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Context

Security protocols are distributed programs which aim at providing
some security properties.

Attacks against security protocols can be very damageable, e.g.
theft or privacy breach.

Protocol design is though, and errors are hard to spot.

⇒ well-suited field for formal verification.
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The Squirrel Prover

The Squirrel Prover:

Tool for verification of security protocols in the
computational model.
Implements an indistinguishability logic.

Inference rules proved valid w.r.t. comp. attacker.

Proof assistant:
Users prove goals using sequences of tactics.
Logical tactics: apply, rewrite, . . .
Crypto. tactics: prf, euf, . . .

Web-page:

https://squirrel-prover.github.io/
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Stateful Protocols

In stateful protocols, agents have a mutable state persistent
between sessions.

Used in many real-world protocols, e.g.:
using integer counters: Yubi-Key, {3,4,5}G-AKA, . . .
using chains of hashes: OSK, YPLRK, . . .
using ratcheting/key refresh: Signal, MLS . . .

Problem: Squirrel did not support mutable state, making stateful
protocols out-of-scope.

3



Our Contributions

Extend the indistinguishability logic with mutable state.

New generalized sequent calculus.
Mix reachability and equivalence reasonings .

Proof automation: design a proof system for bi-deduction.
Intuition: indistinguishability is preserved by (public) computation.
Allow for automation of some proof steps.

Implementation in the Squirrel tool.
Main case-studies: Yubi-Key, Yubi-HSM.
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Indistinguishability Logic



The OSK Protocol

sT: mutable state of tag T
sR: mutable state of reader R
sT and sR initial value: ns

ns, kH, kG: random samplings
H, G: keyed hash functions

The OSK protocol:

1 : T −→ R : sT := H(sT, kH);

out(G(sT, kG))

2 : R −→ T : in(x);

if x = G(H(sR, kH), kG) then
out(ok);

sR := H(sR, kH)
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Indistinguishability Logic: Terms

Terms represent probabilistic poly-time computations of bitstrings.

Used to model both protocol and adversary computations.

Names for random samplings of
length η (security parameter):

ns, kH, kG

Function symbols for
honest computations:

H(ns, kH)

Timestamps for time-points
of the protocol execution:

protocol actions (Tag(i)), vari-
ables (e.g. τ), predecessor pred(T )

Indices for
session identifiers:

variable i

Macros for protocol
terms at a given time:

input@τ, output@τ, frame@τ, sT@τ

Attacker function symbols
for adversary computations:

att(frame@pred(τ))
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Indistinguishability Logic: Terms

1 : T −→ R : sT := H(sT, kH);

out(G(sT, kG))

2 : R −→ T : in(x);

if x = G(H(sR, kH), kG) then
out(ok);

sR := H(sR, kH)

Examples:

OSK tag T state updates:

sT@τ = H(sT@pred(τ), kH)

Definition of input@τ:

att(frame@pred(τ))
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Indistinguishability Logic: Local Formulas

Local formulas : first-order formulas built over the atoms:

t1 = t2,T1 = T2,T1 ≤ T2, happens(T ), . . .

Example:
OSK tag T state updates:

∀τ.
(
∃i. τ = Tag(i) ∧ happens(τ)

)
→ sT@τ = H(sT@pred(τ), kH)
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Indistinguishability Logic: Local Formulas

φ is valid w.r.t. P if it is true with overwhelming probability.

Example of valid formula: w.r.t. any protocol P

Random samplings freshness:

n1 6= n2
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Indistinguishability Logic: Local Formulas

Local formulas can capture reachability security properties.

Example:
Authentication of the OSK protocol:

∀τ. φR
accept[τ]→ ∃i.Tag(i) ≤ τ ∧ input@τ = output@Tag(i)
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Indistinguishability Logic: Global Formulas

Global formulas : first-order logic formulas Φ over the atoms:

[φ]P where φ is a local formula .
Valid if the local formula φ is valid w.r.t. P.

[~u ∼ ~v ]P1,P2 where ~u, ~v are same-length sequences of terms.
Valid if no PPTM A can distinguish between ~u and ~v .
(w.r.t., respectively, P1 and P2)

Notations: ∀̃, ∨̃. . . to distinguish from local logic constructs.
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Indistinguishability Logic: Global Formulas

Global formulas can capture equivalence security properties.

Example:

Strong secrecy of the OSK state: (P = OSK)

∀̃τ.[happens(τ)]P1 ⇒̃ [frame@τ, sT@τ ∼ frame@τ, nfresh]P,P
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Indistinguishability Logic: Global Formulas

Example of a valid global formula:

[s = t]P1 ⇒̃
[
~u [s] ∼ ~v

]
P1,P2 ⇒̃

[
~u [t] ∼ ~v

]
P1,P2

Global formulas allow to mix reachability and equivalence properties.
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Sequents and Proof Systems



Local and Global Sequents

Σ ; Θ : Γ `P φ and Σ ; Θ ` Φ

local formulas global formulas

Σ: universally quantified variables

Semantics

Σ; Θ ` Φ  ∀̃Σ. (∧̃Θ ⇒̃ Φ)

Σ; Θ : Γ `P φ  ∀̃Σ. (∧̃Θ ⇒̃ [ ∧ Γ⇒ φ]P)
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Proof System: Classical Reasoning

Classical FO inference rules are sound:

