Cracking the Stateful Nut

Computational Proofs of Stateful Security Protocols using the

SQUIRREL Proof Assistant

CSF'22

David Baelde	Univ Rennes, CNRS, IRISA
Stéphanie Delaune	Univ Rennes, CNRS, IRISA
Adrien Koutsos	Inria Paris
Solène Moreau	Univ Rennes, CNRS, IRISA

9 August 2022, Haifa, Israel

 Security protocols are *distributed* programs which aim at providing some security properties.

- Attacks against security protocols can be very damageable, e.g. theft or privacy breach.
- Protocol design is though, and errors are hard to spot.
- \Rightarrow well-suited field for **formal verification**.

The SQUIRREL Prover:

- Tool for verification of security protocols in the computational model.
- Implements an indistinguishability logic.
 - Inference rules proved valid w.r.t. comp. attacker.
- Proof assistant:
 - Users prove goals using sequences of tactics.
 - Logical tactics: apply, rewrite, ...
 - Crypto. tactics: prf, euf, ...
- Web-page:

https://squirrel-prover.github.io/

- In stateful protocols, agents have a mutable state persistent between sessions.
- Used in many real-world protocols, e.g.:
 - using integer counters: Yubi-Key, {3,4,5}G-AKA, ...
 - using chains of hashes: OSK, YPLRK, ...
 - using ratcheting/key refresh: Signal, MLS

Problem: SQUIRREL did not support mutable state, making stateful protocols out-of-scope.

- Extend the indistinguishability logic with **mutable state**.
- New generalized sequent calculus.
 - Mix reachability and equivalence reasonings.
- **Proof automation**: design a proof system for bi-deduction.
 - Intuition: indistinguishability is preserved by (public) computation.
 - Allow for **automation** of some proof steps.
- Implementation in the SQUIRREL tool.
 - Main case-studies: Yubi-Key, Yubi-HSM.

Indistinguishability Logic

The OSK Protocol

 s_T : mutable state of tag T s_R : mutable state of reader R s_T and s_R initial value: n_s n_s, k_H, k_G : random samplings H, G: keyed hash functions

The OSK protocol:

 $\begin{array}{rl} 1: \mathsf{T} \longrightarrow \mathsf{R}: & \mathsf{s}_\mathsf{T} := \mathsf{H}(\mathsf{s}_\mathsf{T},\mathsf{k}_\mathsf{H}); \\ & & \mathsf{out}(\mathsf{G}(\mathsf{s}_\mathsf{T},\mathsf{k}_\mathsf{G})) \end{array}$

 $\begin{array}{ll} 2:R \longrightarrow T: & \mbox{in}(x); \\ & \mbox{if } x = G(H(s_R,k_H),k_G) \mbox{ then} \\ & \mbox{out}(ok); \\ & s_R := H(s_R,k_H) \end{array}$

Terms represent **probabilistic poly-time computations of bitstrings**. Used to model both **protocol** and **adversary computations**. **Terms** represent **probabilistic poly-time computations of bitstrings**. Used to model both **protocol** and **adversary computations**.

Function symbols for Names for random samplings of length η (security parameter): honest computations: n_s, k_H, k_G $H(n_s, k_H)$ Timestamps for time-points Indices for of the protocol execution: session identifiers: protocol actions (Tag(i)), varivariable i ables (e.g. τ), predecessor pred(T) Macros for protocol Attacker function symbols

terms at a given time: input@ τ , output@ τ , frame@ τ , s_T@ τ Attacker function symbols for adversary computations: att(frame@pred(τ))

Indistinguishability Logic: Terms

```
\begin{split} 1: \mathsf{T} &\longrightarrow \mathsf{R}: \quad s_\mathsf{T} := \mathsf{H}(\mathsf{s}_\mathsf{T},\mathsf{k}_\mathsf{H});\\ & \mathsf{out}(\mathsf{G}(\mathsf{s}_\mathsf{T},\mathsf{k}_\mathsf{G})) \\ 2: \mathsf{R} &\longrightarrow \mathsf{T}: \quad \mathsf{in}(\mathsf{x});\\ & \mathsf{if} \; \mathsf{x} = \mathsf{G}(\mathsf{H}(\mathsf{s}_\mathsf{R},\mathsf{k}_\mathsf{H}),\mathsf{k}_\mathsf{G}) \; \mathsf{then} \\ & \mathsf{out}(\mathsf{ok});\\ & \mathsf{s}_\mathsf{R} := \mathsf{H}(\mathsf{s}_\mathsf{R},\mathsf{k}_\mathsf{H}) \end{split}
```

