
Verifying Cryptographic Protocols

Demi-heure de Science

Adrien Koutsos Prosecco

9 November 2023

Context

Security Protocols
Distributed programs which aim at providing some security
properties.
Uses cryptographic primitives: e.g. encryption.

1

Context: Security Properties

There is a large variety of security properties.

Confidentiality
Authentication

Privacy

Privacy

2

Context: Attacker Model

Against whom should these properties hold?

concretely, in the real world: malicious individuals, corporations,
state agencies, ...
more abstractly, one (or many) computers sitting on the network.

Abstract attacker model
Network capabilities: worst-case scenario:
eavesdrop, block and forge messages.
Computational capabilities: the adversary’s
computational power.
Side-channels capabilities: observing the
agents (e.g. time, power-consumption)
⇒ not in this talk.

3

Context: Attacker Model

Against whom should these properties hold?

concretely, in the real world: malicious individuals, corporations,
state agencies, ...
more abstractly, one (or many) computers sitting on the network.

Abstract attacker model
Network capabilities: worst-case scenario:
eavesdrop, block and forge messages.
Computational capabilities: the adversary’s
computational power.
Side-channels capabilities: observing the
agents (e.g. time, power-consumption)
⇒ not in this talk.

3

BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:

uses an RFID tag.
guard access to information stored.
should guarantee data
confidentiality and user privacy.

Some security mechanisms:
integrity: obtaining key k requires
physical access.
no replay: random nonce n, old
messages cannot be re-used.

n

enck(n, . . .)

ok(· · ·)
(valid key + no replay)

4

BAC Protocol (simplified)

Privacy: Unlinkability
No adversary knows whether it
interacted with a particular user, in any
context.

Example. For two user sessions:

(
,

)
=

, ?

, ?

French version of BAC:
̸= error messages for replay and
integrity checks.

⇒ unlinkability attack.

n

enck(n, . . .)

ok(· · ·)

5

BAC Protocol (simplified)

Privacy: Unlinkability
No adversary knows whether it
interacted with a particular user, in any
context.

Example. For two user sessions:

(
,

)
=

, ?

, ?

French version of BAC:
̸= error messages for replay and
integrity checks.

⇒ unlinkability attack.

n

enck(n, . . .)

ok(· · ·)

5

BAC Protocol: Privacy Attack

n0

enck(n0, . . .)

ok(· · ·)

n1

enck(n0, . . .)

replay error

n1

enck(n0, . . .)

integrity error

6

BAC Protocol: Lessons

Take-away lessons:

This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.
Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

7

BAC Protocol: Lessons

Take-away lessons:

This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.
Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

7

High-Confidence Security Guarantees

Verification
Formal mathematical proof of security protocols:

S |= Φ

system satisfies property

Must be sound: proof ⇒ property always holds

Usually undecidable: approaches either incomplete or interactive.

Machine-checked proofs yield a high degree of confidence.
general-purpose tools (e.g. Coq and Lean).
in security protocol analysis, mostly dedicated tools.
E.g. CryptoVerif, EasyCrypt, Squirrel.

8

Computer-aided Verification of Cryptographic Protocols

Research Goal
Design formal frameworks allowing for mechanized verification of
cryptographic protocols.

At the intersection of cryptography and verification.
Particular verification challenges:

small or medium-sized programs
complex properties
probabilistic programs + arbitrary adversary

9

Outline

1 Cryptographic Protocol Verification

2 The Squirrel Prover
Mechanized Verification of Security Protocols

10

Cryptographic Protocol Verification

Cryptographic Protocol Verification

Verification
∀ ∈ C. (|| P) |= Φ

Requires to formalize:

the protocol under study P.
the adversarial model, i.e. a class C of adversaries.
the security property Φ.
the cryptographic arguments.

11

Modeling the System

∀ ∈ C. (|| P) |= Φ

Protocol: a concrete concurrent program.
E.g. imperative or functional progr. language, or applied π-calculus.

Adversary: an abstract unknown program.
What computational capabilities?

Quantum adversary: adversary is a PQTM. ⇒ not in this talk.
Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTime).

The full system: interaction (|| P).

12

Modeling the System

∀ ∈ C. (|| P) |= Φ

Protocol: a concrete concurrent program.
E.g. imperative or functional progr. language, or applied π-calculus.

