High-Assurance and High-Speed
Cryptographic Implementations Using the

Jasmin Language

J.B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, V. La-
porte, T. Oliveira, P-Y. Strub

Octobre 9th, 2019



Context

WIKIPEDIA

‘The Free Encyc

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction

Community portal
Recent changes
Contact page

Tools

links here
ed changes
Upload file
Special pages
Permanent link
Page inform
kidata iter

Page Info - https://en.wikipedia.org/wiki/Main_Page
& [m)
E & =
General Media Permissions | Security
Website Identity
Website en.wikipedia.org
Owner: This website does not supply ownership information.

Verified by: GlobalSign nv-sa View Certificate
Expires on: November 22, 2019

Privacy & History

Have | visited this website prior to today? Yes, 1,762 times

Is this website storing information on my computer? Yes, cookies Clear Cookies and Site Data

Have | saved any passwords for this website? No View Saved Passwords

Technical Details,

Connection Encipted (TLS _ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 256 bit keys, TLS 1.2)

The page you are vieW™@mmaggncrvpted before being transmitted over the Internet.

Encryption makes it difficult for unauthorized people T0 VIEW OGO (raveling between computers. It is therefore
unlikely that anyone read this page as it traveled across the network.

Help



Developing cryptographic libraries is hard, as the code must be:

efficient: pervasive usage, on large amount of data.
functionally correct: the specification must be respected.

protected against side-channel attacks: constant-time
implementation.



Exploit auxilliary information to break a cryptographic primitive.



Exploit auxilliary information to break a cryptographic primitive.

Countermeasure against timing and cache attacks.

Control-flow and memory accesses should not depend on
secret data.

Crypto implementations without this property are vulnerable.



Difficulties

Efficiency: low-level operations and vectorized instructions.
Functional Correctness: readable code, with high-level
abstractions.

Side-Channel Attacks Protection: control over the executed

code.



Gap Between Source and Assembly

High-level abstractions.
Readable code.



Gap Between Source and Assembly

High-level abstractions.

Readable code.

Trust compiler (GCC or Clang).
Certified compilers are less efficient (CompCert).

Optimizing can break side channel resistance.



Preservation of Constant-Timeness?

int cmove(int x, int y, bool b) {
return x + (y-x) * b;

}



Preservation of Constant-Timeness?

int cmove(int x, int y, bool b) {
return x + (y-x) * b;

}

int cmove(int x, int y, bool b) {

if (b) {

return vy;

1 else {

return x;

}
}



Gap Between Source and Assembly

Efficient code.

Control over the program execution.



Gap Between Source and Assembly

Efficient code.

Control over the program execution.

The code is obfuscated.
More error prone.

Harder to prove/analyze.



Jasmin: High Assurance Cryptographic Implementations

Source language: assembly in the head with formal semantics
— programmer & verification friendly

Compiler: predictable & formally verified (in Coq)
— programmer has control and no compiler security bug
Verification tool-chain:

Functional correctness.
Side-channel resistance (constant-time).
Safety.

TLS 1.3 components : ChaCha20, Poly1305, Curve25519.



The Jasmin Language



Initialization of ChaCha20 State

inline fn init(reg u64 key nonce, reg u32 counter) — stack u32[16] { Zero-Cost Abstractions
inline int i;
stack u32[16] st;

reg u32[8] k; e Variable names.
reg u32[3] n;
st[0] = 0x61707865; ¢ Arrays'
st[1] = 0x3320646e;
st[2] = 0x79622d32; e Loops.
st[3] = 0x6b206574; ) )
e Inline functions.

for i=0 to 8 {

k[i] = (u32)[key + 4xi];

st[4+i] = K[i];
}

st[12] = counter;
for i=0 to 3 {

n[i] = (u32)[nonce + 4xi];
st[13+i] = nli];

return st;

10



User Control: Loop Unrolling

for i=0 to 15 {

}

K[i] = st]i;

Fully unrolled.
The value of the counter is
propagated.

The source code still
readable and compact.

while(i < 15) {
Kli] = st[i]; i +=1;
ks
Untouched.

