
Mechanized Proofs of Adversarial
Complexity and Application to Universal
Composability
Annual Meeting of the WG "Formal Methods for Security", Fréjus

Manuel Barbosa University of Porto (FCUP) & INESC TEC

Gilles Barthe MPI-SP & IMDEA Software Institute

Benjamin Grégoire Inria

Adrien Koutsos Inria

Pierre-Yves Strub Institut Polytechnique de Paris

23 March, 2022

Cryptographic Reduction

Cryptographic Reduction S ≤red H
S reduces to a hardness hypothesis H (e.g. DLog, DDH) if:

∀A.∃B. advS(A) ≤ advH(B) + ε ∧ cost(B) ≤ cost(A) + δ

where ε and δ are small.

Advantage of an unbounded adversary is often 1.
⇒ bounding B’s resources is critical

1

Mechanizing Cryptographic Reduction

EasyCrypt is a proof assistant to verify cryptographic proofs.

In the proof, the adversary against H is explicitly constructed:

∀A. advS(A) ≤ advH(C[A]) + ε (†)

But EasyCrypt lacked support for complexity upper-bounds.

Getting a ∀∃ statement

(†) implies that:

∀A.∃B. advS(A) ≤ advH(B) + ε

but this statement is useless, since B is not resource-limited:
its advantage is often 1.

2

Mechanizing Cryptographic Reduction

EasyCrypt is a proof assistant to verify cryptographic proofs.

In the proof, the adversary against H is explicitly constructed:

∀A. advS(A) ≤ advH(C[A]) + ε (†)

But EasyCrypt lacked support for complexity upper-bounds.

Getting a ∀∃ statement

(†) implies that:

∀A.∃B. advS(A) ≤ advH(B) + ε

but this statement is useless, since B is not resource-limited:
its advantage is often 1.

2

Mechanizing Cryptographic Reduction

Hence adversaries constructed in reductions are kept explicit:

∀A. advS(A) ≤ advH(C[A]) + ε

Limitations

Not fully verified: C[A]’s complexity is checked manually.

Less composable, as composition is done manually (inlining).

∀A. advS(A) ≤ advH1(C[A]) + ε1If

∀D. advH1(D) ≤ advH2(F [D]) + ε2and

∀A. advS(A) ≤ advH2(F [C[A]]) + ε1 + ε2then

3

Our Contributions

A Hoare logic to prove worst-case complexity upper-bounds
of probabilistic programs.
⇒ fully mechanized cryptographic reductions.

Implemented in EasyCrypt, embedded in its ambient
higher-order logic.
⇒ meaningful ∀∃ statements: better composability.

Application: UC formalization in EasyCrypt.

First formalization of EasyCrypt module system.
(of independent interest)

4

Hoare Logic for Complexity

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv.choose(pk);

h $←− dptxt;
Adv.guess(y || h);
while (log 6= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

5

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv.choose(pk);

h $←− dptxt;
Adv.guess(y || h);
while (log 6= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

5

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv(Log(RO)).choose(pk);

h $←− dptxt;
Adv(Log(RO)).guess(y || h);
while (log 6= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

5

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv(Log(RO)).choose(pk);

h $←− dptxt;
Adv(Log(RO)).guess(y || h);
while (log 6= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

5

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv(Log(RO)).choose(pk);

h $←− dptxt;
Adv(Log(RO)).guess(y || h);
while (log 6= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

5

Key Ingredients

Support programs mixing concrete and abstract code.
Example: Adv(Log(RO))

Complexity upper-bound requires some program invariants.
Example: |log| ≤ kc + kg

Abstract procedures must be restricted:
Complexity: restrict intrinsic cost/number of calls to oracles.
Example: choose can call o ≤ kc times.

Memory footprint: some memory areas are off-limit.
Example: Adv cannot access the log in Log’s memory

6

Key Ingredients

Support programs mixing concrete and abstract code.
Example: Adv(Log(RO))

Complexity upper-bound requires some program invariants.
Example: |log| ≤ kc + kg

Abstract procedures must be restricted:
Complexity: restrict intrinsic cost/number of calls to oracles.
Example: choose can call o ≤ kc times.

Memory footprint: some memory areas are off-limit.
Example: Adv cannot access the log in Log’s memory

6

Module Restrictions

Abstract code modeled as any program implementing some
module signature (à la ML)

, with some restrictions:

Module memory footprint can be restricted.

Procedure complexity can be upper-bounded.

module type RO = {
proc o (r:rand) : ptxt

[intr : to]

}.

module type Adv (H: RO) = {
proc choose(p:pkey) : unit

[intr : tc ,H.o : kc]

proc guess(c:ctxt) : unit

[intr : tg ,H.o : kg]

}.

7

Module Restrictions

Abstract code modeled as any program implementing some
module signature (à la ML), with some restrictions:

Module memory footprint can be restricted.

Procedure complexity can be upper-bounded.

module type RO = {
proc o (r:rand) : ptxt

[intr : to]

}.

module type Adv (H: RO) {+all mem, -Log, -H, -Inverter} = {
proc choose(p:pkey) : unit

[intr : tc ,H.o : kc]

proc guess(c:ctxt) : unit

[intr : tg ,H.o : kg]

}.

7

Module Restrictions

Abstract code modeled as any program implementing some
module signature (à la ML), with some restrictions:

Module memory footprint can be restricted.

Procedure complexity can be upper-bounded.

module type RO = {
proc o (r:rand) : ptxt [intr : to]

}.

module type Adv (H: RO) {+all mem, -Log, -H, -Inverter} = {
proc choose(p:pkey) : unit [intr : tc ,H.o : kc]

proc guess(c:ctxt) : unit [intr : tg ,H.o : kg]

}.

