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Context

Security Protocols
Distributed programs which aim at providing some security
properties.

Security Attacks
Attacks against security protocols can be very damageable, e.g.
theft or privacy breach.
⇒ We need to check that protocols are secure:

formal methods allow to do that, with strong guarantees.
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Formal Methods

Verification of Security Protocols
The goal is to completely rule-out classes of attacks.

∀A ∈ C, (A || P ) |= φ

Attacker Class
What is the class C of attackers?
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Attacker Classes from the Literature

Dolev-Yao

Computational

CCSA†

(FO formalism)

Adversary: fixed set of rules E
Defined by what he can do.
E.g. dec({x}pk, sk)→ x

7 Reduced security 3 Good automation

Adversary: any PPT function A
models a real-world attacked.
3 Strong security 7 Limited automation

Adversary: any arbitrary function A
that satisfies some axioms, i.e. A |= Ax
Defined by what he cannot do, e.g.:
{m0}pk ∼ {m1}pk (if len(m0) = len(m1))
3 Strong security 3 Good automation

† Computationally Complete Symbolic Attacker 3



CCSA: Related Work

[BC12], [CLCS14]

First framework, only for reachability properties.

A tool implementing a decision procedure, tested on a few protocols
for a small number of sessions.

[BC14], [CK17]

New framework, both for reachability and equivalence properties.

Framework allows to do manual proofs, only for a bounded
number of sessions.

4



Our Contributions (under submission, S&P).

Manual proofs, only for a bounded number of sessions.

Contribution 2:
An interactive prover, Squirrel, to mechanize proofs.

Contribution 1:
A theoretical framework (a meta-logic) to express and
prove security properties (reachability and equivalence) for
an arbitrary number of sessions.

5



Outline

1 The Base logic: CCSA

2 The Meta-Logic

3 An Interactive Theorem Prover, Squirrel
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The Base logic: CCSA



Basic Hash Protocol

Tag

k

Reader

{ki}i
〈n, h(n, k)〉

ok()

∃i , π2(input) = h(π1(input), ki )

ko()
Otherwise

To formally model this protocol’s security, we need to model:

messages, i.e. distributions over bit-strings ⇒ terms
security properties (reachability or equivalence) ⇒ formulas
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Basic Hash Protocol

Tag

k

Reader

{ki}i
〈n, h(n, k)〉

ok()

∃i , π2(input) = h(π1(input), ki )

ko()
Otherwise

To formally model this protocol’s security, we need to model:

messages, i.e. distributions over bit-strings ⇒ terms
security properties (reachability or equivalence) ⇒ formulas
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Bana-Comon Approach: Messages

We model protocol messages using terms built upon:

names N , e.g. nA, nB , for random samplings (including keys).

function symbols F for protocol functions, e.g.:

h(_,_), 〈_,_〉, πi (_), ok(), if_then_else_, eq(_,_)

function symbols G for adversarial computations, e.g.:

att(_)

variables x ∈ X .
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Bana-Comon Approach: Messages, an Example
Tag

k

Reader

{ki}i
〈n, h(n, k)〉

ok()

∃i , π2(input) = h(π1(input), ki )

ko()
Otherwise

Terms for Basic Hash with two tags (with keys k1, k2):

〈n, h(n, k1)〉 if π2(input) = h(π1(input), k1) then ok()

else if π2(input) = h(π1(input), k2) then ok()

else ko()

where input = att(frame), and frame is the sequence of all
messages sent over the network.
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CCSA Approach: Formulas

We model security properties using formulas, which are built using
a predicate ∼ of arbitrary arity.

φ ::= φ ∨ φ | ¬φ | ∃x , φ | ~u ∼ ~v

Basic Hash Unlinkability (weak version)
Weak unlinkability for two tags and two sessions:

, ∼ ,

〈n, h(n, k0)〉, 〈n′, h(n′, k0)〉 ∼ 〈n, h(n, k0)〉, 〈n′, h(n′, k1)〉
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CCSA Approach: Semantics

Models of our logic are called computational models, where a
computational model M interprets:

terms as PPT Turing machines:
names as independent random samplings;
function symbols as deterministic machines.

∼ as computational indistinguishability.

Validity

We note M |= φ when the base logic formula holds in the
computational model M.

A base logic formula φ is valid if M |= φ for every M.
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CCSA Approach: Axioms

To prove that φ is valid, we axiomatize what the adversary
cannot do. We restrict the models M using axioms Ax:

structural axioms;

implementation axioms, e.g. functional properties;

cryptographic axioms, e.g. EUF-CMA, PRF.

Axioms are given as inference rules.

∆1 ` φ1 . . .∆1 ` φ1

∆ ` φ
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CCSA Approach: Axioms

. . .