Examples:

OSK tag T state updates:

 $s_T@\tau = H(s_T@pred(\tau), k_H)$

■ Definition of input@*τ*:

att(frame@pred(τ))

• Local formulas : first-order formulas built over the atoms:

$$t_1 = t_2, T_1 = T_2, T_1 \le T_2, happens(T), \dots$$

Example:

OSK tag T state updates:

 $\forall \tau. \left(\exists i. \tau = \mathsf{Tag}(i) \land \mathsf{happens}(\tau) \right) \rightarrow \mathsf{s_T}@\tau = \mathsf{H}(\mathsf{s_T}@\mathsf{pred}(\tau), \mathsf{k_H})$

- ϕ is valid w.r.t. \mathcal{P} if it is true with overwhelming probability.
- Example of valid formula: w.r.t. any protocol \mathcal{P}
 - Random samplings freshness:

 $n_1 \neq n_2$

Local formulas can capture reachability security properties.

Example:

Authentication of the OSK protocol:

 $\forall \tau. \ \phi_{\mathsf{accept}}^{\mathsf{R}}[\tau] \to \exists \mathsf{i}. \mathsf{Tag}(\mathsf{i}) \leq \tau \land \mathsf{input} @ \tau = \mathsf{output} @ \mathsf{Tag}(\mathsf{i})$

Global formulas : **first-order** logic formulas Φ over the atoms:

- [φ]_P where φ is a local formula.
 Valid if the local formula φ is valid w.r.t. P.
- $[\vec{u} \sim \vec{v}]_{\mathcal{P}_1, \mathcal{P}_2}$ where \vec{u}, \vec{v} are same-length sequences of terms. *Valid* if no PPTM \mathcal{A} can distinguish between \vec{u} and \vec{v} . (w.r.t., respectively, \mathcal{P}_1 and \mathcal{P}_2)

Notations: $\tilde{\forall}$, $\tilde{\lor}$...to distinguish from local logic constructs.

Global formulas can capture equivalence security properties.

Example:

■ Strong secrecy of the OSK state: $(\mathcal{P} = OSK)$ $\tilde{\forall}\tau.[happens(\tau)]_{\mathcal{P}_1} \Rightarrow [frame@\tau, s_T@\tau \sim frame@\tau, n_{fresh}]_{\mathcal{P},\mathcal{P}}$

Example of a valid global formula:

$$\bullet [s=t]_{\mathcal{P}_1} \stackrel{\sim}{\Rightarrow} [\vec{u}[s] \sim \vec{v}]_{\mathcal{P}_1, \mathcal{P}_2} \stackrel{\sim}{\Rightarrow} [\vec{u}[t] \sim \vec{v}]_{\mathcal{P}_1, \mathcal{P}_2}$$

Example of a valid global formula:

$$\bullet [s=t]_{\mathcal{P}_1} \stackrel{\sim}{\Rightarrow} [\vec{u}[s] \sim \vec{v}]_{\mathcal{P}_1, \mathcal{P}_2} \stackrel{\sim}{\Rightarrow} [\vec{u}[t] \sim \vec{v}]_{\mathcal{P}_1, \mathcal{P}_2}$$

Global formulas allow to mix reachability and equivalence properties.

