Mechanized Proofs of Adversarial Complexity and Application to Universal Composability

Manuel Barbosa University of Porto (FCUP) & INESC TEC
Gilles Barthe MPI-SP & IMDEA Software Institute
Benjamin Grégoire Inria
Adrien Koutsos Inria
Pierre-Yves Strub Institut Polytechnique de Paris
Cryptographic Reduction $S \leq_{\text{red}} H$

S reduces to a hardness hypothesis H (e.g. DLog, DDH) if:

$$\forall A. \exists B. \ \text{adv}_S(A) \leq \text{adv}_H(B) + \epsilon \land \text{cost}(B) \leq \text{cost}(A) + \delta$$

where ϵ and δ are small.

Advantage of an unbounded adversary is often 1.

\Rightarrow bounding B’s resources is critical
EasyCrypt is a proof assistant to verify cryptographic proofs. In the proof, the adversary against \mathcal{H} is explicitly constructed:

$$\forall A. \text{adv}_S(A) \leq \text{adv}_{\mathcal{H}}(C[A]) + \epsilon$$

But EasyCrypt lacked support for complexity upper-bounds.
EasyCrypt is a **proof assistant** to verify cryptographic proofs.

In the proof, the adversary against \mathcal{H} is **explicitly constructed**:

$$\forall A. \text{adv}_S(A) \leq \text{adv}_\mathcal{H}(C[A]) + \epsilon$$ \hspace{1cm} (†)

But **EasyCrypt** lacked support for **complexity upper-bounds**.

Getting a $\forall \exists$ statement

(†) implies that:

$$\forall A. \exists B. \text{adv}_S(A) \leq \text{adv}_\mathcal{H}(B) + \epsilon$$

but this statement is **useless**, since B is not resource-limited: its advantage is often 1.
Hence adversaries *constructed* in reductions are kept *explicit*:

\[\forall A. \text{adv}_S(A) \leq \text{adv}_{\mathcal{H}}(C[A]) + \epsilon \]

Limitations

- **Not fully verified**: \(C[A]\)'s complexity is checked manually.
- **Less composable**, as composition is done manually (inlining).

If \(\forall A. \text{adv}_S(A) \leq \text{adv}_{\mathcal{H}_1}(C[A]) + \epsilon_1 \)
and \(\forall D. \text{adv}_{\mathcal{H}_1}(D) \leq \text{adv}_{\mathcal{H}_2}(F[D]) + \epsilon_2 \)
then \(\forall A. \text{adv}_S(A) \leq \text{adv}_{\mathcal{H}_2}(F[C[A]]) + \epsilon_1 + \epsilon_2 \)
Our Contributions

- A Hoare logic to prove worst-case complexity upper-bounds of probabilistic programs.
 ⇒ fully mechanized cryptographic reductions.

- Implemented in \texttt{EASYCRYPT}, embedded in its ambient higher-order logic.
 ⇒ meaningful ∀∃ statements: better \textit{composability}.

- Application: \texttt{UC} formalization in \texttt{EASYCRYPT}.

- First formalization of \texttt{EASYCRYPT} module system.
 (of independent interest)
Hoare Logic for Complexity
Example: Bellare-Rogaway, 93

Concrete

```plaintext
proc invert(pk:pkey,y:rand): rand = {
  log ← [];
  Adv.choose(pk);
  h ← dptxt;
  Adv.guess(y || h);
  while (log ≠ []) {
    r ← head log;
    if (f pk r = y) return r;
    log ← tail log;
  }
}
```

Abstract

```plaintext
proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit
```

Property: $|\log| ≤ k_c + k_g$

Complexity:
- Concrete: $(5 + t_f) \cdot (k_c + k_g) + 4$
- Abstract: 1
- RO: $k_c + k_g$

