., 2012] Arapinis, M., Mancini, L. I., Ritter, E., Ryan, M., Golde, N., Redon, K., and Borgaonkar, R. (2012).
New privacy issues in mobile telephony: fix and verification.
In the ACM Conference on Computer and Communications Security.

CCS'12, pages 205–216. ACM.

[Bana and Comon-Lundh, 2014] Bana, G. and Comon-Lundh, H. (2014). A computationally complete symbolic attacker for equivalence properties.

In 2014 ACM Conference on Computer and Communications Security, CCS '14, pages 609–620. ACM.
[Fouque et al., 2016] Fouque, P., Onete, C., and Richard, B. (2016). Achieving better privacy for the 3GPP AKA protocol. *PoPETs*, 2016(4):255–275.

[Strobel, 2007] Strobel, D. (2007). IMSI catcher. Ruhr-Universität Bochum, Seminar Work.

Unlinkability attack

The adversary knows if it interacted with ID_A or ID_B .

G-AKA

ID Sub-Protocol (Simplified)

The ASSIGN-TMP-ID Sub-Protocol (Simplified)

The ASSIGN-TMP-ID Sub-Protocol

New Attack on the $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}\xspace$ Protocol

The $\ensuremath{\mathsf{PRIV}}\xspace{-}\ensuremath{\mathsf{AKA}}\xspace$ Protocol

The authors of [Fouque et al., 2016] propose a new protocol, $\ensuremath{\operatorname{PRIV-AKA}}$ (claimed unlinkable).

New Attack on the $\ensuremath{\mathsf{PRIV}}\xspace{-}\operatorname{AKA}$ Protocol

New Attack on the $\ensuremath{\mathsf{PRIV}}\xspace{-}\operatorname{AKA}$ Protocol

The **PRIV-AKA** Protocol

The authors of [Fouque et al., 2016] propose a new protocol, PRIV-AKA (claimed unlinkable).

Unlinkability Attack (four sessions)

We found an attack to permanently de-synchronize the user:

- **Run** a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- Re-iterate the last two steps to get a second message t_2 .
- Send both t_1 and t_2 , which increments SQN_N by two.
- The user is permanently de-synchronized ⇒ unlinkability attack.

PRIV-AKA [Fouque et al., 2016]

PRIV-AKA [Fouque et al., 2016]

Client	Server	Operator
	 (2): Process the identifier ID: If the identifier is a TMSI then Val = IMSI. Otherwise, Val = (ID, R_{al}). (4): Store {AV⁽¹⁾}_{i=1}. (5): Store {AV⁽¹⁾} one by one in order. Then, it sends the authentication challenge and the new couple (TMSI_n, ids⁽¹⁾) encrypted and authenticated by the session keys. (5): If the authentication of the client is verified (Res ²/₂ Macc), then they ask to the server the update of its sequence number. Otherwise, the protocol is aborted. 	$ \label{eq:3} \begin{tabular}{ c c c c } \hline & \hline $

Licenses

- Smart-phone icon: Gregor Hagedorn, CC-BY-SA-3.0
- Database icon: Font Awesome, CC-BY-4.0