φ
Ax +

Ax sound
(under crypto.
assumptions)

→
φ valid

(under crypto.
assumptions)
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CCSA Approach: Examples of Axioms

DUP
∆ ` ~u , s ∼ ~v , t

∆ ` ~u , s, s ∼ ~v , t, t

PRF

∆ ` ~u ,
if HFreshk(t; ~u , t)

then n
else h(t, k)

∼ ~v

∆ ` ~u , h(t, k) ∼ ~v

when SCn,k(t, ~u )
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CCSA Approach: Limitations

Weak unlinkability for two tags A,B with three sessions:

, , ∼ , , , , ∼ , ,

, , ∼ , , , , ∼ , ,

We have to manually prove all these equivalences!

Limited guarantees: only proved for three sessions.

Lots of redundant reasoning between cases.

Moreover, to prove security for a fixed n, e.g. 3, we often need to
understand why security holds for any n.
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The Meta-Logic



Solution: a Meta-Logic

Goal: prove security for any interleaving, in a single proof.


φ1 φ2

φ3 φ4

...

 +

{
base logic

inference rules

}
→


proof1 proof2
proof3 proof4
...



ψ + → proof

{
meta-logic

inference rules

}
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Solution: a Meta-Logic


φ1 φ2

φ3 φ4

...

 =


Ai1

, . . . ,
Ain

∼
T1
, . . . ,

Tn

|
for any n ∈ N and(

Aij

∈
{

;

})
1≤j≤n



ψ = ∀τ, frame@τ ∼ frameu@τ
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Protocols as a Set of Actions

To do this, we need a formal description of protocols.

An Action is:

a condition,

and an output message.

A Protocol is:

a finite set of actions,

equipped with a dependency relation to constrain the
execution order of actions.
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Protocols as a Set of Actions

Tag

k

Reader

{ki}i
〈n, h(n, k)〉

T (i, j)

ok()
Rok(k)

∃i , π2(input) = h(π1(input), ki )

ko()
Rko(k)

Otherwise R(k)

Action T (i, j): session j of the tag i
Condition: true
Output: 〈n[i, j], h(n[i, j], k[i])〉
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Protocols as a Set of Actions

Tag

k

Reader

{ki}i
〈n, h(n, k)〉

T (i, j)

ok()
Rok(k)

∃i , π2(input) = h(π1(input), ki )

ko()
Rko(k)

Otherwise R(k)

Action Rok[k]: session k of the reader, accept
Condition: ∃i, π2(input@Rok[k]) = h(π1(input@Rok[k]), k[i]))

Output: ok()
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Protocols as a Set of Actions

Tag

k

Reader

{ki}i
〈n, h(n, k)〉

T (i, j)

ok()
Rok(k)

∃i , π2(input) = h(π1(input), ki )

ko()
Rko(k)

Otherwise R(k)

Action Rko[k]: session k of the reader, reject
Condition: ¬

(
∃i, π2(input@Rko[k]) = h(π1(input@Rko[k]), k[i]))

)
Output: ko()
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Protocols as a Set of Actions

Tag

k

Reader

{ki}i
〈n, h(n, k)〉

T (i, j)

ok()
Rok(k)

∃i , π2(input) = h(π1(input), ki )

ko()
Rko(k)

Otherwise R(k)

Bonus Action R[k]: session k of the reader, accept or reject
Condition: true
Output: find i s.t. π2(input@R[k]) = h(π1(input@R[k]), k[i])) then ok()

else ko()
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Meta-Logic: Syntax

Extension of the base logic with:

index variables I, to represent session numbers, agent
numbers, etc: i1, . . . , in

indexed names, e.g. n[i1, . . . , ik ]

timestamps variables T and terms, to quantify over all
possible instants of a trace: τ or T (i, j).

macros cond@τ, input@τ, output@τ to talk about the
condition, input and output of the action at instant τ

quantifications over timestamps and indices.
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Meta-Logic: Translation to the Base Logic

A meta-formula ψ represents a set of base-formulas. Roughly:

ψ represents
{

(ψ)T | for any "trace" T
}

Trace Model T
A trace model T is a tuple (DI ,DT , <T , σI , σT ):

DI ,DT are index and timestamp domains;

<T is a total ordering on DT ;
σI : I → DI interprets index variables;

σT : T → DT interprets timestamp variables.

Translation function (_)T from meta-formulas and terms to
base-formulas and terms.
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Meta-Logic: Translation to the Base Logic, an Example

Let’s consider a trace of the Basic Hash protocol: T [3, 1].Rok[2].T [3, 2].

DI = {1, 2, 3}.