Memory:
- Adv must not access the log in Log
Example: Bellare-Rogaway, 93

Concrete

```prolog
proc invert(pk:pkey, y:rand): rand = {
    log ← [];
    Adv.choose(pk);
    h ← dptxt;
    Adv.guess(y || h);
    while (log ≠ []) {
        r ← head log;
        if (f pk r = y) return r;
        log ← tail log;
    }
}
```

Abstract

```prolog
proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv
```

```prolog
proc o(r:rand): ptxt

RO
```

Property: \[|log| \leq k_c + k_g \]

Complexity:
- **Concrete:** \[(5 + t) \cdot (k_c + k_g) + 4 \]
- **Abstract:** \[1 \]
- **RO:** \[k_c + k_g \]

Memory: Adv must not access the log in Log
Example: Bellare-Rogaway, 93

Concrete

```
proc invert(pk:pkey,y:rand): rand = {
    log ← [];
    Adv(Log(RO)).choose(pk);
    h ← dptxt;
    Adv(Log(RO)).guess(y || h);
    while (log ≠ []) {
        r ← head log;
        if (f pk r = y) return r;
        log ← tail log;
    }
}
```

Abstract

```
proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit
```

```
proc o(r:rand): ptxt = {
    log ← r :: log;
    return RO.o(r);
}
```

Memory:
Adv must not access the log in Log

Complexity:
- \(\text{conc} : (5 + tf) \cdot (kc + kg) + 4\)
- \(\text{Adv} . \text{choose} : 1\)
- \(\text{Adv} . \text{guess} : 1\)
- \(\text{RO} . \text{o} : kc + kg\)
Example: Bellare-Rogaway, 93

Inverter

```
proc invert(pk:pkey, y:rand): rand = {
    log ← [];
    Adv(Log(RO)).choose(pk);
    h ← $dptxt;
    Adv(Log(RO)).guess(y || h);
    while (log ≠ []) {
        r ← head log;
        if (f pk r = y) return r;
        log ← tail log;
    }
}
```

Property: \(|\log| \leq k_c + k_g\)

Complexity:

- \([\text{conc} : (5 + t_f) \cdot (k_c + k_g) + 4, \]
 - \(\text{Adv.choose} : 1, \)
 - \(\text{Adv.guess} : 1, \)
 - \(\text{RO.o} : k_c + k_g\]

Adv

```
proc choose(p:pkey) : unit ≤ k_c
proc guess(c:ctxt) : unit ≤ k_g
```

Adv

```
proc o(r:rand): ptxt = {
    log ← r :: log;
    return RO.o(r);
}
```

Log

```
proc o(r:rand): ptxt
```

RO

```
proc o(r:rand): ptxt
```

Memory: Adv must not access the log in Log

Concrete | **Abstract**
Example: Bellare-Rogaway, 93

Concrete

```prolog
proc invert(pk:pkey, y:rand): rand = {
    log ← [];
    Adv(Log(RO)).choose(pk);
    h ← dptxt;
    Adv(Log(RO)).guess(y || h);
    while (log \neq []) {
        r ← head log;
        if (f pk r = y) return r;
        log ← tail log;
    }
}
```

Property: $|\log| \leq k_c + k_g$

Complexity:
- $[\text{conc} : (5 + t_f) \cdot (k_c + k_g) + 4,$
 $\text{Adv.choose} : 1,$
 $\text{Adv.guess} : 1,$
 $\text{RO.o} : k_c + k_g]

Abstract

```prolog
proc choose(p:pkey) : unit $\leq k_c$
proc guess(c:ctxt) : unit $\leq k_g$
```

Adv

```prolog
proc o(r:rand): ptxt = {
    log ← r :: log;
    return RO.o(r);
}
```

Log

```prolog
proc o(r:rand): ptxt
```

RO

Memory: Adv must not access the log in Log
Key Ingredients

- Support programs mixing **concrete** and **abstract** code.
 Example: $\text{Adv}(\text{Log}(\text{RO}))$

- **Complexity** upper-bound requires some program **invariants**.
 Example: $|\log| \leq k_c + k_g$
Key Ingredients

- Support programs mixing concrete and abstract code.
 Example: $\text{Adv} (\text{Log}(\text{RO}))$

- Complexity upper-bound requires some program invariants.
 Example: $|\log| \leq k_c + k_g$

Abstract procedures must be restricted:

- **Complexity**: restrict intrinsic cost/number of calls to oracles.
 Example: choose can call $o \leq k_c$ times.