11



User Control: Register or Stack

e Jasmin has three kinds of variables:

e register variables (reg).

e stack variables (stack).

e global variables (global).
e Arrays can be register arrays or stack arrays.
e Spilling is done manually (by the user).

inline fn sum_ states(reg u32[16] k, stack u32 k15, stack u32[16] st) — reg u32[16], stack u32

{
inline int i;
stack u32 k14;

for i=0 to 15 {

k[i] += st[i];
k14 = k[14]; Kk[15] = k15;  // Spilling
k[15] += st[15];
k15 = k[15]; k[14] = k14; // Spilling

return k, k15;

}
12



User Control: Instruction-Set

e Direct memory access.

reg ub4 output, plain;

for i=0 to 12 {
k[i] = (u32)[plain + 4xi];
(u32)[output + 4xi] = k[i]; }

e The carry flag is an ordinary boolean variable.
reg u64[3] h;
reg bool cf0 cfl;
reg u64 h2rx4 h2r;

h2r += h2rx4;
cf0, h[0] += h2r;

cfl, h[1] += 0 + cf0;
~,h[2] += 0 + cf1;

13



User Control : Instruction-Set

e Most assembly instructions are available.

of, cf sf, pf, zf, z=x86 _ADC(x, y, cf);

of, cf, x =x86_ROL_32(x, bits);

e Vectorized instructions (SIMD).

k[0] +8u32= k[1]; // vectorized addition of 8 32-bits words;

k[1] = x86 VPSHUFD 256(k[1], (4u2)[0,3,2,1]);

14



The Jasmin Compiler




The Compiler

Predictability and control of generated assembly.
Preserves semantics (machine-checked in Coq).

Preserves side-channel resistance

15



Compilation

For loop unrolling.
Function inlining.
Constant-propagation.
Sharing of stack variables.
Register array expansion.
Lowering.

Register allocation.
Linearisation.

Assembly generation.

16



Semantic Preservation

Vp, p’. compile(p) = ok(p’) =
Yva, m, v,, m".enough-stack-space(p’, m) =

/ / /
VaamUp Vram = VaamU’p Vl’vm

The compiler uses validation.

We may need some extra memory space for p':

enough-stack-space(p’, m)

If pis not safe, i.e. v,, m {|® L, then we have no guarantees.

17



Functional Correctness




Functional Correctness

We start from a readable reference implementation:
Using a mathematical specification (e.g. in Z/pZ).
Or a simple imperative specifications.
We gradually transform the reference implem. into an
optimized implem.:
We prove that each transformation preserves functional
correctness by equivalence (game-hoping).
We prove additional properties of the final implementation:

Constant-time by program equivalence.
Safety by static analysis.

18



Functional Correctness

We perform functional correctness proofs by game hopping:

Cref ™~ C1 ~ ...~ Cp ~ Copt

Jasmin programs are translated into EasyCrypt programs.
EasyCrypt model for Jasmin (memory model + instructions).

Equivalences are proved in EasyCrypt.

19



Functional Correctness

A judgment {P} c1 ~ & {Q} is valid if:
(my,m) €P = m | m] = m |2 m) = (m},m)) € Q
Relational Hoare Logic is provided in EasyCrypt.

Example

e ci is the reference implementation (the specification)

e ¢ is the optimized implementation

{args(my) = args(ma)} c1 ~ ¢ {res(my) = res(my)}

20



Example: ChaCha20

Stream cipher that iterates a body on all the blocks of a message.

while (i < len) { while (i + 4 < len) { while (i + 4 < len) { while (i + 4 < len) {
chacha_ body; chacha_body; chacha_body4 swapped; chacha_body4 vectorized;
i+=1; chacha body; i += 4, i+=4;
3 chacha_body;
chacha_body; chacha_end chacha_end
i += 4

chacha end

21



Safety




A program p is safe under precondition ¢ if and only if:

V(v,m) € ¢. v,m P L

If p is safe, its execution never crashes.
The compilation theorem gives no guarantees if p is not safe.

Jasmin semantics in Easycrypt assumes that p is safe.

22



Division by zero.

Variable and array initialization.
Out-of-bound array access.
Termination.

Valid memory access.
Safety is checked automatically by static analysis.

23



Abstract Interpretation: Abstract Values

yﬂ

24



Abstract Interpretation: Abstract Values

yﬂ

X* over-approximates X if and only if X C (XF)

24



Abstract Interpretation: Abstract Values

yﬂ

° Intervals

X* over-approximates X if and only if X C (XF)

24



Abstract Interpretation: Abstract Values

yﬂ

o Octogons

° Intervals

X* over-approximates X if and only if X C (XF)

24



Abstract Interpretation: Abstract Values

yﬂ

[ Polyhedra

° // Octogons

Intervals

X* over-approximates X if and only if X C (XF)

24



Abstract Interpretation: Abstract Transformers

yh

f% over-approximates f if and only if:

VXE, fory(XH) C o f(XH

25



Abstract Interpretation: Abstract Transformers

yh yA

y<y+15 o

f% over-approximates f if and only if:

VXE, fory(XH) C o f(XH

25



Abstract Interpretation: Abstract Transformers

yh yA

— 14% / °
— A

f% over-approximates f if and only if:

VXE, fory(XH) C o f(XH

25



Jasmin is a simple language for static analysis:

No recursion.
Arrays size are statically known.

