
High-Assurance and High-Speed
Cryptographic Implementations Using the
Jasmin Language

J.B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, V. La-
porte, T. Oliveira, P-Y. Strub

Octobre 9th, 2019

1

Context

2

Context

Cryptographic Libraries
Developing cryptographic libraries is hard, as the code must be:

• efficient: pervasive usage, on large amount of data.

• functionally correct: the specification must be respected.

• protected against side-channel attacks: constant-time
implementation.

3

Context

Side-Channel Attacks
Exploit auxilliary information to break a cryptographic primitive.

Constant-Time Programming

• Countermeasure against timing and cache attacks.

• Control-flow and memory accesses should not depend on
secret data.

• Crypto implementations without this property are vulnerable.

4

Context

Side-Channel Attacks
Exploit auxilliary information to break a cryptographic primitive.

Constant-Time Programming

• Countermeasure against timing and cache attacks.

• Control-flow and memory accesses should not depend on
secret data.

• Crypto implementations without this property are vulnerable.

4

Difficulties

Constraints

• Efficiency: low-level operations and vectorized instructions.

• Functional Correctness: readable code, with high-level
abstractions.

• Side-Channel Attacks Protection: control over the executed
code.

5

Gap Between Source and Assembly

Source

• High-level abstractions.

• Readable code.

Source is not Security/Efficiency Friendly

• Trust compiler (GCC or Clang).

• Certified compilers are less efficient (CompCert).

• Optimizing can break side channel resistance.

6

Gap Between Source and Assembly

Source

• High-level abstractions.

• Readable code.

Source is not Security/Efficiency Friendly

• Trust compiler (GCC or Clang).

• Certified compilers are less efficient (CompCert).

• Optimizing can break side channel resistance.

6

Preservation of Constant-Timeness?

Before

int cmove(int x, int y, bool b) {
return x + (y-x) ∗ b;

}

After

int cmove(int x, int y, bool b) {
if (b) {
return y;

} else {
return x;

}
}

7

Preservation of Constant-Timeness?

Before

int cmove(int x, int y, bool b) {
return x + (y-x) ∗ b;

}

After

int cmove(int x, int y, bool b) {
if (b) {
return y;

} else {
return x;

}
}

7

Gap Between Source and Assembly

Assembly

• Efficient code.

• Control over the program execution.

Assembly is not Programmer/Verifier Friendly

• The code is obfuscated.

• More error prone.

• Harder to prove/analyze.

8

Gap Between Source and Assembly

Assembly

• Efficient code.

• Control over the program execution.

Assembly is not Programmer/Verifier Friendly

• The code is obfuscated.

• More error prone.

• Harder to prove/analyze.

8

Jasmin: High Assurance Cryptographic Implementations

Fast and Formally Verified Assembly Code

• Source language: assembly in the head with formal semantics
=⇒ programmer & verification friendly

• Compiler: predictable & formally verified (in Coq)
=⇒ programmer has control and no compiler security bug

• Verification tool-chain:
• Functional correctness.
• Side-channel resistance (constant-time).
• Safety.

Implementations in Jasmin
TLS 1.3 components : ChaCha20, Poly1305, Curve25519.

9

The Jasmin Language

Initialization of ChaCha20 State

inline fn init(reg u64 key nonce, reg u32 counter) → stack u32[16] {
inline int i;
stack u32[16] st;
reg u32[8] k;
reg u32[3] n;

st[0] = 0x61707865;
st[1] = 0x3320646e;
st[2] = 0x79622d32;
st[3] = 0x6b206574;

for i=0 to 8 {
k[i] = (u32)[key + 4∗i];
st[4+i] = k[i];

}

st[12] = counter;

for i=0 to 3 {
n[i] = (u32)[nonce + 4∗i];
st[13+i] = n[i];

}

return st;
}

Zero-Cost Abstractions

• Variable names.

• Arrays.

• Loops.

• Inline functions.

10

User Control: Loop Unrolling

for i=0 to 15 {
k[i] = st[i];

}

For Loops

• Fully unrolled.

• The value of the counter is
propagated.

• The source code still
readable and compact.

while(i < 15) {
k[i] = st[i]; i += 1;

}

While Loops

• Untouched.