Adversary: an abstract unknown program.
What computational capabilities?

Quantum adversary: adversary is a PQTM. ⇒ not in this talk.

Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTime).

The full system: interaction (|| P).

12

Modeling the System

∀ ∈ C. (|| P) |= Φ

Protocol: a concrete concurrent program.
E.g. imperative or functional progr. language, or applied π-calculus.

Adversary: an abstract unknown program.
What computational capabilities?

Quantum adversary: adversary is a PQTM. ⇒ not in this talk.
Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTime).

The full system: interaction (|| P).

12

Modeling the System

∀ ∈ C. (|| P) |= Φ

Protocol: a concrete concurrent program.
E.g. imperative or functional progr. language, or applied π-calculus.

Adversary: an abstract unknown program.
What computational capabilities?

Quantum adversary: adversary is a PQTM. ⇒ not in this talk.
Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTime).

The full system: interaction (|| P).

12

Modeling the System

How do we model the interaction (|| P)?

One input/output block:

Network input ⇒ function call to .
Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= (known@pred(B))

known@B def= out@B :: known@pred(B)

13

Modeling the System

How do we model the interaction (|| P)?

One input/output block:

Network input ⇒ function call to .

Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= (known@pred(B))

known@B def= out@B :: known@pred(B)

13

Modeling the System

How do we model the interaction (|| P)?

One input/output block:

Network input ⇒ function call to .
Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= (known@pred(B))

known@B def= out@B :: known@pred(B)

13

Modeling the System

How do we model the interaction (|| P)?

One input/output block:

Network input ⇒ function call to .
Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= (known@pred(B))

known@B def= out@B :: known@pred(B)
13

Security Properties

Equivalence properties Φ
real/ideal world indistinguishability:

Sr ∼ Si

Sr: real-world scenario for P.
Si: ideal-world scenario for P,
where security is obvious.

For all ∈ PPTime:∣∣∣Pr(Sr() = r)− Pr(Si() = r)
∣∣∣ negligible

Examples: strong secrecy, privacy.

out@ , out@

∼ out@ , out@

14

Cryptographic Arguments

How to prove that no program can break a protocol?

solve a problem?

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H

(with similar running time)

Hardness assumption: problem H assumed not efficiently solvable.
mathematical problem (e.g. Discrete-Log).
lower-level cryptographic problem (e.g. encryption is Ind-CPA).

15

Cryptographic Arguments

How to prove that no program can break a protocol?
solve a problem?

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H

(with similar running time)

Hardness assumption: problem H assumed not efficiently solvable.
mathematical problem (e.g. Discrete-Log).
lower-level cryptographic problem (e.g. encryption is Ind-CPA).

15

Cryptographic Arguments

How to prove that no program can break a protocol?
solve a problem?

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H

(with similar running time)

Hardness assumption: problem H assumed not efficiently solvable.
mathematical problem (e.g. Discrete-Log).
lower-level cryptographic problem (e.g. encryption is Ind-CPA).

15

Hardness Assumption: Ind-CPA

A symmetric encryption function enc(m , k).

message key

Hardness assumption:
cannot learn anything from an encrypted message (except its length).

Equivalence SL ∼ SR:
chooses mL, mR of the same length

SL: encryption enc(mL, k)
SR: encryption enc(mR, k)

∣∣∣∣∣Pr(SL() = L) −
Pr(SR() = L)

∣∣∣∣∣
negligible

P secure if:
for all breaking P there exists breaking SL ∼ SR

16

Cryptographic Arguments

Game-hopping
Combines several proof-steps:

S0 ∼ϵ1 · · · ∼ϵn Sn ⇒
S0 ∼ϵ1+···+ϵn Sn

Each step Si ∼ϵi+1 Si+1 justified by:

a cryptographic reduction;
a probabilistic argument (e.g. small probability of guessing);
etc...

17

Cryptographic Arguments as Reasoning Rules

Previous slides: cryptographers’ point-of-view.

A more abstract and logical presentation as reasoning rules:

Structural, to organize proofs:

u ∼ w w ∼ v
u ∼ v

Cryptographic, e.g. Ind-CPA:

len(m0) = len(m1)
enc(m0, k) ∼ enc(m1, k)

when k correctly used in m0, m1

Probabilities completely abstracted away.
Application conditions are the difficult part.

