Verifying Cryptographic Protocols

Demi-heure de Science

Adrien Koutsos Prosecco
9 November 2023

Security Protocols

m Distributed programs which aim at providing some security
properties.

m Uses cryptographic primitives: e.g. encryption.

— B |:|<—» (9

©
E

& | https:/

Vi

Context: Security Properties

There is a large variety of security properties.

& | https:/ 56
— 8 0% o
Confidentiality Privacy

Authentication

©)

Vi

Privacy

Context: Attacker Model

Against whom should these properties hold?

m concretely, in the real world: malicious individuals, corporations,
state agencies, ...

m more abstractly, one (or many) computers sitting on the network.

Context: Attacker Model

Against whom should these properties hold?

m concretely, in the real world: malicious individuals, corporations,
state agencies, ...

m more abstractly, one (or many) computers sitting on the network.

Abstract attacker model

m Network capabilities: worst-case scenario:
eavesdrop, block and forge messages. ﬁ ﬁ
N,/

m Computational capabilities: the adversary's L& ﬁ
computational power. |
m Side-channels capabilities: observing the ﬁ

agents (e.g. time, power-consumption)
= not in this talk.

BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:
m uses an RFID tag.

m guard access to information stored.

m should guarantee data)
confidentiality and user privacy.

ence(n,...)

A\

Some security mechanisms:

ok(-++)

(valid key + no replay)

m integrity: obtaining key k requires .
physical access.

m no replay: random nonce n, old
messages cannot be re-used.

BAC Protocol (simplified)

Privacy: Unlinkability
No adversary & knows whether it

interacted with a particular user, in any _ _
context. 512)

Example. For two user sessions:

-

(a8 |8

ence(n,...)

G& | K

ok(-++)

BAC Protocol (simplified)

Privacy: Unlinkability
No adversary & knows whether it

interacted with a particular user, in any _ _
context. 512 @

Example. For two user sessions:

- =1

c"(,) = g 7 g : ence(n,...) ;

© Bl D
ok(-++)

French version of BAC:

m # error messages for replay and Y Y
integrity checks.

= unlinkability attack.

BAC Protocol: Privacy Attack

& E

ny

ency(no, ...)

replay error

1
1
e 1
- 1 <
Va oI
1
1 Y Y
Ng :
< 1
1
enck(no, - . -) 1 _
‘ 1
i I (_‘% @
1
oK) :
h 1 ni
1 <
1
4 I ency(no, ...)
———— >

integrity error

BAC Protocol: Lessons

Take-away lessons:

m This is a protocol-level attack: no issue with cryptography:
= cryptographic primitives are but an ingredient.

m Innocuous-looking changes can break security:
= designing security protocols is hard.

BAC Protocol: Lessons

Take-away lessons:

m This is a protocol-level attack: no issue with cryptography:
= cryptographic primitives are but an ingredient.

m Innocuous-looking changes can break security:
= designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

High-Confidence Security Guarantees

Verification
Formal mathematical proof of security protocols:

----8 = DR
Y ¥ Y
system satisfies property

m Must be sound: proof = property always holds
m Usually undecidable: approaches either incomplete or interactive.

m Machine-checked proofs yield a high degree of confidence.
= general-purpose tools (e.g. CoQ and LEAN).
m in security protocol analysis, mostly dedicated tools.
E.g. CRYPTOVERIF, EASYCRYPT, SQUIRREL.

Computer-aided Verification of Cryptographic Protocols

Research Goal
Design formal frameworks allowing for mechanized verification of

cryptographic protocols.

m At the intersection of cryptography and verification.
m Particular verification challenges:

m small or medium-sized programs
m complex properties
m probabilistic programs + arbitrary adversary

Cryptographic Protocol Verification

The SQUIRREL Prover
Mechanized Verification of Security Protocols

10

Cryptographic Protocol Verification

Cryptographic Protocol Verification

Verification
Vg el (&IIP)Eo
Requires to formalize:
m the protocol under study P.
m the adversarial model, i.e. a class C of adversaries.

m the security property .

m the cryptographic arguments.

11

Modeling the System

v eC (&IIP)E®

m Protocol: a concrete concurrent program.

E.g. imperative or functional progr. language, or applied 7-calculus.

m Adversary: an abstract unknown program.
What computational capabilities?