No dynamic memory allocation.

26



fn load(reg u64 in, reg u64 len) {
inline int i;

reg u8 tmp;

tmp = 0;
while (len >= 16) {
fori=0to 16 {
tmp = (u8)[in + i]; }
in += 16;
len -= 16; }

fori=0to 16 {
if i <len {
tmp = (u8)[in + i]; }}

return tmp;

}

27



fn load(reg u64 in, reg u64 len) {
inline int i;

reg u8 tmp;

tmp = 0;
while (len >= 16) {
fori=0to 16 { Memory Calling Contract
tmp = (u8)[in + i]; }
in += 16; valid-memiqaq(ing, leng) =
len -= 16; } .
[ino; ing + lenog]
fori=0to 16 {
if i <len{
tmp = (u8)[in + i]; }}

return tmp;

}

27



Static Analysis

Let P be a set of pointers. To a variable x € V, we associate:

x € V! its abstract value.

xo € V! its abstract initial value.
pt, C P: points-to information.
offset, € V¥: its abstract offset.

28



Static Analysis

Let P be a set of pointers. To a variable x € V, we associate:

x € V! its abstract value.

xo € V! its abstract initial value.
pt, C P: points-to information.
offset, € V¥: its abstract offset.

Moreover, for every p € P, we have:

mem, € V¥: memory accesses at p (plus an offset).

28



Static Analysis

We decompose x into a base pointer p and an offset offset,:

v(pt, = {p} Aoffset, = S*) = x = {p+ 0| 0 € y(S"}

29



Static Analysis

We decompose x into a base pointer p and an offset offset,:

v(pt, = {p} Aoffset, = S*) = x = {p+ 0| 0 € y(S"}

Example

o v(pt, = {p} A offset, = [32;63]) = x > [p + 32; p + 63]

29



Static Analysis

We decompose x into a base pointer p and an offset offset,:

v(pt, = {p} Aoffset, = S*) = x = {p+ 0| 0 € y(S"}

Example

o y(pt, = {p} A offsety, =[32;63]) = x — [p + 32; p + 63]
e Abstract transformer:
- St 1 opt, = {p} A offset, = [32;63]
y < x+16
- 8" : pt, = {p} A offset, = [48;79)

29



Static Analysis

In y < x + z, we can either use x or z as a base pointer.

In practice, it is never a problem (assembly coding style).

30



Static Analysis

Let f be a procedure with pointers P. If:
[(Skie) = N\ memp =S ...
eP
Then for every Sinit C V(Siﬁnit):

valid-mem¢(Sinit) € (] 7(S?)
P

31



Static Analysis

Example

o S* : pt, = {p} Amem, = [0; 127] A offset, = [128; 128 + 16]
tmp < (u8)[x + 16]
e S . mem, = [0;127] U* [128; 128 + 32] = [0; 160]

32



fn load(reg u64 in, reg u64 len) {

}

inline int i;

reg u8 tmp;

tmp = 0;
while (len >= 16) {
fori=0to 16 {
tmp = (u8)[in + i]; }
in += 16;
len -= 16; }

fori=0to 16 {
if i <len {
tmp = (u8)[in + i]; }}

return tmp;

0 < offsetin, len, leng, mem;,
A offseti, + len = leng
A leng — 15 < offseti, < leng

A mem;, < offset;,

0 < memj, < leng

33



Static Analysis

Intervals + Relational domain (polyhedra).

Basic syntactic pre-analysis.

Disjunctive domain (using the control flow).

Simple non-relational boolean abstractions (for bools and
initialization).

Brutal handling of function calls.

34



Static Analysis

For Poly1305, with signature:

export fn poly1305 avx2(reg u64 out, reg ub4 in, reg u64 len, reg u64 k)
We infer the ranges:

memgyt: out + [0; 16] memye,:

memy : k+ [0;32] memi, : in + [0; len|

35



Static Analysis

We manually provide some information to the analyser:

pointers (input) variables: k,in and out in Poly1305.

relational (input) variables: len in Poly1305.

36



Conclusion




Conclusion

A framework to build high-speed certified implementations of
cryptographic primitives.

Code is manually optimized.

Functional correctness is obtained by game hopping.

Safety and security against timing attacks are proved

automatically.

Efficient implementation of Poly1305, ChaCha20 and Gimli.

37



Conclusion

More TLS 1.3 primitives.
More architectures, more general purpose language.

procedure calls.
register allocation/spilling.

Certification for safety proofs.

38



	The Jasmin Language
	The Jasmin Compiler
	Functional Correctness
	Safety
	Conclusion

