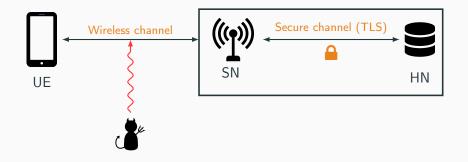
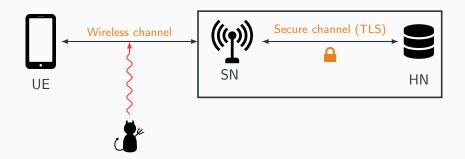

The 5G-AKA Authentication Protocol Privacy

Adrien Koutsos Max Planck Institute for Security and Privacy November 5, 2019


The 4G-AKA and 5G-AKA

Protocols


Authentication and Key Agreement Protocol

Authentication and Key Agreement Protocol

Authentication and Key Agreement Protocol

Security Properties

- Mutual authentication between the user and the service provider.
- Untraceability of the user against an outside observer.

Pseudo Random Number Generation

User side: all crypto primitives are computed in the SIM.

Pseudo Random Number Generation

User side: all crypto primitives are computed in the SIM.

⇒ In 4G-AKA, no PRNG on the mobile phone.

Pseudo Random Number Generation

User side: all crypto primitives are computed in the SIM.

⇒ In 4G-AKA, no PRNG on the mobile phone.

Cryptographic Primitives

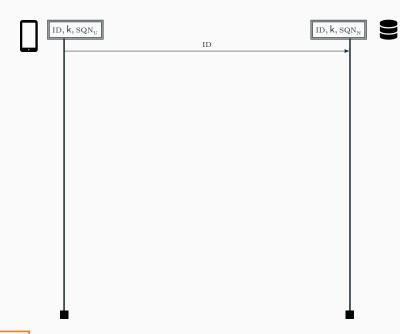
Asymmetric encryption requires randomness.

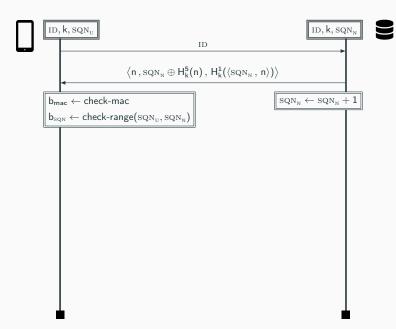
⇒ 4G-AKA uses only symmetric one-way functions.

Authentication

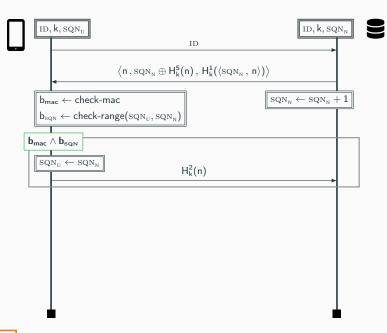
Authentication protocols need to prevent message replays:

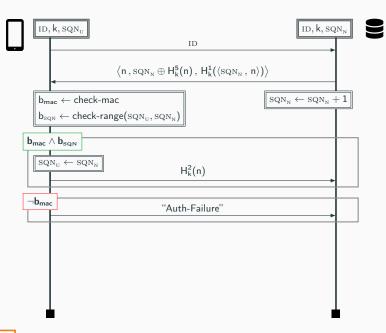
Authentication

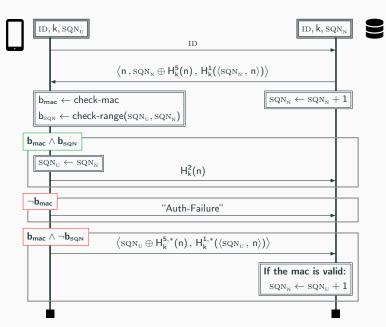

Authentication protocols need to prevent message replays:


- The antenna uses a random challenge.
- The mobile phone uses a sequence number SQN:

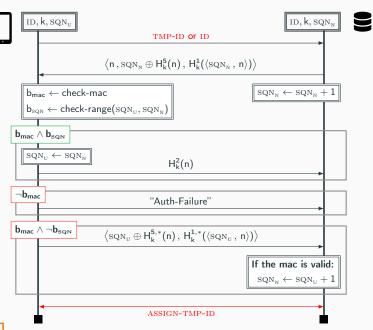
Authentication


Authentication protocols need to prevent message replays:


- The antenna uses a random challenge.
- The mobile phone uses a **sequence number SQN**:
 - Incremented after each successful session.
 - Tracked by the user and the antenna $(SQN_U \text{ and } SQN_N)$.
 - ⇒ De-synchronization possible.