12

Modeling the System

v eC (&IIP)E®

m Protocol: a concrete concurrent program.

E.g. imperative or functional progr. language, or applied 7-calculus.

m Adversary: an abstract unknown program.
What computational capabilities?

m Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTIME).

12

Modeling the System

v eC (&IIP)E®

m Protocol: a concrete concurrent program.

E.g. imperative or functional progr. language, or applied 7-calculus.

m Adversary: an abstract unknown program.
What computational capabilities?
m Quantum adversary: adversary is a PQTM. = not in this talk.
m Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTIME).

12

Modeling the System

v eC (&IIP)E®

m Protocol: a concrete concurrent program.

E.g. imperative or functional progr. language, or applied 7-calculus.

m Adversary: an abstract unknown program.
What computational capabilities?

m Quantum adversary: adversary is a PQTM. = not in this talk.
m Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTIME).

m The full system: interaction (& || P).

12

Modeling the System

How do we model the interaction (§ || P)?

One input/output block:

: input(in)

E y = dec(in, k)

' out = enc(y + 1, k)
! output(out)

13

Modeling the System

How do we model the interaction (§ || P)?
One input/output block:

m Network input = function call to §.

E input(in) . in=g() !
1y = dec(in, k) E !y = dec(in, k) !
' out = enc(y + 1,k) ! out =enc(y +1,k) !
! output(out) ' ; output(out) ,

13

Modeling the System

How do we model the interaction (§ || P)?
One input/output block:

m Network input = function call to §.
m Network output — add to §'s knowledge.

1 input(in) ' Yin=g () ! ' in = & (known) :
i y = dec(in, k) : 1y = dec(in, k) ! !y = dec(in, k) '
' out = enc(y +1,k) ' out = enc(y + 1,k) ! ' out = enc(y + 1, k) :
! output(out) : ; output(out) , ; known = out :: known !

13

Modeling the System

How do we model the interaction (§ || P)?
One input/output block:

m Network input = function call to §.
m Network output — add to §'s knowledge.

...................... I
1 input(in) ' Yin=g () ! E in = & (known) :
1y = dec(in, k) : 1y = dec(in, k) ! !y = dec(in, k) '
' out = enc(y +1,k) 1 out = enc(y + 1,k) ! ' out = enc(y + 1, k) :
! output(out) : ; output(out) , ; known = out :: known !

Many input/output blocks, add the time:
inoB %' &(known@pred(B))

known@B % out@B :: known@pred(B)
13

Security Properties

Equivalence properties ¢
real /ideal world indistinguishability:

Sr~Si out@@ , out@ @
m S,: real-world scenario for P.

m S;: ideal-world scenario for P,
where security is obvious.

For all .§ € PPTIME:
| Pr(S (&) =) — Pr(Si(&) =)| negligible

Examples: strong secrecy, privacy.

14

Cryptographic Arguments

How to prove that no program § can break a protocol?

5

Cryptographic Arguments

How to prove that no program § can break-a—protocel?

solve a problem?

5

Cryptographic Arguments

How to prove that no program § can break-a—protocel?

solve a problem?

Cryptographic reduction: (P security property of P)
If an adversary § can break ®
then
there exists an adversary *§, breaking H

(with similar running time)

Hardness assumption: problem 7 assumed not efficiently solvable.
m mathematical problem (e.g. Discrure-Loc).

m lower-level cryptographic problem (e.g. encryption is Inn-CPA).

5

Hardness Assumption: IND-CPA
message <_| |—> key

A symmetric encryption function enc(m, k).

Hardness assumption:

§, cannot learn anything from an encrypted message (except its length).

Equivalence S| ~ Sg:
m ‘§, chooses m|, my of the same length

Pr(S.($) = 1) - '

Pr(Sr(®) = L)

m S : encryption enc(m, k) negligible

m Sg: encryption enc(mg, k)

P secure if:

for all & breaking P there exists ‘§, breaking S| ~ Sg

16

Cryptographic Arguments

Game-hopping
Combines several proof-steps:

S0 ey T Nep Sn =

SO ~er+eten Sn

Each step S; ~c.., Sit1 justified by:

€it1
m a cryptographic reduction;

m a probabilistic argument (e.g. small probability of guessing);

m etc...

17

Cryptographic Arguments as Reasoning Rules

m Previous slides: cryptographers’ point-of-view.