7

Complexity Judgements

E ` {φ} s {ψ | c }

Pre-condition Post-condition

Environment Program
statement

Cost vector

Assuming φ, evaluating s guarantees ψ, and takes time at most c .

Example: E ` {>} Inverter(Adv,RO).invert {|log| ≤ kc + kg | c}

8

Complexity Judgements

E ` {φ} s {ψ | c }

Pre-condition Post-condition

Environment Program
statement

Cost vector

Assuming φ, evaluating s guarantees ψ, and takes time at most c .

Example: E ` {>} Inverter(Adv,RO).invert {|log| ≤ kc + kg | c}

8

Cost Vectors

c ::= [conc : k , O1.f1 : k1 , . . . , Ol .fl : kl]

Concrete
cost

Integers

Abstract
procedures

Example: [conc : (5+ tf) · (kc + kg) + 4,
Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg]

9

Hoare Logic for Cost: If Statements

if
` {φ} e ≤ te

E ` {φ ∧ e} s1 {ψ | t} E ` {φ ∧ ¬e} s2 {ψ | t}

E ` {φ} if e then s1 else s2 {ψ | t + te}

Whenever:
e takes time ≤ te ;

s1, assuming φ ∧ e, guarantees ψ in time ≤ t;

s2, assuming φ ∧ ¬e, guarantees ψ in time ≤ t;
then the conditional, assuming φ, guarantees ψ in time ≤ t + te .

10

Hoare Logic for Cost

Hoare logic for cost

+ typing rules for module restrictions.

Rules handling abstract code are the most interesting.

11

Hoare Logic for Cost

Hoare logic for cost + typing rules for module restrictions.
Rules handling abstract code are the most interesting.

11

Implementation in EasyCrypt

Mechanizing Cryptographic Reduction

EasyCrypt
A proof assistant to verify cryptographic proofs. It relies on:

general purpose higher-order ambient logic.

probabilistic relational Hoare logic (pRHL).

powerful module system.

Many advanced existing case studies: AWS KMS, SHA3, ...

12

Implementation in EasyCrypt

Hoare logic for cost has been implemented in EasyCrypt.

Integrated in EasyCrypt ambient higher-order logic.
⇒ meaningful existential quantification over abstract code

(e.g. ∀∃ statements).

Established the complexity of classical examples:
BR93, Hashed El-Gamal, Cramer-Shoup.

13

Application: Universal
Composability in EasyCrypt

Universal Composability

UC is a general framework providing strong security
guarantees

Fundamentals properties: transitivity and composability.
⇒ allow for modular and composable proofs.

14

Universal Composability in EasyCrypt

UC formalization in EasyCrypt, with fully mechanized
general UC theorems (transitivity, composability).

Our formalization exploits EasyCrypt machinery:
module restrictions for complexity/memory footprint
constraints;
message passing done through procedure calls.

⇒ simple and usable formalism.

Application: Diffie-Hellman+One-Time Pad UC-emulates a
one-shot Secure Channel ideal functionality, assuming DDH.

15

Conclusion

Conclusion

Designed a Hoare logic for worst-case complexity
upper-bounds.

Implemented in EasyCrypt, embedded in its ambient
higher-order logic.
⇒ fully mechanized and composable crypto. reductions.

First formalization of EasyCrypt module system.
(of independent interest)

Main application: UC formalization in EasyCrypt.
Key results (transitivity, composability) and examples
(DH+OTP) are fully mechanized.

16

Thank you for your attention.

17

Universal Composability

π1
Z

I/O Backdoor

Z
π2 S

≈

∃S ∈ Sim, ∀Z ∈ Env,

|Pr[Z(π1) : true]− Pr[Z(〈π2 ◦ S〉) : true] | ≤ ε

Z is the adversary: its complexity must be bounded.
if S’s complexity is unbounded, UC key theorems become
useless.

Universal Composability

π1
Z

I/O Backdoor

Z
π2 S

≈

∃S ∈ Sim[csim], ∀Z ∈ Env[cenv],

|Pr[Z(π1) : true]− Pr[Z(〈π2 ◦ S〉) : true] | ≤ ε

Z is the adversary: its complexity must be bounded.
if S’s complexity is unbounded, UC key theorems become
useless.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim[c12
sim]

∀Z ∈ Env[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim[c23
sim]

∀Z ∈ Env[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim[c12
sim + c23

sim]

∀Z ∈ Env[cenv]

S

⇒ precise complexity bounds are crucial here.

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim[c12
sim]

∀Z ∈ Env[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim[c23
sim]

∀Z ∈ Env[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim[c12
sim + c23

sim]

∀Z ∈ Env[cenv]

S

⇒ precise complexity bounds are crucial here.

Application: One-Shot Secure Channel

Diffie-Hellman UC-emulates a Key-Exchange ideal
functionality, assuming DDH.

Key-Exchange+One-Time Pad UC-emulates a one-shot Secure
Channel ideal functionality.

Diffie-Hellman+One-Time Pad UC-emulates a one-shot Secure
Channel ideal functionality, assuming DDH.

Final security statements with precise probability and
complexity bounds.

Application: One-Shot Secure Channel

Diffie-Hellman UC-emulates a Key-Exchange ideal
functionality, assuming DDH.

Key-Exchange+One-Time Pad UC-emulates a one-shot Secure
Channel ideal functionality.

Diffie-Hellman+One-Time Pad UC-emulates a one-shot Secure
Channel ideal functionality, assuming DDH.

Final security statements with precise probability and
complexity bounds.

	Hoare Logic for Complexity
	Implementation in EasyCrypt
	Application: Universal Composability in EasyCrypt
	Conclusion
	Appendix