Not confidentiality of the user identity


The ID is sent in plain text!

Not confidentiality of the user identity

The ID is sent in plain text!

4G-AKA solution

Allow to use a **temporary identity** TMP-ID instead of the **permanent identity** ID.

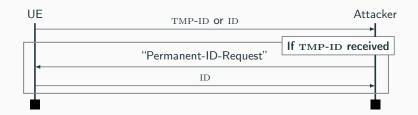
4G-AKA

Confidentiality of the user identity

Once a temporary identity is set up, the ID is protected if:


- The protocol does not fail.
- The adversary is a passive adversary.

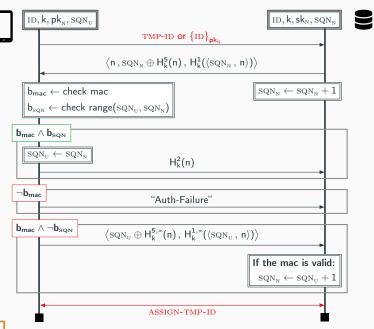
Confidentiality of the user identity


Once a temporary identity is set up, the ID is protected if:

- The protocol does not fail.
- The adversary is a passive adversary.
- → This is not realistic!

The IMSI Catcher Attack [Strobel, 2007]

The IMSI Catcher Attack [Strobel, 2007]



Why this is a major attack

- Reliable: the attack always works.
- **Easy to deploy**: only need an antenna.
- Large scale: not targeted.

3GPP fix for 5G-AKA

Encrypt the permanent identity by sending $\left\{ \mathrm{ID} \right\}_{pk_{_{\mathrm{N}}}}$

Is it enough?

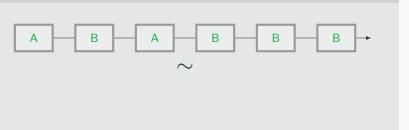
Is it enough?

For confidentiality of the ${\scriptsize {\rm ID}},$ yes.

Is it enough?

For confidentiality of the ID, yes.

For unlinkability, no.


Unlinkability Attack

Even if ${\ensuremath{\mathrm{ID}}}$ is hidden, an attacker can link sessions of a user.

Unlinkability Attack

Even if ID is hidden, an attacker can link sessions of a user.

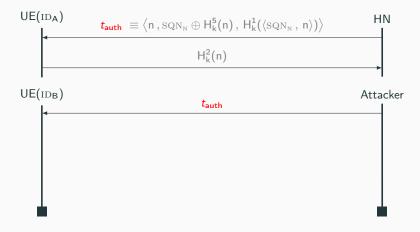
Example of an Unlinkability Scenario

Unlinkability Attack

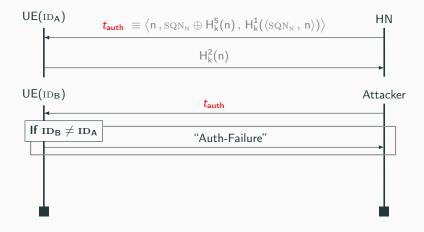
Even if ID is hidden, an attacker can link sessions of a user.

Unlinkability Attack

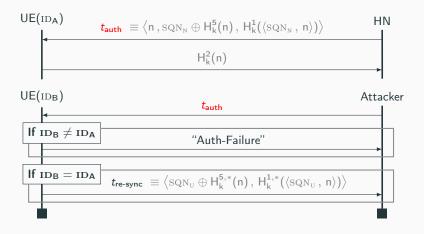
Even if ID is hidden, an attacker can link sessions of a user.

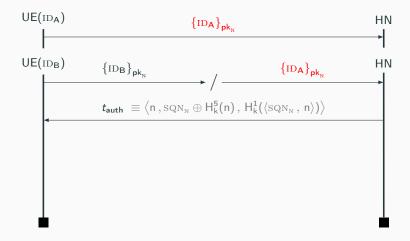

Example of an Unlinkability Scenario A B B B B C

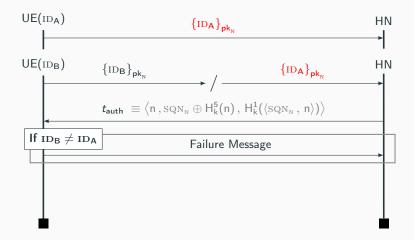
Unlinkability Attack

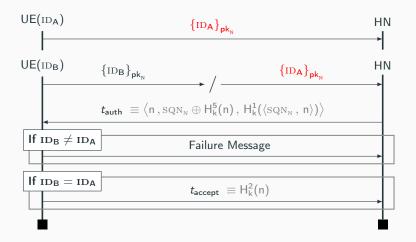

Even if ID is hidden, an attacker can link sessions of a user.