18

Cryptographic Arguments as Reasoning Rules

m Previous slides: cryptographers’ point-of-view.
m A more abstract and logical presentation as reasoning rules:

m Structural, to organize proofs:

m Cryptographic, e.g. IND-CPA:

len(mg) = len(my)

when k correctly used in mg, my
enc(mg, k) ~ enc(my, k)

18

Cryptographic Arguments as Reasoning Rules

m Previous slides: cryptographers’ point-of-view.
m A more abstract and logical presentation as reasoning rules:

m Structural, to organize proofs:

m Cryptographic, e.g. IND-CPA:

len(mg) = len(my)

when k correctly used in mg, my
enc(mg, k) ~ enc(my, k)

m Probabilities completely abstracted away.

m Application conditions are the difficult part.

18

The Squirrel Prover
Mechanized Verification of Security

Protocols

The Squirrel Prover

m Tool for verification of security protocols:

m Input language: applied 7-calculus.
m Automatically translated as input/output blocks.

m Implements a probabilistic logic:

m Supports reachability and equivalence properties.
m Reasoning rules valid w.r.t. comp. attacker §.
m In the asymptotic security setting.

19

The Squirrel Prover

m Tool for verification of security protocols:

m Input language: applied 7-calculus.
m Automatically translated as input/output blocks.

m Implements a probabilistic logic:
m Supports reachability and equivalence properties.
m Reasoning rules valid w.r.t. comp. attacker §.
m In the asymptotic security setting.

m Proof assistant:

Users prove goals using sequences of tactics.
Crypto. tactics, e.g. cpa.

Probabilistic tactics, e.g. fresh.

Structural tactics, e.g. trans.

Generic tactics, e.g. apply, rewrite.

19

The Squirrel Prover

unlinkability (t : timestamp[
(t)] -> (@t).

[goal> Focused goal (1/2):
1 System: default (same for equivalences)
Variables: A,i:index[const, glob]
Hap: [happens(B(A, i))]
Hap. TH: equiv(seq(A:index=>pk (kB A)), seq(A,i:inde
(A:index S

seq(A: index=>pk (kA A))
(Azindex, i:index

k (kAbis (A, 1))),
(Azindex

frame@pred (B i)))
forall (A9,i) ,i) =A< || i< i0
t.

goals

Checking for side conditions on the right
Bad occurrences of kA(A) and rB((A, 1)) in other actions
rB((A, 1))
/frane /output /exec /cond /dmess /=. (collision with rB((A, 1)))
4 fo4 in action B(A, i
4; 1 . in term
. enc (if (fst (dmess(A,)) = pk (kAbis (A, 1)) &
len (snd (dmes 3 A)) = len (nB (A, 1))) then
<snd (dmess(A, 1i)@B(A).nB (A, i)>
else <nB (A, i),nB (A, i)>, rB (A, i), pk (kAbis (A, 1)))
if len !length pair.
(if_same_branch (Le(nB(A,1)) (nB(A,1)))) //. Total: 1 bad occurrence
4:5fal 431 Fard! 0 of them are subsuned by another
1) 1 bad occurrence remain:
4

The Squirrel Prover

Open-source tool

m Development team:
Inria Paris (Prosecco), IRISA (Spicy team).

m Project web-page:
https://squirrel-prover.github.io/

m Documentation web-page:

https://squirrel-prover.github.io/documentation/

21

https://squirrel-prover.github.io/
https://squirrel-prover.github.io/documentation/

Conclusion

Conclusion

m Computer-aided verification of crypto. protocols allows for high
security guarantees.
m Quick introduction to protocol verification:
m modeling security properties.
m formalizing cryptographic arguments.
m The SQUIRREL prover, an interactive tool for crypto. protocol

verification.

22

Thank you for your attention

23

Hardness Assumption: IND-CPA

Init: k & : SX L
: Oenc(m) := {return enc(m,k); } Pr(S.(4) = L) —
t o Ochallenge(mL7 mR) o= { Pr(SR(t) = |_) ‘
: if len(my) = len(mg) then negligible

return enc(my,k);

}

L guess of the value of X

24

Security Properties

Reachability properties ¢
Directly expressed on g + P.

For all & € PPTIME:
Pr(not ®(§)) negligible

Examples: authentication, injective
authentication, (weak) secrecy.