11

User Control: Register or Stack

• Jasmin has three kinds of variables:
• register variables (reg).
• stack variables (stack).
• global variables (global).

• Arrays can be register arrays or stack arrays.
• Spilling is done manually (by the user).
inline fn sum_states(reg u32[16] k, stack u32 k15, stack u32[16] st) → reg u32[16], stack u32
{

inline int i;
stack u32 k14;

for i=0 to 15 {
k[i] += st[i];

}

k14 = k[14]; k[15] = k15; // Spilling
k[15] += st[15];
k15 = k[15]; k[14] = k14; // Spilling

return k, k15;
}

12

User Control: Instruction-Set

• Direct memory access.
reg u64 output, plain;

for i=0 to 12 {
k[i] = (u32)[plain + 4∗i];
(u32)[output + 4∗i] = k[i]; }

• The carry flag is an ordinary boolean variable.
reg u64[3] h;
reg bool cf0 cf1;
reg u64 h2rx4 h2r;

h2r += h2rx4;
cf0, h[0] += h2r;
cf1, h[1] += 0 + cf0;
_ , h[2] += 0 + cf1;

13

User Control : Instruction-Set

• Most assembly instructions are available.

of, cf ,sf, pf, zf, z = x86_ADC(x, y, cf);

of, cf, x = x86_ROL_32(x, bits);

• Vectorized instructions (SIMD).

k[0] +8u32= k[1]; // vectorized addition of 8 32-bits words;

k[1] = x86_VPSHUFD_256(k[1], (4u2)[0,3,2,1]);

14

The Jasmin Compiler

The Compiler

Goals And Features

• Predictability and control of generated assembly.

• Preserves semantics (machine-checked in Coq).

• Preserves side-channel resistance

15

Compilation

Passes and Optimizations

• For loop unrolling.

• Function inlining.

• Constant-propagation.

• Sharing of stack variables.

• Register array expansion.

• Lowering.

• Register allocation.

• Linearisation.

• Assembly generation.

16

Semantic Preservation

Compilation Theorem (Coq)

∀p, p′. compile(p) = ok(p′)⇒
∀va,m, vr ,m′.enough-stack-space(p′,m)⇒
va,m ⇓p vr ,m

′ ⇒ va,m ⇓p
′
vr ,m

′

Remarks

• The compiler uses validation.

• We may need some extra memory space for p′:
enough-stack-space(p′,m)

• If p is not safe, i.e. va,m ⇓p ⊥, then we have no guarantees.

17

Functional Correctness

Functional Correctness

Methodology

• We start from a readable reference implementation:
• Using a mathematical specification (e.g. in Z/pZ).
• Or a simple imperative specifications.

• We gradually transform the reference implem. into an
optimized implem.:

• We prove that each transformation preserves functional
correctness by equivalence (game-hoping).

• We prove additional properties of the final implementation:
• Constant-time by program equivalence.
• Safety by static analysis.

18

Functional Correctness

Gradual Transformation
We perform functional correctness proofs by game hopping:

cref ∼ c1 ∼ . . . ∼ cn ∼ copt

EasyCrypt

• Jasmin programs are translated into EasyCrypt programs.

• EasyCrypt model for Jasmin (memory model + instructions).

• Equivalences are proved in EasyCrypt.

19

Functional Correctness

Relational Hoare Logic

A judgment {P} c1 ∼ c2 {Q} is valid if:

(m1,m2) ∈ P ⇒ m1 ⇓c1 m′
1 ⇒ m2 ⇓c2 m′

2 ⇒ (m′
1,m

′
2) ∈ Q

Relational Hoare Logic is provided in EasyCrypt.

Example

• c1 is the reference implementation (the specification)

• c2 is the optimized implementation

{args〈m1〉 = args〈m2〉} c1 ∼ c2 {res〈m1〉 = res〈m2〉}

20

Example: ChaCha20

Stream cipher that iterates a body on all the blocks of a message.

Reference

while (i < len) {
chacha_body;
i += 1;

}

Loop tiling

while (i + 4 ≤ len) {
chacha_body;
chacha_body;
chacha_body;
chacha_body;
i += 4;

}
chacha_end

Scheduling

while (i + 4 ≤ len) {
chacha_body4_swapped;
i += 4;

}
chacha_end

Vectorization

while (i + 4 ≤ len) {
chacha_body4_vectorized;
i += 4;

}
chacha_end

21

Safety

Safety

Definition
A program p is safe under precondition φ if and only if:

∀(v ,m) ∈ φ. v ,m 6⇓p ⊥

Why do we Need Safety?