Example of an Unlinkability Scenario A B B B B B C D E F

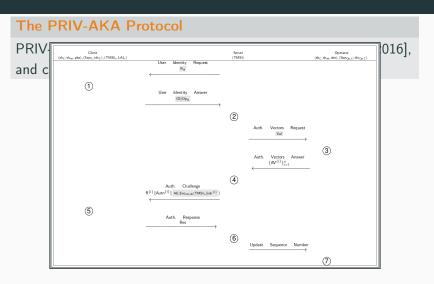

The Failure Message Attack [Arapinis et al., 2012]


The Failure Message Attack [Arapinis et al., 2012]


The Failure Message Attack [Arapinis et al., 2012]


The Encrypted ID Replay Attack [Fouque et al., 2016]

The Encrypted ID Replay Attack [Fouque et al., 2016]



The Encrypted ID Replay Attack [Fouque et al., 2016]

The PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016], and claimed unlinkable.

The PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016], and claimed unlinkable.

Unlinkability Attack (four sessions)

- Run a session but keep the last message t_1 .
- Re-synchronize the user and the network.

The PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016], and claimed unlinkable.

Unlinkability Attack (four sessions)

- Run a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- Re-iterate the last two steps to get a second message t_2 .

The PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016], and claimed unlinkable.

Unlinkability Attack (four sessions)

- Run a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- Re-iterate the last two steps to get a second message t_2 .
- Send both t_1 and t_2 , which increments SQN_N by **two**.

The PRIV-AKA Protocol

PRIV-AKA is a variant of AKA proposed in [Fouque et al., 2016], and claimed unlinkable.

Unlinkability Attack (four sessions)

- Run a session but keep the last message t_1 .
- Re-synchronize the user and the network.
- Re-iterate the last two steps to get a second message t_2 .
- Send both t_1 and t_2 , which increments SQN_N by **two**.
- User permanently de-synchronized ⇒ unlinkability attack.

Goal

Goal

Design a modified version of AKA, called AKA⁺, such that:

Provides some form of unlinkability.

Goal

Goal

Design a modified version of AKA, called AKA⁺, such that:

- Provides some form of unlinkability.
- Satisfies the design and efficiency constraints of 5G-AKA.

Goal

Design a modified version of AKA, called AKA⁺, such that:

- Provides some form of unlinkability.
- Satisfies the design and efficiency constraints of 5G-AKA.
- Is proved secure.

Random Number Generation in 5G-AKA

Random Number Generation by the User

In 5G-AKA, the user generates a random number only:

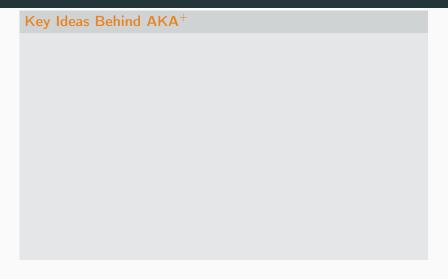
- If no TMP-ID is assigned.
- In the session following a de-synchronization.

Design Constraints

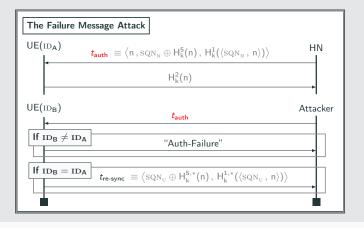
AKA⁺ should be as efficient as the 5G-AKA:

PRNG (user): at most one nonce per session, and only for re-synchronization or if no TMP-ID is assigned.

Design Constraints


AKA⁺ should be as efficient as the 5G-AKA:

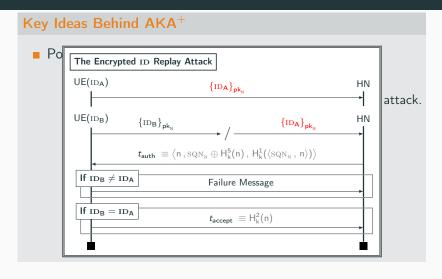
- PRNG (user): at most one nonce per session, and only for re-synchronization or if no TMP-ID is assigned.
- The user can use only one-way functions and asymmetric encryption.


Design Constraints

AKA⁺ should be as efficient as the 5G-AKA:

- PRNG (user): at most one nonce per session, and only for re-synchronization or if no TMP-ID is assigned.
- The user can use only one-way functions and asymmetric encryption.
- Network complexity: try to have only three messages per session.

Key Ideas Behind AKA⁺



Key Ideas Behind AKA⁺

■ Postpone re-synchronization to the next session:

$$\left\{\left\langle ID\,,\,SQN_{U}\right\rangle \right\} _{\mathsf{pk}_{N}}$$

- $lue{}$ No re-synchronization message \Longrightarrow no failure message attack.
- No extra randomness for the user.