σI = {i 7→ 3, j 7→ 1, j′ 7→ 2, k 7→ 2}

(n[i, j])T := n3,1

(n[i, j′])T := n3,2

(output@T [i, j])T := 〈n3,1, h(n3,1, k3)〉

(cond@Rok[k])T

:= (∃i, π2(input@R[k]) = h(π1(input@R[k]), k[i]))T

:= π2(att(...)) = h(π1(att(...)), k1)
.
∨ π2(att(...)) = h(π1(att(...)), k2)
.
∨ π2(att(...)) = h(π1(att(...)), k3)
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Meta-Logic: Translation to the Base Logic, Some Details

Selected (simplified) rules:

(f (t1, . . . , tn))T = f
(
(t1)T, . . . , (tn)T

)
(∃i. φ)T =

.∨
k∈DI (φ)T{i 7→k}

(∀τ. φ)T =
.∧
v∈DT (φ)T{τ 7→v}

and for macros:

(output@τ)T = specified by the protocol

(cond@τ)T = specified by the protocol

(input@τ)T = att
(
(frame@pred(τ))T

)
(frame@τ)T ≈ 〈(frame@pred(τ))T, (output@τ)T〉
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Meta-Logic: Semantics

Validity: Meta-Logic

We note T,M |= ψ when the meta-logic formula ψ holds in trace
model T and in the computational model M:

T,M |= ψ iff. M |= (ψ)T

A meta-logic formula ψ is valid if (ψ)T is valid for every T.
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Meta-Logic: Lifting Axioms

Base logic rule Meta-logic rule

DUP
∆ ` ~u , s ∼ ~v , t

∆ ` ~u , s, s ∼ ~v , t, t

DUP
∆ ` ~u , s ∼ ~v , t

∆ ` ~u , s, s ∼ ~v , t, t
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Meta-Logic: Lifting Axioms

Base logic rule Meta-logic rule

PRF

∆ ` ~u ,
if HFreshk (t; ~u , t)

then n
else h(t, k)

∼ ~v

∆ ` ~u , h(t, k) ∼ ~v

PRF

∆ ` ~u ,
if HFreshk[~i ]

P (t; ~u , t)

then n
else h(t, k[~i ])

∼ ~v

∆ ` ~u , h(t, k[~i ]) ∼ ~v

when SCn,k (t, ~u ) when SCn,k[~i ]
P (t, ~u )

HFreshk (t; ~u , t) and SCn,k (t, ~u ) HFreshk[~i ]
P (t; ~u , t) and SCn,k[~i ]

P (t, ~u )

can be checked/computed need to be checked/computed for:
syntactically. - direct occurrences (syntactically),

- and indirect occurrences (any action
of the protocol).
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Meta-Logic: Basic Hash Protocol Security

Using the meta-logic inference rules, we are able to derive all at
once a family of base logic formulas.

(Do you recall the long list of equivalences shown previously?)

It starts like this:

...

τ = T [i, j], . . . ` . . .
...

τ = Rok[k], . . . ` . . .
...

τ = Rko[k], . . . ` . . .
frame@pred(τ) ∼ frameu@pred(τ) ` frame@τ ∼ frameu@τ

` frame@τ ∼ frameu@τ
Ind
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An Interactive Theorem Prover,
Squirrel



The Tool

The input language is a variant of the applied-pi calculus.

We have implemented:
the translation of the specification of the protocol from this
input language to actions,
proof tactics, corresponding to inference rules,
automated reasoning to ease the proof effort.

The user interacts with the prover by calling tactics to derive
formulas step by step.
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Case Studies

Protocol Crypto. assumptions Security properties
Basic Hash PRF,EUF-CMA Authentication & Unlinkability
Hash Lock PRF,EUF-CMA Authentication & Unlinkability
LAK (pairs) PRF,EUF-CMA Authentication & Unlinkability
MW PRF,EUF-CMA,XOR Authentication & Unlinkability
Feldhofer CCA1,PRF,EUF-CMA Authentication & Unlinkability
Private Auth. CCA1,EUF-CMA,ENC-KP Anonymity
Signed DDH EUF-CMA,DDH Authentication & Strong Secrecy

Additional case studies, using the composition framework from [CJS20]
Signed DDH EUF-CMA,DDH Authentication & Strong Secrecy
SSH (fwd agent) EUF-CMA,DDH Authentication & Strong Secrecy
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Basic Hash Protocol

[demo]
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Conclusion

Our contribution

Meta-logic built on the CCSA model.

Set of meta-logic inference rules for proving reachability and
equivalence properties.

Squirrel, an interactive prover implementing these inference
rules, used on various case studies.

Current and future work

Extend support to stateful and more complex protocols.

More proof automation.

Thank you for your attention!
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