18

Cryptographic Arguments as Reasoning Rules

Previous slides: cryptographers’ point-of-view.
A more abstract and logical presentation as reasoning rules:

Structural, to organize proofs:

u ∼ w w ∼ v
u ∼ v

Cryptographic, e.g. Ind-CPA:

len(m0) = len(m1)
enc(m0, k) ∼ enc(m1, k)

when k correctly used in m0, m1

Probabilities completely abstracted away.
Application conditions are the difficult part.

18

Cryptographic Arguments as Reasoning Rules

Previous slides: cryptographers’ point-of-view.
A more abstract and logical presentation as reasoning rules:

Structural, to organize proofs:

u ∼ w w ∼ v
u ∼ v

Cryptographic, e.g. Ind-CPA:

len(m0) = len(m1)
enc(m0, k) ∼ enc(m1, k)

when k correctly used in m0, m1

Probabilities completely abstracted away.
Application conditions are the difficult part.

18

The Squirrel Prover
Mechanized Verification of Security
Protocols

The Squirrel Prover

Tool for verification of security protocols:
Input language: applied π-calculus.
Automatically translated as input/output blocks.

Implements a probabilistic logic:
Supports reachability and equivalence properties.
Reasoning rules valid w.r.t. comp. attacker .
In the asymptotic security setting.

Proof assistant:
Users prove goals using sequences of tactics.
Crypto. tactics, e.g. cpa.
Probabilistic tactics, e.g. fresh.
Structural tactics, e.g. trans.
Generic tactics, e.g. apply, rewrite.

19

The Squirrel Prover

Tool for verification of security protocols:
Input language: applied π-calculus.
Automatically translated as input/output blocks.

Implements a probabilistic logic:
Supports reachability and equivalence properties.
Reasoning rules valid w.r.t. comp. attacker .
In the asymptotic security setting.

Proof assistant:
Users prove goals using sequences of tactics.
Crypto. tactics, e.g. cpa.
Probabilistic tactics, e.g. fresh.
Structural tactics, e.g. trans.
Generic tactics, e.g. apply, rewrite.

19

The Squirrel Prover

20

The Squirrel Prover

Open-source tool

Development team:
Inria Paris (Prosecco), IRISA (Spicy team).
Project web-page:

https://squirrel-prover.github.io/

Documentation web-page:
https://squirrel-prover.github.io/documentation/

21

https://squirrel-prover.github.io/
https://squirrel-prover.github.io/documentation/

Conclusion

Conclusion

Computer-aided verification of crypto. protocols allows for high
security guarantees.
Quick introduction to protocol verification:

modeling security properties.
formalizing cryptographic arguments.

The Squirrel prover, an interactive tool for crypto. protocol
verification.

22

Thank you for your attention

23

Hardness Assumption: Ind-CPA

Init: k $←;

Oenc(m) := {return enc(m, k); }

Ochallenge(mL, mR) := {
if len(mL) = len(mR) then

return enc(mX, k);
}

SX

· · ·

guess of the value of X

∣∣∣∣∣Pr(SL() = L) −
Pr(SR() = L)

∣∣∣∣∣
negligible

24

Security Properties

Reachability properties Φ
Directly expressed on + P.
For all ∈ PPTime:

Pr(not Φ())

AdvΦ()

negligible

Examples: authentication, injective
authentication, (weak) secrecy.

∀j.

accept@
2

j

⇒

∃i.

1

j

<

i

<
2

j

∧

out@
1

j

= in@

i

∧

out@

i

= in@
2

j

1

j

2

j

i

✓

1

j

2

j

✗

1

j

2

j

i

✗

25

Security Properties

Reachability properties Φ
Directly expressed on + P.
For all ∈ PPTime:

Pr(not Φ())

AdvΦ()

negligible

Examples: authentication, injective
authentication, (weak) secrecy.

∀j.

accept@
2

j

⇒

∃i.