Key Ideas Behind AKA⁺

■ Postpone re-synchronization to the next session:

$$\{\langle ID, SQN_U \rangle\}_{\mathsf{pk}_N}$$

- No re-synchronization message ⇒ no failure message attack.
- No extra randomness for the user.
- Add a challenge n from the HN when using the permanent identity.

Architecture of AKA⁺

AKA⁺ Sub-Protocols

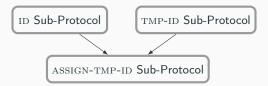
- ID sub-protocol:
 - uses the encrypted permanent identity.
 - allows to **re-synchronize** the UE and the HN.

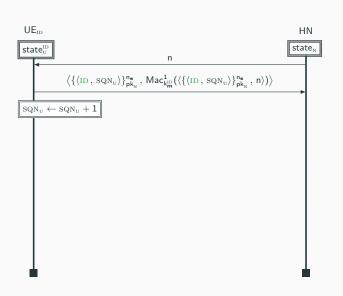
ID Sub-Protocol

Architecture of AKA⁺

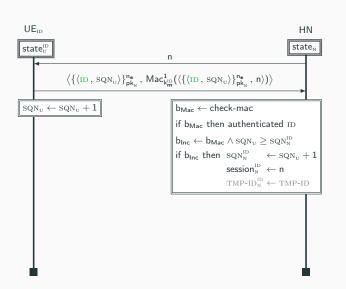
AKA⁺ Sub-Protocols

- ID sub-protocol:
 - uses the encrypted permanent identity.
 - allows to re-synchronize the UE and the HN.
- TMP-ID uses a temporary identity.

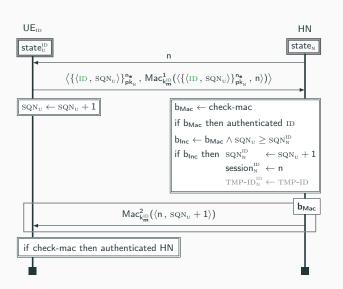

ID Sub-Protocol

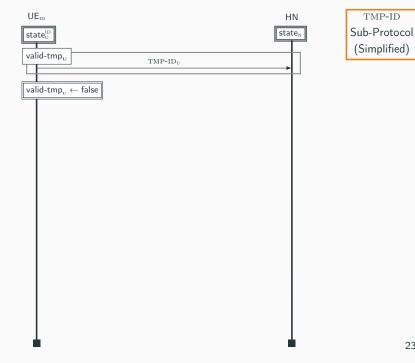

 ${\tt TMP\text{-}ID} \ \, \textbf{Sub-Protocol}$

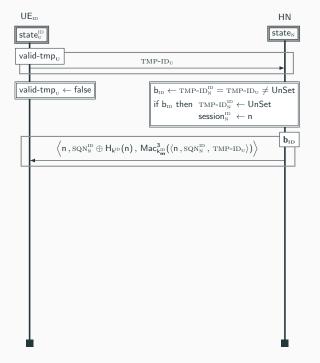
Architecture of AKA+


AKA⁺ Sub-Protocols

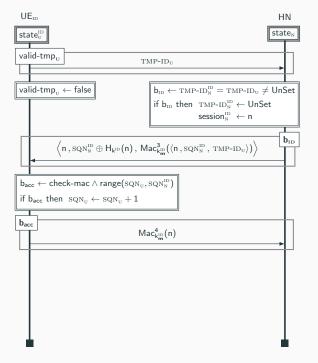
- ID sub-protocol:
 - uses the encrypted permanent identity.
 - allows to **re-synchronize** the UE and the HN.
- TMP-ID uses a temporary identity.
- ASSIGN-TMP-ID assigns a fresh temporary identity.



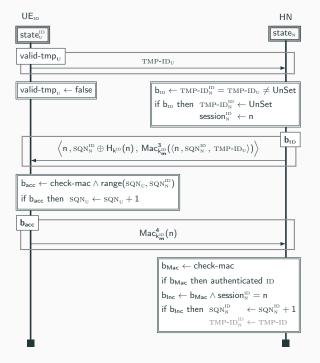

ID Sub-Protocol (Simplified)



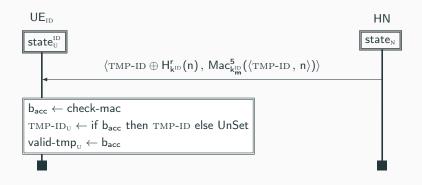
ID Sub-Protocol (Simplified)