- **Memory footprint**: some memory areas are off-limit.
 Example: Adv cannot access the log in Log's memory
Module Restrictions

Abstract code modeled as any program implementing some module signature (à la ML)

```plaintext
module type RO = {
  proc o (r:rand) : ptxt
}.

module type Adv (H: RO) = {
  proc choose(p:pkey) : unit
  proc guess(c:ctxt) : unit
}.
```
Module Restrictions

Abstract code modeled as any program implementing some module signature (à la ML), with some restrictions:

- Module *memory footprint* can be restricted.

```ml
module type RO = {
  proc o (r:rand) : ptxt
}.
```

```ml
module type Adv (H: RO) {+all mem, -Log, -RO, -Inverter} = {
  proc choose(p:pkey) : unit
  proc guess(c:ctxt) : unit
}.
```
Abstract code modeled as any program implementing some module signature (à la ML), with some restrictions:

- Module memory footprint can be restricted.
- Procedure complexity can be upper-bounded.

```plaintext
module type RO = {
  proc o (r:rand) : ptxt [intr : t_o]
}.

module type Adv (H: RO) {+all mem, -Log, -RO, -Inverter} = {
  proc choose(p:pkey) : unit [intr : t_c, H.o : k_c]
  proc guess(c:ctxt) : unit [intr : t_g, H.o : k_g]
}.
```
Assuming ϕ, evaluating s guarantees ψ, and takes time at most c.
Assuming ϕ, evaluating s guarantees ψ, and takes time at most c.

Example: $\mathcal{E} \vdash \{T\} \text{ Inverter(Adv,RO).invert} \{||\log| \leq k_c + k_g | c} \}$
Cost Vectors

Concrete cost

\[c \mathbin{:}= \left[\text{conc} : k, \; O_1.f_1 : k_1, \ldots, \; O_l.f_l : k_l \right] \]

Abstract procedures

Example:
\[
\begin{array}{l}
\text{conc} : (5 + t_f) \cdot (k_c + k_g) + 4, \\
\text{Adv.choose} : 1, \\
\text{Adv.guess} : 1, \\
\text{RO.o} : k_c + k_g
\end{array}
\]
Hoare Logic for Cost: If Statements

\[
\text{IF} \quad \vdash \{ \phi \} \ e \leq t_e
\]

\[
\begin{array}{c}
\mathcal{E} \vdash \{ \phi \land e \} \ s_1 \ \{ \psi \mid t \} \\
\mathcal{E} \vdash \{ \phi \land \neg e \} \ s_2 \ \{ \psi \mid t \}
\end{array}
\]

\[
\mathcal{E} \vdash \{ \phi \} \ \text{if} \ e \ \text{then} \ s_1 \ \text{else} \ s_2 \ \{ \psi \mid t + t_e \}
\]

Whenever:

- \(e \) takes time \(\leq t_e \);
- \(s_1 \), assuming \(\phi \land e \), guarantees \(\psi \) in time \(\leq t \);
- \(s_2 \), assuming \(\phi \land \neg e \), guarantees \(\psi \) in time \(\leq t \);

then the conditional, assuming \(\phi \), guarantees \(\psi \) in time \(\leq t + t_e \).
Hoare Logic for Cost

Hoare Logic for Cost

Rules handling abstract code are the most interesting.
Hoare Logic for Cost

Module path typing $\Gamma \vdash p : M$.

Comprehend $\Gamma \vdash p : \text{sig } S : M \text{ module } x : M ; S \text{ restr } \emptyset$ end

$\Gamma \vdash p : M$.

Function expression typing $\Gamma \vdash p : M$.