1

j

<

i

<
2

j

∧

out@
1

j

= in@

i

∧

out@

i

= in@
2

j

1

j

2

j

i

✓

1

j

2

j

✗

1

j

2

j

i

✗

25

Security Properties

Reachability properties Φ
Directly expressed on + P.
For all ∈ PPTime:

Pr(not Φ())
AdvΦ()

negligible

Examples: authentication, injective
authentication, (weak) secrecy.

∀j.

accept@
2

j

⇒

∃i.

1

j

<

i

<
2

j

∧

out@
1

j

= in@

i

∧

out@

i

= in@
2

j

1

j

2

j

i

✓

1

j

2

j

✗

1

j

2

j

i

✗

25

Security Properties

Reachability properties Φ
Directly expressed on + P.
For all ∈ PPTime:

Pr(not Φ())
AdvΦ()

negligible

Examples: authentication, injective
authentication, (weak) secrecy.

∀j. accept@
2

j ⇒

∃i.

1

j < i <
2

j ∧

out@
1

j = in@ i ∧

out@ i = in@
2

j

1

j

2

j

i

✓

1

j

2

j

✗

1

j
2

j

i

✗

25

From Hardness Assumptions to
Logical Rules

Cryptographic Reduction

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H.

26

Hardness Assumption: Example

A cryptographic hash function H(m , k).

message key

Unforgeability: cannot produce valid hashes without knowing k.

Init: k $←;

Ohash(m0) := {
L ← m0 :: L;
return H(m0, k);
}

· · ·

(
(m, s) such that m ̸∈ L and

s = H(m, k)

)
negligible.

27

Hardness Assumption: Example

A cryptographic hash function H(m , k).

message key

Unforgeability: cannot produce valid hashes without knowing k.

Init: k $←;

Ohash(m0) := {
L ← m0 :: L;
return H(m0, k);
}

· · ·

(
(m, s) such that m ̸∈ L and

s = H(m, k)

)
negligible.

27

Hardness Assumption: Example

Example

Φ def=
((

H(0, k), H(1, k)
)

= H(m, k)
)
⇒ m = 0 ∨ m = 1

Proof by reduction
Build an adversary against Unforgeability (UF):

compute w0 ← Ohash(0) and w1 ← Ohash(1);
black-box call: s ← (w0, w1);
compute m;
return (m, s).

AdvUF() = AdvΦ() ∈ PPTime implies ∈ PPTime

Remark: rule valid only if m computable by the adversary, e.g.

∃ 1 s.t. 1() = m

28

Hardness Assumption: Example

Example

Φ def=
((

H(0, k), H(1, k)
)

= H(m, k)
)
⇒ m = 0 ∨ m = 1

Proof by reduction
Build an adversary against Unforgeability (UF):

compute w0 ← Ohash(0) and w1 ← Ohash(1);
black-box call: s ← (w0, w1);
compute m;
return (m, s).

AdvUF() = AdvΦ() ∈ PPTime implies ∈ PPTime

Remark: rule valid only if m computable by the adversary, e.g.

∃ 1 s.t. 1() = m
28

From Hardness Assumptions to Logical Rules

Until recently:

Squirrel supported a limited set of hardness assumptions
(symmetric/asymmetric encryption, signature, hash, DH, . . .)

Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)

⇐
reasoning rules (pure, logic)

29

From Hardness Assumptions to Logical Rules

(recent join work with Justine Sauvage and David Baelde)

Systematic cryptographic reductions: allows to translate hardness
assumptions into cryptographic rules.

Inputs:
an (imperative, stateful) hardness assumption H0 ∼ H1.
a (logical) security property, e.g. S0 ∼ S1.

Goal: for any , synthesize such that

 (H0) = S0()
and (H1) = S1()

30

From Hardness Assumptions to Logical Rules

General framework to add new hardness assumptions.

Proof system to establish the existence of .
Tracking the state of H: Hoare pre- and post-conditions.
E.g. track the set of hashed messages L.
Correct randomness usage using (logical) constraints.
E.g. ensures that does not directly use k.
Soundness: existence of a suitable probabilistic coupling.

Fully automated (heuristic based ⇒ incomplete) procedure.
Approximate H state + randomness constraints (discharged to Squirrel).

31

	Cryptographic Protocol Verification
	The Squirrel Prover Mechanized Verification of Security Protocols
	Conclusion
	From Hardness Assumptions to Logical Rules