• If p is safe, its execution never crashes.

• The compilation theorem gives no guarantees if p is not safe.

• Jasmin semantics in Easycrypt assumes that p is safe.

22

Safety

Properties to Check

• Division by zero.

• Variable and array initialization.

• Out-of-bound array access.

• Termination.

• Valid memory access.

Jasmin
Safety is checked automatically by static analysis.

23

Abstract Interpretation: Abstract Values

x

y

Polyhedra

Octogons

Intervals

Soundness

X] over-approximates X if and only if X ⊆ γ(X])

24

Abstract Interpretation: Abstract Values

x

y

Polyhedra

Octogons

Intervals

Soundness

X] over-approximates X if and only if X ⊆ γ(X])

24

Abstract Interpretation: Abstract Values

x

y

Polyhedra

Octogons

Intervals

Soundness

X] over-approximates X if and only if X ⊆ γ(X])

24

Abstract Interpretation: Abstract Values

x

y

Polyhedra

Octogons

Intervals

Soundness

X] over-approximates X if and only if X ⊆ γ(X])

24

Abstract Interpretation: Abstract Values

x

y

Polyhedra

Octogons

Intervals

Soundness

X] over-approximates X if and only if X ⊆ γ(X])

24

Abstract Interpretation: Abstract Transformers

y ← y + 1.5y ← 1.4 ∗ y

x

y

x

y

x

y

Soundness

f] over-approximates f if and only if:

∀X]. f ◦ γ(X]) ⊆ γ ◦ f](X])

25

Abstract Interpretation: Abstract Transformers

y ← y + 1.5y ← 1.4 ∗ y

x

y

x

y

x

y

Soundness

f] over-approximates f if and only if:

∀X]. f ◦ γ(X]) ⊆ γ ◦ f](X])

25

Abstract Interpretation: Abstract Transformers

y ← y + 1.5y ← 1.4 ∗ y

x

y

x

y

x

y

Soundness

f] over-approximates f if and only if:

∀X]. f ◦ γ(X]) ⊆ γ ◦ f](X])

25

Safety

Features of the Language
Jasmin is a simple language for static analysis:

• No recursion.

• Arrays size are statically known.

• No dynamic memory allocation.

26

Example

fn load(reg u64 in, reg u64 len) {
inline int i;
reg u8 tmp;

tmp = 0;
while (len >= 16) {
for i = 0 to 16 {
tmp = (u8)[in + i]; }

in += 16;
len -= 16; }

for i = 0 to 16 {
if i < len {
tmp = (u8)[in + i]; }}

return tmp;
}

Memory Calling Contract

valid-memload(in0, len0) =

[in0; in0 + len0]

27

Example

fn load(reg u64 in, reg u64 len) {
inline int i;
reg u8 tmp;

tmp = 0;
while (len >= 16) {
for i = 0 to 16 {
tmp = (u8)[in + i]; }

in += 16;
len -= 16; }

for i = 0 to 16 {
if i < len {
tmp = (u8)[in + i]; }}

return tmp;
}

Memory Calling Contract

valid-memload(in0, len0) =

[in0; in0 + len0]

27

Static Analysis

Variables in the Abstract Domain
Let P be a set of pointers. To a variable x ∈ V, we associate:

• x ∈ V]: its abstract value.
• x0 ∈ V]: its abstract initial value.
• ptx ⊆ P: points-to information.

• offsetx ∈ V]: its abstract offset.

Moreover, for every p ∈ P, we have:

• memp ∈ V]: memory accesses at p (plus an offset).

28

Static Analysis

Variables in the Abstract Domain
Let P be a set of pointers. To a variable x ∈ V, we associate:

• x ∈ V]: its abstract value.
• x0 ∈ V]: its abstract initial value.
• ptx ⊆ P: points-to information.

• offsetx ∈ V]: its abstract offset.

Moreover, for every p ∈ P, we have:

• memp ∈ V]: memory accesses at p (plus an offset).

