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Context

Security Protocols
Distributed programs which aim at providing some security
properties.
Uses cryptographic primitives: e.g. encryption.
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Context: Security Properties

There is a large variety of security properties.

Confidentiality
Authentication

Privacy

Privacy
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Context: Attacker Model

Against whom should these properties hold?

concretely, in the real world: malicious individuals, corporations,
state agencies, ...
more abstractly, one (or many) computers sitting on the network.

Abstract attacker model
Network capabilities: worst-case scenario:
eavesdrop, block and forge messages.
Computational capabilities: the adversary’s
computational power.
Side-channels capabilities: observing the
agents (e.g. time, power-consumption)
⇒ not in this talk.
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BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:

uses an RFID tag.
guard access to information stored.
should guarantee data
confidentiality and user privacy.

Some security mechanisms:
integrity: obtaining key k requires
physical access.
no replay: random nonce n, old
messages cannot be re-used.

n

enck(n, . . . )

ok(· · · )
(valid key + no replay)
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BAC Protocol (simplified)

Privacy: Unlinkability
No adversary knows whether it
interacted with a particular user, in any
context.

Example. For two user sessions:

(
,

)
=


, ?

, ?

French version of BAC:
̸= error messages for replay and
integrity checks.

⇒ unlinkability attack.

n

enck(n, . . . )

ok(· · · )
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BAC Protocol: Privacy Attack

n0

enck(n0, . . . )

ok(· · · )

n1

enck(n0, . . . )

replay error

n1

enck(n0, . . . )

integrity error

6



BAC Protocol: Lessons

Take-away lessons:

This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.
Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

7



BAC Protocol: Lessons

Take-away lessons:

This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.
Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

7



High-Confidence Security Guarantees

Verification
Formal mathematical proof of security protocols:

S |= Φ

system satisfies property

Must be sound: proof ⇒ property always holds

Usually undecidable: approaches either incomplete or interactive.

Machine-checked proofs yield a high degree of confidence.
general-purpose tools (e.g. Coq and Lean).
in security protocol analysis, mostly dedicated tools.
E.g. CryptoVerif, EasyCrypt, Squirrel.
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Computer-aided Verification of Cryptographic Protocols

Research Goal
Design formal frameworks allowing for mechanized verification of
cryptographic protocols.

At the intersection of cryptography and verification.
Particular verification challenges:

small or medium-sized programs
complex properties
probabilistic programs + arbitrary adversary
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Outline

1 Cryptographic Protocol Verification

2 The Squirrel Prover
Mechanized Verification of Security Protocols
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Cryptographic Protocol Verification



Cryptographic Protocol Verification

Verification
∀ ∈ C. ( || P) |= Φ

Requires to formalize:

the protocol under study P.
the adversarial model, i.e. a class C of adversaries.
the security property Φ.
the cryptographic arguments.
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Modeling the System

∀ ∈ C. ( || P) |= Φ

Protocol: a concrete concurrent program.
E.g. imperative or functional progr. language, or applied π-calculus.

Adversary: an abstract unknown program.
What computational capabilities?

Quantum adversary: adversary is a PQTM. ⇒ not in this talk.
Computationally-bounded: adversary is a probabilistic
Polynomial-TIME program (PPTime).

The full system: interaction ( || P).
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Modeling the System

How do we model the interaction ( || P)?

One input/output block:

Network input ⇒ function call to .
Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= ( known@pred(B) )

known@B def= out@B :: known@pred(B)

13



Modeling the System

How do we model the interaction ( || P)?

One input/output block:

Network input ⇒ function call to .

Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= ( known@pred(B) )

known@B def= out@B :: known@pred(B)

13



Modeling the System

How do we model the interaction ( || P)?

One input/output block:

Network input ⇒ function call to .
Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= ( known@pred(B) )

known@B def= out@B :: known@pred(B)

13



Modeling the System

How do we model the interaction ( || P)?

One input/output block:

Network input ⇒ function call to .
Network output ⇒ add to ’s knowledge.

input(in)
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = ()
y = dec(in, k)
out = enc(y + 1, k)
output(out)

in = (known)
y = dec(in, k)
out = enc(y + 1, k)
known = out :: known

B

Many input/output blocks, add the time:

in@B def= ( known@pred(B) )

known@B def= out@B :: known@pred(B)
13



Security Properties

Equivalence properties Φ
real/ideal world indistinguishability:

Sr ∼ Si

Sr: real-world scenario for P.
Si: ideal-world scenario for P,
where security is obvious.

For all ∈ PPTime:∣∣∣Pr(Sr( ) = r)− Pr(Si( ) = r)
∣∣∣ negligible

Examples: strong secrecy, privacy.

out@ , out@

∼ out@ , out@
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Cryptographic Arguments

How to prove that no program can break a protocol?

solve a problem?

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H

(with similar running time)

Hardness assumption: problem H assumed not efficiently solvable.
mathematical problem (e.g. Discrete-Log).
lower-level cryptographic problem (e.g. encryption is Ind-CPA).

15



Cryptographic Arguments

How to prove that no program can break a protocol?
solve a problem?

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H

(with similar running time)

Hardness assumption: problem H assumed not efficiently solvable.
mathematical problem (e.g. Discrete-Log).
lower-level cryptographic problem (e.g. encryption is Ind-CPA).

15



Cryptographic Arguments

How to prove that no program can break a protocol?
solve a problem?

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H

(with similar running time)

Hardness assumption: problem H assumed not efficiently solvable.
mathematical problem (e.g. Discrete-Log).
lower-level cryptographic problem (e.g. encryption is Ind-CPA).

15



Hardness Assumption: Ind-CPA

A symmetric encryption function enc(m , k ).

message key

Hardness assumption:
cannot learn anything from an encrypted message (except its length).