ID Sub-Protocol (Simplified)



TMP-ID
Sub-Protocol
(Simplified)

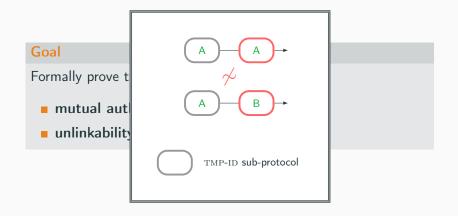


TMP-ID
Sub-Protocol
(Simplified)

TMP-ID
Sub-Protocol
(Simplified)

The ASSIGN-TMP-ID Sub-Protocol

Security Proofs


Security Proofs

Goal

Formally prove that AKA⁺ satisfies:

- mutual authentication.
- unlinkability.

Security Proofs

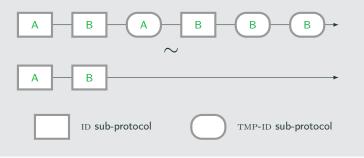
Security Proofs

Goal

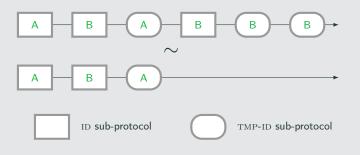
Formally prove that AKA⁺ satisfies:

- mutual authentication.
- unlinkability $\Longrightarrow \sigma$ -unlinkability.

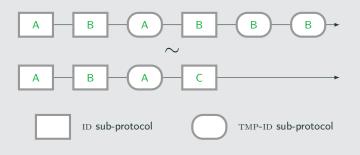
σ -Unlinkability

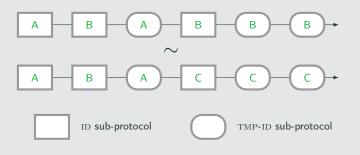

Show privacy only for a subset of the standard unlinkability game scenarios.

σ -Unlinkability


Show privacy only for a subset of the standard unlinkability game scenarios.

- Game-based definition (like standard unlinkability).
- Parametric property (σ) .
- In general, weaker than unlinkability.
- Allow to precisely quantify privacy guarantees.


Two Indistinguishable Executions


Two Indistinguishable Executions

Two Indistinguishable Executions

Two Indistinguishable Executions

σ -Unlinkability

Efficiency vs Privacy

There is a trade-off between:

- Efficiency: the TMP-ID sub-protocol is faster.
- Privacy: the ID sub-protocol provides some privacy.

σ -Unlinkability

Efficiency vs Privacy

There is a trade-off between:

- Efficiency: the TMP-ID sub-protocol is faster.
- Privacy: the ID sub-protocol provides some privacy.

Remark

If we use only the ID sub-protocol, we get standard unlinkability.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

Messages are modeled by (first-order) terms.

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- **A security property** $P \sim Q$ is modeled by a **formula**:

$$\vec{u}_P \sim \vec{u}_Q$$

The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- **A** security property $P \sim Q$ is modeled by a formula:

$$\vec{u}_P \sim \vec{u}_Q$$

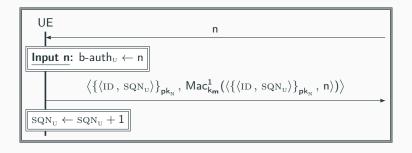
 Implementation assumptions and cryptographic hypothesis are modeled by axioms Ax.

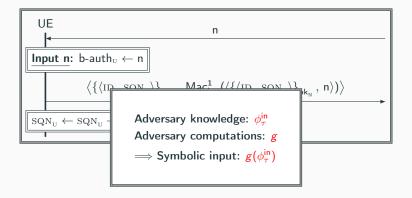
The Bana-Comon Model [Bana and Comon-Lundh, 2014]

The proof is in the Bana-Comon unlinkability model:

- Messages are modeled by (first-order) terms.
- **A security property** $P \sim Q$ is modeled by a **formula**:

$$\vec{u}_P \sim \vec{u}_Q$$

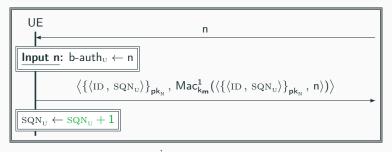

- Implementation assumptions and cryptographic hypothesis are modeled by axioms Ax.
- We have to show that $Ax \models \vec{u}_P \sim \vec{u}_Q$.


Messages and State

Symbolic trace of actions τ . Example: $\tau = UE_A$, HN, UE_B , UE_A .