Purely local (local seq.):

Σ; Θ : Γ, φ1 `P ψ Σ; Θ : Γ, φ2 `P ψ

Σ; Θ : Γ, φ1 ∨ φ2 `P ψ

Purely global (local and global seq.):

Σ; Θ,Φ1 : Γ `P ψ Σ; Θ,Φ2 : Γ `P ψ

Σ; Θ,Φ1 ∨̃ Φ2 : Γ `P ψ

Σ; Θ,Φ1 ` Ψ Σ; Θ,Φ2 ` Ψ

Σ; Θ,Φ1 ∨̃ Φ2 ` Ψ
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Proof System: Mixing Local and Global Reasoning

Selected inference rules involving mixed kinds of sequents:

Global-Local
Σ; Θ ` [φ]P

Σ; Θ : `P φ

Local-Global
Σ; Θ : `P φ

Σ; Θ ` [φ]P

Rewrite-Equiv

Σ; Θ `
[
φ ∼ ψ

]
P,P ′

Σ; Θ : `P ′ ψ

Σ; Θ : `P φ
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Example: Strong Secrecy → Weak Secrecy

Example:
Strong secrecy of a state value sT:

ΦS
def
= [frame@τ, sT@τ ∼ frame@τ, nfresh]P,P

implies weak secrecy of sT:
input@τ 6= sT@τ

Proof:
τ; Φhap,ΦS `

[(
input@τ 6= sT@τ

)
∼

(
input@τ 6= nfresh

)]
P,P

τ; Φhap,ΦS : `P input@τ 6= nfresh

τ; Φhap,ΦS : `P input@τ 6= sT@τ
Rewrite-Equiv

2nd premise: consequence of nfresh freshness
1st premise: RHS can be (bi)-deduced from ΦS !

(where Φhap is [happens(τ)]P)
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Bi-Deduction



Bi-Deduction: Intuition

Indistinguishability is preserved by (public) computation:

if
[
~u1 ∼ ~u2

]
then ∀B.

[
B(~u1) ∼ B(~u2)

]
As a pseudo-inference rule:

∃B s.t. B computes ~vi from ~ui

Σ; Θ, [~u1 ∼ ~u2] ` [~v1 ∼ ~v2]
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Bi-Deduction: Example

∃B s.t. B computes ~vi from ~ui

Σ; Θ, [~u1 ∼ ~u2] ` [~v1 ∼ ~v2]

Example:
τ; Φhap,

[
frame@τ, sT@τ ∼ frame@τ, nfresh

]
`[(

input@τ 6= sT@τ
)
∼

(
input@τ 6= nfresh

)]
Proved by bi-deduction with:

B(frame@τ, x)
def
=

(
att(frame@pred(τ)) = x

)
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Bi-Deduction Judgements and Proof System

The bi-deduction rule:

Bi-Deduce
Σ; #(~u1, ~u2) . #(~v1, ~v2)

Σ; Θ, [~u 1 ∼ ~u 2] ` [~v 1 ∼ ~v 2]

We designed a proof system for bi-deduction, e.g.:

fa
Σ; #(~u1, ~u2) . #(~v1, ~v2)

Σ; #(~u1, ~u2) . #(f(~v1), f(~v2))
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Bi-Deduction: Implementation

Fully-automated procedure for bi-deduction implemented in
Squirrel:

soundness follows from our bi-deduction proof system;

integrated in the apply tactic (for global sequents);

extension with fully-automated inductive reasoning using abstract
interpretation.
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Case-Studies



Case-Study: Yubi-Key

Security analysis of the Yubi-Key protocol (used for 2FA).

Yubi-Keys are physical authentication devices with a single button,
which generated a OTP (one-time password).

Uses counters for protection against replay-attack:
OTPs include the encrypted Yubi-Key counter;
the counter is incremented after each sessions.

We prove injective authentication:
successful login must be preceded by a button press;
each counter value is accepted at most once.
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Case-Study: Yubi-HSM

Also studied the Yubi-HSM protocol:

Yubi-HSM = Yubi-Key + keys stored in a HSM (server side).

We prove injective authentication

in two steps:
equivalence of Yubi-HSM with an idealized version;
proof of injective authentication, using Rewrite-Equiv to switch
from the real to the ideal protocol.
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Conclusion

Our Contributions

Extend the indistinguishability logic with mutable state.
Generalized sequent calculus.

Mix reachability and equivalence reasonings.

Proof automation: design a proof system for bi-deduction.
Allow for automation of some proof steps.

Implementation in Squirrel + case-studies: Yubi-{Key,HSM}.

Future Works

More complex protocols and security properties.

More automation, e.g. using SMT solvers.

Systematic translation of crypto. assumptions as inference rules.
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Thank you for your attention
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Proof System: Local 6= Global

Local hypothesis 6= global hypothesis:

Global hypothesis : property of a bitstring distribution
Local hypothesis : property of a bitstring

Global hyp. are stronger than local hyp.:

Σ; Θ : φ, Γ `P ψ

Σ; [φ]P ,Θ : Γ `P ψ

φ→ ψ true with overwh. prob.

φ true with overwh. prob.
implies

ψ true with overwh. prob.

But the converse does not generally hold.
Counter-example:

n = 0→ n = 1
not valid

[n = 0] ⇒̃ [n = 1]

valid
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