We omit the rules $\Gamma \vdash p : M$ to check that a module signature M is well-formed.

Alias

$\Gamma \vdash p : M$.

Struct $\Gamma \vdash p \text{ struct } \text{ st } : \text{ sig } S \text{ restr } \emptyset$ end

$\Gamma \vdash p : M.$

Conventions \tilde{f} can be empty (this corresponds to the non-functor case).

Figure 6: Abstract call rule for cost judgment.

Instantiation

$M_0 = \text{func}(\tilde{q} ; \tilde{N}) \text{ sig } S_0 \text{ restr } \emptyset$ end

$\Gamma \vdash p : m \vdash \text{erase}(M_0) : \underbrace{\text{fresh} \in E}_{\text{E}}$

$\forall f \in \text{proc}(S_0), (E, \text{module } x \vdash \text{abrupt }, M_0 + \{ T \} \text{ m}(\tilde{F}), f \vdash \{ T \} \{ f \})$

$\exists E, \text{module } x \vdash \text{abrupt }, M_0 + \{ T \} \text{ m}(\tilde{F}) f \vdash \{ T \} \{ f \}$

where:

$\Gamma \vdash p : m \vdash \{ T \} \{ f \}$

Conventions: The $\text{intr } (A, h)$ is the inner field in the complexity restriction of the abstract module procedure A, h in E.

Figure 23: Instantiation rule for cost judgment.

Core typing rules.

- **Hoare logic for cost + typing rules for module restrictions.**
- **Rules handling abstract code are the most interesting.**
Implementation in **EasyCrypt**
EasyCrypt

A proof assistant to verify cryptographic proofs. It relies on:

- general purpose higher-order ambient logic.
- probabilistic relational Hoare logic (pRHL).
- powerful module system.

Many advanced existing case studies: AWS KMS, SHA3, ...
Hoare logic for cost has been implemented in EasyCrypt.

Integrated in EasyCrypt ambient higher-order logic.

⇒ meaningful existential quantification over abstract code (e.g. $\forall \exists$ statements).

Established the complexity of classical examples:
BR93, Hashed El-Gamal, Cramer-Shoup.
Application: Universal Composability in EASYCRYPT
Universal Composability

- UC is a general framework providing strong security guarantees.
- **Fundamentals properties**: transitivity and composability. ⇒ allow for modular and composable proofs.
$\exists S \in \text{Sim}, \forall Z \in \text{Env},$

$$\left| \Pr[Z(\pi_1) : \text{true}] - \Pr[Z(\langle \pi_2 \circ S \rangle) : \text{true}] \right| \leq \epsilon$$
Universal Composability

\[\exists S \in \text{Sim}[c_{\text{sim}}], \forall Z \in \text{Env}[c_{\text{env}}], \]
\[| \text{Pr}[Z(\pi_1) : \text{true}] - \text{Pr}[Z(\langle \pi_2 \circ S \rangle) : \text{true}] | \leq \epsilon \]

- \(Z \) is the adversary: its complexity must be **bounded**.
- If \(S \)'s complexity is unbounded, UC key theorems become **useless**.
Universal Composability: Transitivity

\[\exists S_{12} \in \text{Sim} \quad \forall Z \in \text{Env}\]

\[\exists S_{23} \in \text{Sim} \quad \forall Z \in \text{Env}\]
Universal Composability: Transitivity

\[\exists S_{12} \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\exists S_{23} \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\exists S \in \text{Sim} \quad \forall Z \in \text{Env} \]

precise complexity bounds are crucial here.
$\exists S_{12} \in \text{Sim} \quad \forall Z \in \text{Env}$