Equivalence SL ∼ SR:
chooses mL, mR of the same length

SL: encryption enc(mL, k)
SR: encryption enc(mR, k)

∣∣∣∣∣Pr(SL( ) = L) −
Pr(SR( ) = L)

∣∣∣∣∣
negligible

P secure if:
for all breaking P there exists breaking SL ∼ SR
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Cryptographic Arguments

Game-hopping
Combines several proof-steps:

S0 ∼ϵ1 · · · ∼ϵn Sn ⇒
S0 ∼ϵ1+···+ϵn Sn

Each step Si ∼ϵi+1 Si+1 justified by:

a cryptographic reduction;
a probabilistic argument (e.g. small probability of guessing);
etc...
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Cryptographic Arguments as Reasoning Rules

Previous slides: cryptographers’ point-of-view.

A more abstract and logical presentation as reasoning rules:

Structural, to organize proofs:

u ∼ w w ∼ v
u ∼ v

Cryptographic, e.g. Ind-CPA:

len(m0) = len(m1)
enc(m0, k) ∼ enc(m1, k)

when k correctly used in m0, m1

Probabilities completely abstracted away.
Application conditions are the difficult part.
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The Squirrel Prover
Mechanized Verification of Security
Protocols



The Squirrel Prover

Tool for verification of security protocols:
Input language: applied π-calculus.
Automatically translated as input/output blocks.

Implements a probabilistic logic:
Supports reachability and equivalence properties.
Reasoning rules valid w.r.t. comp. attacker .
In the asymptotic security setting.

Proof assistant:
Users prove goals using sequences of tactics.
Crypto. tactics, e.g. cpa.
Probabilistic tactics, e.g. fresh.
Structural tactics, e.g. trans.
Generic tactics, e.g. apply, rewrite.
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The Squirrel Prover
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The Squirrel Prover

Open-source tool

Development team:
Inria Paris (Prosecco), IRISA (Spicy team).
Project web-page:

https://squirrel-prover.github.io/

Documentation web-page:
https://squirrel-prover.github.io/documentation/
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Conclusion



Conclusion

Computer-aided verification of crypto. protocols allows for high
security guarantees.
Quick introduction to protocol verification:

modeling security properties.
formalizing cryptographic arguments.

The Squirrel prover, an interactive tool for crypto. protocol
verification.
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Thank you for your attention
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Hardness Assumption: Ind-CPA

Init: k $←;

Oenc(m) := {return enc(m, k); }

Ochallenge(mL, mR) := {
if len(mL) = len(mR) then

return enc(mX, k);
}

SX

· · ·

guess of the value of X

∣∣∣∣∣Pr(SL( ) = L) −
Pr(SR( ) = L)

∣∣∣∣∣
negligible
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Security Properties

Reachability properties Φ
Directly expressed on + P.
For all ∈ PPTime:

Pr(not Φ( ))

AdvΦ( )

negligible

Examples: authentication, injective
authentication, (weak) secrecy.

∀j.

accept@
2

j

⇒

∃i.


1

j

<

i

<
2

j

∧

out@
1

j

= in@

i

∧

out@

i

= in@
2

j



1

j

2

j

i

✓

1

j

2

j

✗

1

j

2

j

i

✗
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From Hardness Assumptions to
Logical Rules



Cryptographic Reduction

Cryptographic reduction: (Φ security property of P)
If an adversary can break Φ

then
there exists an adversary breaking H.
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Hardness Assumption: Example

A cryptographic hash function H(m , k ).

message key

Unforgeability: cannot produce valid hashes without knowing k.

Init: k $←;

Ohash(m0) := {
L ← m0 :: L;
return H(m0, k);
}

· · ·

(
(m, s) such that m ̸∈ L and

s = H(m, k)

)
negligible.
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Hardness Assumption: Example

Example

Φ def=
( (

H(0, k), H(1, k)
)

= H(m, k)
)
⇒ m = 0 ∨ m = 1

Proof by reduction
Build an adversary against Unforgeability (UF):

compute w0 ← Ohash(0) and w1 ← Ohash(1);
black-box call: s ← (w0, w1);
compute m;
return (m, s).

AdvUF( ) = AdvΦ( ) ∈ PPTime implies ∈ PPTime

Remark: rule valid only if m computable by the adversary, e.g.

∃ 1 s.t. 1() = m
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From Hardness Assumptions to Logical Rules

Until recently:

Squirrel supported a limited set of hardness assumptions
(symmetric/asymmetric encryption, signature, hash, DH, . . . )

Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)

⇐
reasoning rules (pure, logic)
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From Hardness Assumptions to Logical Rules

(recent join work with Justine Sauvage and David Baelde)

Systematic cryptographic reductions: allows to translate hardness
assumptions into cryptographic rules.

Inputs:
an (imperative, stateful) hardness assumption H0 ∼ H1.
a (logical) security property, e.g. S0 ∼ S1.

Goal: for any , synthesize such that

 (H0) = S0( )
and (H1) = S1( )
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From Hardness Assumptions to Logical Rules

General framework to add new hardness assumptions.

Proof system to establish the existence of .
Tracking the state of H: Hoare pre- and post-conditions.
E.g. track the set of hashed messages L.
Correct randomness usage using (logical) constraints.
E.g. ensures that does not directly use k.
Soundness: existence of a suitable probabilistic coupling.

Fully automated (heuristic based ⇒ incomplete) procedure.
Approximate H state + randomness constraints (discharged to Squirrel).

31


	Cryptographic Protocol Verification
	The Squirrel Prover  Mechanized Verification of Security Protocols
	Conclusion
	From Hardness Assumptions to Logical Rules