Messages and State

- Symbolic trace of actions τ . Example: $\tau = UE_A$, HN, UE_B , UE_A .
- **Symbolic frame** ϕ_{τ} : sequences of messages observed by the attacker.
- **Symbolic state** σ_{τ} : current state of the users and the network.


$$\sigma_{ au}^{\sf up} \equiv \begin{cases} & \\ & \\ & \\ & \end{cases}$$
 b-auth_U $\mapsto g(\phi_{ au}^{\sf in})$

```
 \begin{array}{c|c} \textbf{UE} & \textbf{n} \\ \hline & & \\ \hline \textbf{Input n: b-auth}_{\textbf{U}} \leftarrow \textbf{n} \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\
```

$$t_{ au}^{\mathsf{enc}} \equiv \{\langle \mathrm{ID} \,,\, \sigma_{ au}^{\mathsf{in}} (\mathrm{SQN_{U}}) \rangle\}_{\mathsf{pk}_{\mathrm{N}}}^{\mathsf{ne}}$$

$$\sigma_{ au}^{\mathsf{up}} \; \equiv \; \left\{ \mathsf{b ext{-}auth}_{\scriptscriptstyle{\mathrm{U}}} \mapsto oldsymbol{g}oldsymbol{\phi}_{ au}^{\mathsf{in}} ig)
ight.$$

$$\begin{array}{l} t_{\tau}^{\mathsf{enc}} \; \equiv \; \{ \langle \mathrm{ID} \, , \, \sigma_{\tau}^{\mathsf{in}} (\mathrm{SQN}_{\mathrm{U}}) \rangle \}_{\mathsf{pk}_{\mathrm{N}}}^{\mathsf{ne}} \\ \phi_{\tau} \; \equiv \; \phi_{\tau}^{\mathsf{in}} , \left\langle t_{\tau}^{\mathsf{enc}} \, , \, \mathsf{Mac}_{\mathsf{k}_{\mathsf{m}}^{\mathsf{ID}}}^{1} (\langle t_{\tau}^{\mathsf{enc}} \, , \, \boldsymbol{g}(\phi_{\tau}^{\mathsf{in}}) \rangle) \right\rangle \\ \sigma_{\tau}^{\mathsf{up}} \; \equiv \; \begin{cases} \\ \mathsf{b}\text{-auth}_{\mathrm{U}} \mapsto \boldsymbol{g}(\phi_{\tau}^{\mathsf{in}}) \end{cases} \end{array}$$

$$\begin{array}{l} t_{\tau}^{\mathsf{enc}} \; \equiv \; \{ \langle \mathrm{ID} \, , \, \sigma_{\tau}^{\mathsf{in}} (\mathrm{SQN_{U}}) \rangle \}_{\mathsf{pk_{N}}}^{\mathsf{ne}} \\ \phi_{\tau} \; \equiv \; \phi_{\tau}^{\mathsf{in}}, \left\langle t_{\tau}^{\mathsf{enc}} \, , \, \mathsf{Mac}_{\mathsf{k_{m}^{ID}}}^{1} (\left\langle t_{\tau}^{\mathsf{enc}} \, , \, g(\phi_{\tau}^{\mathsf{in}}) \right\rangle) \right\rangle \\ \sigma_{\tau}^{\mathsf{up}} \; \equiv \; \begin{cases} \mathrm{SQN_{U}} \mapsto \mathsf{suc}(\sigma_{\tau}^{\mathsf{in}} (\mathrm{SQN_{U}^{ID}})) \\ \mathsf{b-auth_{U}} \mapsto g(\phi_{\tau}^{\mathsf{in}}) \end{cases} \\ \sigma_{\tau} \; \equiv \; \sigma_{\tau}^{\mathsf{in}} \cdot \sigma_{\tau}^{\mathsf{up}} \end{array}$$

Mac Unforgeability

If Mac is an EUF-MAC function, then the following axiom is valid:

$$\overline{\text{verify}_{k_{\mathbf{m}}}(s,m) \to \bigvee_{u \in \mathcal{S}} m = u}$$
 (EUF-MAC)

Where:

Mac Unforgeability

If Mac is an EUF-MAC function, then the following axiom is valid:

$$\overline{\operatorname{verify}_{\mathsf{k_m}}(s,m) \to \bigvee_{u \in \mathcal{S}} m = u}$$
 (EUF-MAC)

Where:

- \blacksquare k_m appears only in Mac or verify key position in s, m.

Mac Unforgeability

If Mac is an EUF-MAC function, then the following axiom is valid:

$$\overline{\text{verify}_{k_{\mathbf{m}}}(s,m) \to \bigvee_{u \in \mathcal{S}} m = u}$$
 (EUF-MAC)

Where:

- \blacksquare k_m appears only in Mac or verify key position in s, m.