[
1€) |&

[
N
x

25

Security Properties
_2
accept@ @ =
- 2

Reachability properties ¢
Directly expressed on g + P.
_1 _
<% <@ A

For all & € PPTIME:
Pr(not ®(§)) negligible
_1 <
out@ =in@% A
< _2
out@%g =in@

Examples: authentication, injective
authentication, (weak) secrecy.

[

[E
N
x

Security Properties
_2
accept@ @ =
- 2

Reachability properties ¢
Directly expressed on g + P.
_1 .
<% <@ A

For all & € PPTIME:
Pr(not ®(§)) negligible
_1 <
Adve (&) outO f =in@%% A
_ _2
out@%g =in@

Examples: authentication, injective
authentication, (weak) secrecy.

[E

[E
N
x

Security Properties

Reachability properties ¢
Directly expressed on g + P. . _2
For all & € PPTIME: - ErEEEplie J =
1 3 2
B < Y% < @8 A
Pr(not ®(§)) negligible = S YA 5
_1 <
Adve(d) Ji.| out@ J. =in@%%. A
- _2
out@i,éi =in@ J.

Examples: authentication, injective
authentication, (weak) secrecy.

1 ;
ol ol

J J _

- ®

3 =

2 V4, " & _

8 Df &

J

25

From Hardness Assumptions to
Logical Rules

Cryptographic Reduction

Cryptographic reduction: (P security property of P)
If an adversary § can break ®
then

there exists an adversary *§, breaking H.

26

Hardness Assumption: Example

message <—| |—> key

A cryptographic hash function H(m, k).

Unforgeability: cannot produce valid hashes without knowing k.

27

Hardness Assumption: Example

message <—| |—> key

A cryptographic hash function H(m, k).

Unforgeability: cannot produce valid hashes without knowing k.

Init: k &
<« | Ohash(mo) = {
3 £ "' L+ mg:: L,
« | return H(mg,k);
}
(m,s) such that m ¢ £ and negligible.
s = H(m, k)

27

Hardness Assumption: Example

Example

L (F(H(0,K), H(1,K)) =H(m,k)) = m=0V m=1

Proof by reduction
Build an adversary §; against UNFORGEABILITY (UF):

m compute Wy < Ohash(0) and wy < Opasn(1);
m black-box call: s < &(wp, wy);
m compute m;

m return (m,s).

Advyr(8,) = Adve (&) & € PPTIME implies §, € PPTIME

28

Hardness Assumption: Example

Example
def

= (F(H(O, k), H(1,k)) =H(m,Kk)) = m=0 VvV m=1
Proof by reduction
Build an adversary *§, against UNFORGEABILITY (UF):
m compute Wy < Ohash(0) and wy < Opasn(1);
m black-box call: s < &(wp, wy);

B compute m;

m return (m,s).

Advyr(8,) = Adve (&) & € PPTIME implies §, € PPTIME

Remark: rule valid only if m computable by the adversary, e.g.

I st $10=m

28

From Hardness Assumptions to Logical Rules

Until recently:

m SQUIRREL supported a limited set of hardness assumptions

(symmetric/asymmetric encryption, signature, hash, DH, ...)

m Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)
[k
reasoning rules (pure, logic)

29

From Hardness Assumptions to Logical Rules

(recent join work with Justine Sauvage and David Baelde)

Systematic cryptographic reductions: allows to translate hardness

assumptions into cryptographic rules.

Inputs:
m an (imperative, stateful) hardness assumption Ho ~ #;.

m a (logical) security property, e.g. Sp ~ S;.

$(Ho) = So(&)

Goal: for any §, synthesize ‘§, such that
and §,(H1) = S1(&)

30

From Hardness Assumptions to Logical Rules

m General framework to add new hardness assumptions.

m Proof system to establish the existence of <§..

m Tracking the state of #: Hoare pre- and post-conditions.
E.g. track the set of hashed messages L.

m Correct randomness usage using (logical) constraints.
E.g. ensures that §, does not directly use k.

m Soundness: existence of a suitable probabilistic coupling.

m Fully automated (heuristic based = incomplete) procedure.

Approximate H state 4+ randomness constraints (discharged to SQUIRREL).

31

	Cryptographic Protocol Verification
	The Squirrel Prover Mechanized Verification of Security Protocols
	Conclusion
	From Hardness Assumptions to Logical Rules