Sequents and Proof Systems

$$\Sigma; \Theta : \Gamma \vdash_{\mathcal{P}} \phi$$
 and $\Sigma; \Theta \vdash \Phi$

local formulas global formulas

 Σ : universally quantified variables

Semantics

$$\begin{split} & \Sigma; \ \Theta \vdash \Phi \quad \rightsquigarrow \quad \tilde{\forall} \Sigma. \ (\tilde{\wedge} \Theta \stackrel{\sim}{\Rightarrow} \Phi) \\ & \Sigma; \ \Theta : \ \Gamma \vdash_{\mathcal{P}} \phi \quad \rightsquigarrow \quad \tilde{\forall} \Sigma. \ (\tilde{\wedge} \Theta \stackrel{\sim}{\Rightarrow} [\land \Gamma \Rightarrow \phi]_{\mathcal{P}}) \end{split}$$

Proof System: Classical Reasoning

Classical FO inference rules are sound:

Purely local (local seq.):

 $\frac{\Sigma; \Theta: \Gamma, \phi_1 \vdash_{\mathcal{P}} \psi \qquad \Sigma; \Theta: \Gamma, \phi_2 \vdash_{\mathcal{P}} \psi}{\Sigma; \Theta: \Gamma, \phi_1 \lor \phi_2 \vdash_{\mathcal{P}} \psi}$

Classical FO inference rules are sound:

Purely local (local seq.):

 $\frac{\Sigma; \Theta: \Gamma, \phi_1 \vdash_{\mathcal{P}} \psi}{\Sigma; \Theta: \Gamma, \phi_2 \vdash_{\mathcal{P}} \psi}$ $\Sigma; \Theta: \Gamma, \phi_1 \lor \phi_2 \vdash_{\mathcal{P}} \psi$

Purely global (local and global seq.):

 $\frac{\Sigma; \ \Theta, \Phi_1 : \ \Gamma \vdash_{\mathcal{P}} \psi}{\Sigma; \ \Theta, \Phi_1 \lor \nabla} \Sigma; \ \Theta, \Phi_2 : \ \Gamma \vdash_{\mathcal{P}} \psi}$ $\frac{\Sigma; \ \Theta, \Phi_1 \lor \Phi_2 : \ \Gamma \vdash_{\mathcal{P}} \psi}{\Sigma; \ \Theta, \Phi_1 \lor \Phi_2 : \ \Gamma \vdash_{\mathcal{P}} \psi}$

 $\frac{\Sigma; \ \Theta, \Phi_1 \vdash \Psi \qquad \Sigma; \ \Theta, \Phi_2 \vdash \Psi}{\Sigma; \ \Theta, \Phi_1 \lor \Psi \qquad \Sigma; \ \Theta, \Phi_2 \vdash \Psi}$

Selected inference rules involving mixed kinds of sequents:

Global-Local	Local-Global
$\Sigma; \Theta \vdash [\phi]_{\mathcal{P}}$	$\Sigma; \Theta : \square \vdash_{\mathcal{P}} \phi$
$\Sigma; \Theta : \models_{\mathcal{P}} \phi$	$\Sigma; \Theta \vdash [\phi]_{\mathcal{P}}$

 $\begin{array}{c} \text{Rewrite-Equiv} \\ \Sigma; \ \Theta \vdash \ \left[\phi \sim \psi\right]_{\mathcal{P},\mathcal{P}'} \\ \underline{\Sigma; \ \Theta : \ } \vdash_{\mathcal{P}'} \psi \\ \hline \Sigma; \ \Theta : \ } \vdash_{\mathcal{P}} \phi \end{array}$

Selected inference rules involving mixed kinds of sequents:

Global-Local	Local-Global
$\Sigma; \Theta \vdash [\phi]_{\mathcal{P}}$	$\Sigma; \Theta : \square \vdash_{\mathcal{P}} \phi$
$\Sigma; \Theta : \square \vdash_{\mathcal{P}} \phi$	$\Sigma; \Theta \vdash [\phi]_{\mathcal{P}}$

 $\frac{\text{Rewrite-Equiv}}{\Sigma; \ \Theta \vdash \left[(\Gamma \Rightarrow \phi) \sim (\Delta \Rightarrow \psi) \right]_{\mathcal{P}, \mathcal{P}'}}{\Sigma; \ \Theta : \ \Delta \vdash_{\mathcal{P}'} \psi}$ $\frac{\Sigma; \ \Theta : \ \Gamma \vdash_{\mathcal{P}} \phi}{\Sigma; \ \Theta : \ \Gamma \vdash_{\mathcal{P}} \phi}$

Example:

Strong secrecy of a state value s_T :

```
\Phi_{\mathcal{S}} \stackrel{\mathsf{def}}{=} [\mathsf{frame}@\tau, \mathsf{s}_{\mathsf{T}}@\tau \sim \mathsf{frame}@\tau, \mathsf{n}_{\mathsf{fresh}}]_{\mathcal{P}, \mathcal{P}}
```

implies weak secrecy of sT:

input@ $\tau \neq s_T@\tau$

Example:

Strong secrecy of a state value s_T :

$$\Phi_{\mathcal{S}} \stackrel{\text{def}}{=} [\mathsf{frame} @\tau, \mathsf{s_T} @\tau \sim \mathsf{frame} @\tau, \mathsf{n_{fresh}}]_{\mathcal{P}, \mathcal{P}}$$

implies weak secrecy of s_T :

input@
$$\tau \neq s_T@\tau$$

Proof:

$$\tau; \Phi_{hap}, \Phi_{\mathcal{S}} \vdash [(input@\tau \neq s_{T}@\tau) \sim (input@\tau \neq n_{fresh})]_{\mathcal{P}, \mathcal{P}}$$

$$\tau; \Phi_{hap}, \Phi_{\mathcal{S}} : \vdash_{\mathcal{P}} input@\tau \neq n_{fresh}$$

$$\tau; \Phi_{hap}, \Phi_{\mathcal{S}} : \vdash_{\mathcal{P}} input@\tau \neq s_{T}@\tau$$

$$RewRITE-EQUIV$$

(where
$$\Phi_{hap}$$
 is $[happens(\tau)]_{\mathcal{P}}$)

Example:

Strong secrecy of a state value s_T :

$$\Phi_{\mathcal{S}} \stackrel{\text{def}}{=} [\text{frame}@\tau, s_{\mathsf{T}}@\tau \sim \text{frame}@\tau, n_{\text{fresh}}]_{\mathcal{P}, \mathcal{P}}$$

implies weak secrecy of s_T :

input@
$$\tau \neq s_T@\tau$$

Proof:

$$\tau; \Phi_{hap}, \Phi_{\mathcal{S}} \vdash \left[\left(\mathsf{input} \mathbb{Q}\tau \neq \mathsf{s_T} \mathbb{Q}\tau \right) \sim \left(\mathsf{input} \mathbb{Q}\tau \neq \mathsf{n_{fresh}} \right) \right]_{\mathcal{P}, \mathcal{P}}$$

$$\tau; \Phi_{hap}, \Phi_{\mathcal{S}} : \vdash_{\mathcal{P}} \mathsf{input} \mathbb{Q}\tau \neq \mathsf{n_{fresh}}$$

$$\tau; \Phi_{hap}, \Phi_{\mathcal{S}} : \vdash_{\mathcal{P}} \mathsf{input} \mathbb{Q}\tau \neq \mathsf{s_T} \mathbb{Q}\tau$$

$$\mathsf{RewRITE-EQUIV}$$

- 2_{nd} premise: consequence of n_{fresh} freshness
- 1_{st} premise: RHS can be (bi)-deduced from Φ_S !

(where Φ_{hap} is $[happens(\tau)]_{\mathcal{P}}$)

Bi-Deduction

Indistinguishability is preserved by (public) computation:

if
$$\begin{bmatrix} \vec{u_1} \sim \vec{u_2} \end{bmatrix}$$
 then $\forall \mathcal{B}$. $\begin{bmatrix} \mathcal{B}(\vec{u_1}) \sim \mathcal{B}(\vec{u_2}) \end{bmatrix}$

As a pseudo-inference rule:

 $\frac{\exists \mathcal{B} \text{ s.t. } \mathcal{B} \text{ computes } \vec{v_i} \text{ from } \vec{u_i}}{\Sigma; \ \Theta, [\vec{u_1} \sim \vec{u_2}] \vdash [\vec{v_1} \sim \vec{v_2}]}$

Bi-Deduction: Example

 $\frac{\exists \mathcal{B} \text{ s.t. } \mathcal{B} \text{ computes } \vec{v_i} \text{ from } \vec{u_i}}{\Sigma; \Theta, [\vec{u_1} \sim \vec{u_2}] \vdash [\vec{v_1} \sim \vec{v_2}]}$

Example: τ ; Φ_{hap} , [frame@ τ , s_T @ $\tau \sim frame@<math>\tau$, n_{fresh}] \vdash [(input@ $\tau \neq s_T$ @ τ) \sim (input@ $\tau \neq n_{fresh}$)]