Example

$$\phi \equiv \mathsf{Mac_{k_m}(t_1)}, \mathsf{Mac_{k_m}(t_2)}, \mathsf{Mac_{k_m'}(t_3)}$$
 $\mathsf{verify_{k_m}(g(\phi), \mathsf{n})} \ o$

Mac Unforgeability

If Mac is an EUF-MAC function, then the following axiom is valid:

$$\overline{\text{verify}_{k_m}(s,m) \to \bigvee_{u \in \mathcal{S}} m = u}$$
 (EUF-MAC)

Where:

- $S = \{u \mid \mathsf{Mac}_{\mathsf{k_m}}(u) \in \mathsf{st}(s, m)\}.$
- \blacksquare k_m appears only in Mac or verify key position in s, m.

Example

$$\phi \equiv \mathsf{Mac_{k_m}(\textit{t}_1)}, \mathsf{Mac_{k_m}(\textit{t}_2)}, \mathsf{Mac_{k_m'}(\textit{t}_3)}$$

$$\mathsf{verify}_{\mathsf{k_m}}(\mathsf{g}(\phi),\mathsf{n}) \ o \ \big(\mathsf{n} = \mathit{t_1} \lor \mathsf{n} = \mathit{t_2}\big)$$

Inference Rules

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$\frac{x_1,\ldots,x_n\sim y_1,\ldots,y_n}{f(x_1,\ldots,x_n)\sim f(y_1,\ldots,y_n)} \ \mathsf{FA}$$

Theorem

Definition

For every τ , we let $\underline{\tau}$ be τ where we use a fresh identity each time we run the ID sub-protocol.

Theorem

Definition

For every τ , we let $\underline{\tau}$ be τ where we use a fresh identity each time we run the ID sub-protocol.

Lemma

For every valid ${f au}$, there is a derivation using Ax of $\phi_{f au}\sim\phi_{{f au}}$.

Theorem

Definition

For every τ , we let $\underline{\tau}$ be τ where we use a fresh identity each time we run the ID sub-protocol.

Lemma

For every valid au, there is a derivation using Ax of $\phi_{ au} \sim \phi_{\underline{ au}}$.

Theorem

The AKA⁺ protocol is σ -unlinkable for an arbitrary number of agents and sessions when:

- The asymmetric encryption $\{_\}$ is IND-CCA₁.
- H and H^r (resp. Mac¹−Mac⁵) are jointly PRF.

Remarks

Remarks

- This is against an active attacker.
- We show this for an arbitrary number of agents and sessions.

Proof

Proof

The proof is by induction over the symbolic trace τ . Finding the invariant requires some work, as it needs to:

- anticipate what will be needed later (e.g. encryptions).
- match the left and right views of the adversary on the state.

Proof

The proof is by induction over the symbolic trace τ . Finding the invariant requires some work, as it needs to:

- anticipate what will be needed later (e.g. encryptions).
- match the left and right views of the adversary on the state.

```
\begin{array}{ll} \text{if } \sigma_{\tau}(\mathsf{sync}_{\mathtt{U}}^{\mathtt{ID}}) & \text{if } \sigma_{\underline{\tau}}(\mathsf{sync}_{\mathtt{U}}^{\mathtt{ID}_{\underline{\tau}}}) \\ & \text{then } \sigma_{\tau}(\mathtt{SQN}_{\mathtt{U}}^{\mathtt{ID}}) - \sigma_{\tau}(\mathtt{SQN}_{\mathtt{N}}^{\mathtt{ID}}) \sim & \text{then } \sigma_{\underline{\tau}}(\mathtt{SQN}_{\mathtt{U}}^{\mathtt{ID}_{\underline{\tau}}}) - \sigma_{\underline{\tau}}(\mathtt{SQN}_{\mathtt{N}}^{\mathtt{ID}_{\underline{\tau}}}) \\ & \text{else } \bot & \text{else } \bot \end{array}
```


■ While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which tries to satisfy the design constraints of 5G-AKA.

Conclusion

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which tries to satisfy the design constraints of 5G-AKA.
- \blacksquare We defined the notion of $\sigma\text{-unlinkability}.$

Conclusion

- While 5G-AKA prevents the IMSI-catcher attack, all others known unlinkability attacks still applies.
- We gave a new unlinkability attack against PRIV-AKA.
- We proposed the AKA⁺ protocol, which tries to satisfy the design constraints of 5G-AKA.
- We defined the notion of σ -unlinkability.
- We proved in the BC logic that AKA⁺ is σ -unlinkability.
- We also proved that AKA⁺ provides mutual authentication.