28

Static Analysis

Concretization Function
We decompose x into a base pointer p and an offset offsetx :

γ(ptx = {p} ∧ offsetx = S]) = x 7→ {p+ o | o ∈ γ(S])}

Example

• γ(ptx = {p} ∧ offsetx = [32; 63]) = x 7→ [p+ 32; p+ 63]

• Abstract transformer:
- S] : ptx = {p} ∧ offsetx = [32; 63]

y ← x + 16
- S ′] : pty = {p} ∧ offsety = [48; 79]

29

Static Analysis

Concretization Function
We decompose x into a base pointer p and an offset offsetx :

γ(ptx = {p} ∧ offsetx = S]) = x 7→ {p+ o | o ∈ γ(S])}

Example

• γ(ptx = {p} ∧ offsetx = [32; 63]) = x 7→ [p+ 32; p+ 63]

• Abstract transformer:
- S] : ptx = {p} ∧ offsetx = [32; 63]

y ← x + 16
- S ′] : pty = {p} ∧ offsety = [48; 79]

29

Static Analysis

Concretization Function
We decompose x into a base pointer p and an offset offsetx :

γ(ptx = {p} ∧ offsetx = S]) = x 7→ {p+ o | o ∈ γ(S])}

Example

• γ(ptx = {p} ∧ offsetx = [32; 63]) = x 7→ [p+ 32; p+ 63]

• Abstract transformer:
- S] : ptx = {p} ∧ offsetx = [32; 63]

y ← x + 16
- S ′] : pty = {p} ∧ offsety = [48; 79]

29

Static Analysis

Remark

• In y ← x + z , we can either use x or z as a base pointer.

• In practice, it is never a problem (assembly coding style).

30

Static Analysis

Memory Calling Contract
Let f be a procedure with pointers P. If:

JfK](S]init) =̇
∧
p∈P

memp = S]p ∧ . . .

Then for every Sinit ⊆ γ(S]init):

valid-memf(Sinit) ⊆
⋃
p∈P

γ(S]p)

31

Static Analysis

Example

• S] : ptx = {p} ∧memp = [0; 127] ∧ offsetx = [128; 128+ 16]

tmp← (u8)[x + 16]

• S ′] : memp = [0; 127] ∪] [128; 128+ 32] = [0; 160]

32

Example

fn load(reg u64 in, reg u64 len) {
inline int i;
reg u8 tmp;

tmp = 0;
while (len >= 16) {
for i = 0 to 16 {
tmp = (u8)[in + i]; }

in += 16;
len -= 16; }

for i = 0 to 16 {
if i < len {
tmp = (u8)[in + i]; }}

return tmp;
}

After the While Loop

0 ≤ offsetin, len, len0,memin

∧ offsetin + len = len0

∧ len0 − 15 ≤ offsetin ≤ len0

∧ memin ≤ offsetin

At the End

0 ≤ memin ≤ len0

33

Static Analysis

The Analyzer

• Intervals + Relational domain (polyhedra).

• Basic syntactic pre-analysis.

• Disjunctive domain (using the control flow).

• Simple non-relational boolean abstractions (for bools and
initialization).

• Brutal handling of function calls.

34

Static Analysis

Result
For Poly1305, with signature:

export fn poly1305_avx2(reg u64 out, reg u64 in, reg u64 len, reg u64 k)

We infer the ranges:

memout: out+ [0; 16[memlen: ∅
memk : k+ [0; 32[memin : in+ [0; len[

35

Static Analysis

Caveat
We manually provide some information to the analyser:

• pointers (input) variables: k, in and out in Poly1305.

• relational (input) variables: len in Poly1305.

36

Conclusion

Conclusion

Contributions
A framework to build high-speed certified implementations of
cryptographic primitives.

• Code is manually optimized.

• Functional correctness is obtained by game hopping.

• Safety and security against timing attacks are proved
automatically.

• Efficient implementation of Poly1305, ChaCha20 and Gimli.

37

Conclusion

Future Works

• More TLS 1.3 primitives.

• More architectures, more general purpose language.
• procedure calls.
• register allocation/spilling.

• Certification for safety proofs.

38

	The Jasmin Language
	The Jasmin Compiler
	Functional Correctness
	Safety
	Conclusion