Proved by bi-deduction with:

$$\mathcal{B}(\mathsf{frame@}\tau,\mathsf{x}) \stackrel{\mathsf{def}}{=} (\mathsf{att}(\mathsf{frame@pred}(\tau)) = \mathsf{x})$$

■ The **bi-deduction** rule:

 $\frac{\text{BI-DEDUCE}}{\Sigma; \#(\vec{u}_1, \vec{u}_2) \triangleright \#(\vec{v}_1, \vec{v}_2)}$ $\frac{\Sigma; \Theta, [\vec{u}_1 \sim \vec{u}_2] \vdash [\vec{v}_1 \sim \vec{v}_2]}{\Sigma; \Theta, [\vec{u}_1 \sim \vec{u}_2] \vdash [\vec{v}_1 \sim \vec{v}_2]}$

• We designed a **proof system** for bi-deduction, e.g.:

 $\frac{\sum_{i=1}^{FA} \sum_{i=1}^{FA} (\vec{u}_{1}, \vec{u}_{2}) \triangleright \#(\vec{v}_{1}, \vec{v}_{2})}{\sum_{i=1}^{FA} (\vec{u}_{1}, \vec{u}_{2}) \triangleright \#(f(\vec{v}_{1}), f(\vec{v}_{2}))}$

Fully-automated procedure for **bi-deduction** implemented in **SQUIRREL**:

- soundness follows from our bi-deduction proof system;
- integrated in the apply tactic (for global sequents);
- extension with fully-automated inductive reasoning using abstract interpretation.

Case-Studies

Security analysis of the Yubi-Key protocol (used for 2FA).

- Yubi-Keys are physical authentication devices with a single button, which generated a OTP (one-time password).
- Uses **counters** for *protection against replay-attack*:
 - OTPs include the encrypted Yubi-Key counter;
 - the counter is incremented after each sessions.
- We prove **injective authentication**:
 - successful login must be preceded by a button press;
 - each counter value is accepted at most once.

Also studied the Yubi-HSM protocol:

- Yubi-HSM = Yubi-Key + keys stored in a HSM (server side).
- We prove injective authentication

Also studied the Yubi-HSM protocol:

- Yubi-HSM = Yubi-Key + keys stored in a HSM (server side).
- We prove **injective authentication** in two steps:
 - equivalence of Yubi-HSM with an idealized version;
 - proof of injective authentication, using **REWRITE-EQUIV** to switch from the real to the ideal protocol.

Conclusion

Conclusion

Our Contributions

- Extend the indistinguishability logic with mutable state.
- Generalized sequent calculus.
 - Mix reachability and equivalence reasonings.
- **Proof automation**: design a proof system for bi-deduction.
 - Allow for **automation** of some proof steps.
- Implementation in SQUIRREL + case-studies: Yubi-{Key,HSM}.

Future Works

- More complex protocols and security properties.
- More automation, e.g. using SMT solvers.
- Systematic translation of crypto. assumptions as inference rules.

Thank you for your attention

Proof System: Local \neq Global

Local hypothesis \neq global hypothesis:

- Global hypothesis : property of a bitstring distribution
- Local hypothesis : property of a bitstring

Global hyp. are stronger than local hyp.:

$$\Sigma; \qquad \Theta: \phi, \Gamma \vdash_{\mathcal{P}} \psi \qquad \qquad \phi \to \psi \text{ true with overwh. prob}$$

$$\Sigma; [\phi]_{\mathcal{P}}, \Theta: \qquad \Gamma \vdash_{\mathcal{P}} \psi \qquad \qquad \phi \text{ true with overwh. prob.}$$

$$implies \\ \psi \text{ true with overwh. prob.}$$

But the converse does not generally hold. Counter-example:

$$\begin{array}{ll} \mathsf{n} = \mathsf{0} \to \mathsf{n} = \mathsf{1} & \qquad [\mathsf{n} = \mathsf{0}] \stackrel{\sim}{\Rightarrow} [\mathsf{n} = \mathsf{1}] \\ \mathsf{not valid} & \qquad \mathsf{valid} \end{array}$$