Thanks for your attention

References i

[3GPP, 2018] 3GPP (2018).

Ts 33.501: Security architecture and procedures for 5g system.

[Arapinis et al., 2012] Arapinis, M., Mancini, L. I., Ritter, E., Ryan, M., Golde, N., Redon, K., and Borgaonkar, R. (2012). New privacy issues in mobile telephony: fix and verification.

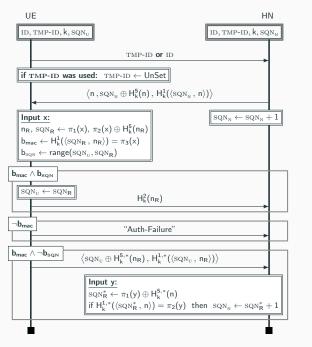
In the ACM Conference on Computer and Communications Security, CCS'12, pages 205–216. ACM.

References ii

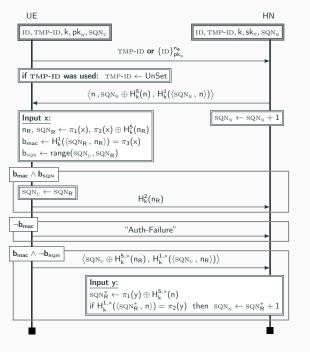
- [Bana and Comon-Lundh, 2014] Bana, G. and Comon-Lundh, H. (2014).
 - A computationally complete symbolic attacker for equivalence properties.
 - In 2014 ACM Conference on Computer and Communications Security, CCS '14, pages 609–620. ACM.
- [Fouque et al., 2016] Fouque, P., Onete, C., and Richard, B. (2016).
 - Achieving better privacy for the 3gpp AKA protocol. *PoPETs*, 2016(4):255–275.

References iii

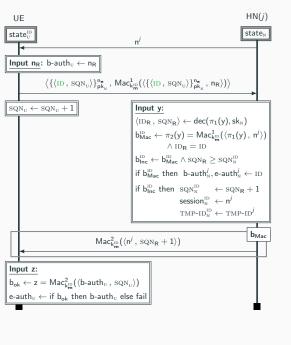
[Strobel, 2007] Strobel, D. (2007).

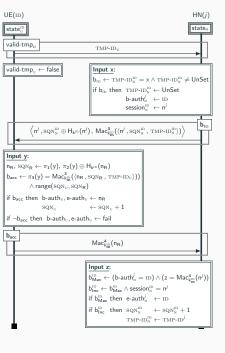

Imsi catcher.

Ruhr-Universität Bochum, Seminar Work.

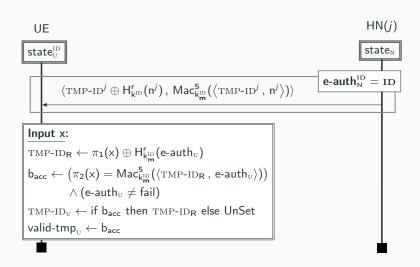

No Pre-Fetching of Authentication Vectors

From the 3GPP specification for 5G-AKA ([3GPP, 2018], p. 37)

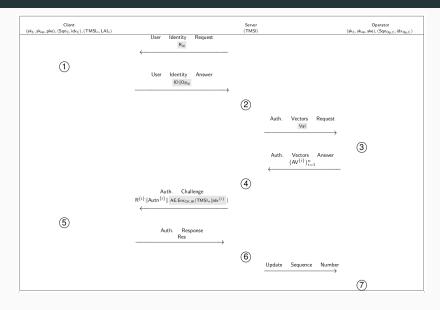

5G AKA does not support requesting multiple 5G AVs, neither the SEAF pre-fetching 5G AVs from the home network for future use.


4G-AKA

5G-AKA



ID Sub-Protocol



TMP-ID
Sub-Protocol

The ASSIGN-TMP-ID Sub-Protocol

PRIV-AKA [Fouque et al., 2016]

PRIV-AKA [Fouque et al., 2016]

Client	Server	Operator
	②: Process the identifier ID: If the identifier is a TMSI then Val = IMSI. Otherwise, Val = (ID, R _{el}). ④: Store {AV ⁽¹⁾ } _[-1] (Doses AV ⁽¹⁾) ment order. Then, it sends the authentication challenge and the new couple (TMSI _n , idx ⁽¹⁾) enercypted and authenticated by the session keys. ⑥: If the authentication of the client is verified (Res ≟ Macc), then they ask to the server the update of its sequence number. Otherwise, the protocol is aborted.	

Licenses

- Smart-phone icon: Gregor Hagedorn, CC-BY-SA-3.0
- Database icon: Font Awesome, CC-BY-4.0