$\exists S_{23} \in \text{Sim} \quad \forall Z \in \text{Env}$

$\exists S \in \text{Sim} \quad \forall Z \in \text{Env}$
Universal Composability: Transitivity

\[\exists S_{12} \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\pi_1 \quad \sim \quad \pi_2 \approx S_{12} \quad \approx \exists S \in \text{Sim} \]

\[\exists S_{23} \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\pi_2 \quad \sim \quad \pi_3 \approx S_{23} \quad \approx \exists S \in \text{Sim} \]

\[\exists S \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\pi_1 \quad \sim \quad \pi_3 \approx S_{23} \approx S_{12} \quad \approx \exists S \in \text{Sim} \]

Precise complexity bounds are crucial here.
Universal Composability: Transitivity

\[\exists S_{12} \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\exists S_{23} \in \text{Sim} \quad \forall Z \in \text{Env} \]

\[\exists S \in \text{Sim} \quad \forall Z \in \text{Env} \]

precise complexity bounds are crucial here.
Universal Composability: Transitivity

\[\exists S_{12} \in \text{Sim}[c_{12}^{\text{sim}}] \quad \forall Z \in \text{Env} \]

\[\exists S_{23} \in \text{Sim}[c_{23}^{\text{sim}}] \quad \forall Z \in \text{Env} \]

\[\exists S \in \text{Sim}[c_{12}^{\text{sim}} + c_{23}^{\text{sim}}] \quad \forall Z \in \text{Env} \]

⇒ precise complexity bounds are crucial here.
\[\exists S_{12} \in \text{Sim}[c_{sim}^{12}] \quad \forall Z \in \text{Env}[c_{env}] \]

\[\exists S_{23} \in \text{Sim}[c_{sim}^{23}] \quad \forall Z \in \text{Env}[c_{env} + c_{sim}^{12}] \]

\[\exists S \in \text{Sim}[c_{sim}^{12} + c_{sim}^{23}] \quad \forall Z \in \text{Env}[c_{env}] \]

\[\Rightarrow \text{precise complexity bounds are crucial here.} \]
Universal Composability: Transitivity

\[\exists S_{12} \in \text{Sim}[c_{\text{sim}}^{12}] \]
\[\forall Z \in \text{Env}[c_{\text{env}}] \]

\[\exists S_{23} \in \text{Sim}[c_{\text{sim}}^{23}] \]
\[\forall Z \in \text{Env}[c_{\text{env}} + c_{\text{sim}}^{12}],\]

\[\exists S \in \text{Sim}[c_{\text{sim}}^{12} + c_{\text{sim}}^{23}] \]
\[\forall Z \in \text{Env}[c_{\text{env}}] \]

⇒ precise complexity bounds are crucial here.
Universal Composability in \textsc{EasyCrypt}

- UC formalization in \textsc{EasyCrypt}, with fully mechanized general UC theorems (transitivity, composability).
- Our formalization exploits \textsc{EasyCrypt} machinery:
 - module restrictions for complexity/memory footprint constraints;
 - message passing done through procedure calls.
 \[\Rightarrow\] simple and usable formalism.
Application: One-Shot Secure Channel

- **Diffie-Hellman** UC-emulates a **Key-Exchange** ideal functionality, assuming DDH.

- **One-Time Pad + Key-Exchange** UC-emulates a **Secure Channel** ideal functionality.
Application: One-Shot Secure Channel

- **Diffie-Hellman** UC-emulates a **Key-Exchange** ideal functionality, assuming DDH.

- **One-Time Pad** + **Key-Exchange** UC-emulates a **Secure Channel** ideal functionality.

- **Diffie-Hellman** + **One-Time Pad** UC-emulates a one-shot **Secure Channel** ideal functionality, assuming DDH.

- Final security statements with **precise probability** and **complexity bounds**.
Conclusion
Conclusion

- Designed a Hoare logic for worst-case complexity upper-bounds.
- Implemented in EasyCrypt, embedded in its ambient higher-order logic.
 ⇒ fully mechanized and composable crypto. reductions.
- First formalization of EasyCrypt module system.
 (of independent interest)
- Main application: UC formalization in EasyCrypt. Key results (transitivity, composability) and examples (DH+OTP) are fully mechanized.
Thank you for your attention.