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Security Protocols

m Distributed programs which aim at providing some security
properties.

m Uses cryptographic primitives: e.g. encryption.
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Context: Attacker Model

Abstract Attacker Model
m Network capabilities: worst-case scenario: ﬁ ﬁ
eavesdrop, block and forge messages. N\ */_ ﬁ
m Computational capabilities: adversary is a |
Probabilistic Polynomial-time Turing Machine ﬁ
(PPTM).

Attacks against security protocols can be very damageable, e.g. theft or
privacy breach.



Context: Attacker Model

Abstract Attacker Model
m Network capabilities: worst-case scenario: ﬁ ﬁ
eavesdrop, block and forge messages. N\ */_ ﬁ
m Computational capabilities: adversary is a |
Probabilistic Polynomial-time Turing Machine ﬁ
(PPTM).

Attacks against security protocols can be very damageable, e.g. theft or
privacy breach.

We need strong security guarantees.
= can be provided by cryptographic proofs.



High-Confidence Security Guarantees

But security proofs are often complicated and error-prone:
m OAEP padding scheme:
claimed secure in [BR94], proof flawed [Sho02].

m Fiat-Shamir with aborts:
several proofs [Lyul2; KLS18] turned out to be flawed [Bar+23].

m several logical attacks on TLS, e.g.:
TRIPLEHANDSHAKE [Bha+14], LoGJAM [Adr+15].



High-Confidence Security Guarantees

But security proofs are often complicated and error-prone:
m OAEP padding scheme:
claimed secure in [BR94], proof flawed [Sho02].

m Fiat-Shamir with aborts:
several proofs [Lyul2; KLS18] turned out to be flawed [Bar+23].

m several logical attacks on TLS, e.g.:
TRIPLEHANDSHAKE [Bha+14], LoGJAM [Adr+15].

These are critical cryptographic designs under a lot of public scrutiny.
= for such cryptographic designs, manual proofs are insufficient.



High-Confidence Security Guarantees

Verification for Cryptography
Formal mathematical proof of security protocols:

[ S ): d> T T
y y v
system satisfies property

m Machine-checked proofs yield a high degree of confidence.
= general-purpose tools (e.g. CoQ and LEAN).
m in security protocol analysis, mostly dedicated tools.
E.g. CRYPTOVERIF, EASYCRYPT, SQUIRREL.



Computer-aided Verification of Cryptographic Protocols

Goal
Design formal frameworks allowing for mechanized verification of

cryptographic arguments.

m At the intersection of cryptography and verification.
m Particular verification challenges:

m small or medium-sized programs
m complex properties
m probabilistic programs + arbitrary (resource-bounded) adversary



Mechanizing Cryptographic Proofs



Cryptographic Protocol Verification

Verification
v eC. (&IIP)E®

Requires a formal framework and a tool that can express:

m P: the protocol under study.

= & € C: the adversarial model, i.e. the class of adversaries.
m ®: the security property.

m |=: the cryptographic arguments.



Cryptographic Protocol Verification

tati |
e : :ona EASYCRYPT SQUIRREL
mode
) S imperative program pure program
(sequential modeling) (execution trace modeled)
$ec PPTM abstract & stateful uninterpreted pure
module A function att(+)
Pr(g)| < e [po]
o} ame | - - ~
€ |Pr(G) — Pr(G")| < e fig ~ iig:
= game-hops & program logics probabilistic logics
reductions (pPRHL) (CCSA)




Cryptographic Protocol Verification

tati |
LA EASYCRYPT SQUIRREL
model
. i
P orogram impera .|ve progrém p.ure program
(sequential modeling) (execution trace modeled)
$ec PPTM abstract & stateful uninter'preted pure
module A function att(+)
<
o game [Prig) < ¢ ool
|Pr(G) — Pr(G")| < e g ~ Ug:
= game-hops & program logics probabilistic logics
reductions (pRHL) (CCSA)
+ expressive logics + temporal logic
can target + higher-level rules
implementations + (usually) shorter proofs



The Squirrel Prover

Tool for the verification of security protocols:
m Input language: applied 7-calculus.
m Implements a CCSA probabilistic logic:
m Reachability properties: [¢g]
m Indistinguishability properties: g ~ dg
m In the asymptotic security setting. E.g.
dg ~ g <~
Vg €C.|Pr(G(&)) — Pr(G' (&) < éncg

m Reasoning rules valid w.r.t. any computational
attacker §.



The Squirrel Prover

Proof assistant:
m Users prove goals using sequences of tactics.

m Generic maths. tactics, e.g. apply, rewrite.
m Crypto. tactics, e.g. cpa.

m Probabilistic tactics, e.g. fresh.

m Structural tactics, e.g. trans.

m Development done using a proof-general mode.
As in CoQ, EASYCRYPT ...



The Squirrel Prover

Open-source tool

m Project web-page:
https://squirrel-prover.github.io/
m Documentation web-page:

https://squirrel-prover.github.io/documentation/
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Mechanizing Cryptographic Proofs
The CCSA Framework



Formalizing Cryptographic Proofs

Our formal framework must model and capture:

m P: protocol
m & € C: adversarial model
m $: security property

m |=: cryptographic arguments

11



Limitations: what is not in this talk

m § < C: adversarial model

m in this talk: only classical adversaries, i.e. C = PPTM.
m quantum adversaries (i.e. C = PQTM) are work-in-progress.

m $: security property
m in this talk: asymptotic security.
m there exists a concrete security version of the logic [CSF'24]
(on paper, not implemented)

m |=: cryptographic arguments
m standard game-based proofs.
m other techniques may be out-of-scope:
UC, rewinding, GGM, ...
m mechanizing crypto. proofs takes time:
your favorite, complicated, crypto. designs may be difficult to formalize.

12



Modeling

vdeC. (&|P) o
m Protocol P: a concrete concurrent program.
In SQUIRREL, described in the applied m-calculus.

m Adversarial model § € C: an abstract (i.e. unknown) PPTM
program.

m Full system = interaction (& || P).

13



Example: The Hash-Lock Protocol

A simple example

m Two party authentication protocol: reader R <= RFID tag T.
m Keyed-hash function H with a shared key k.

R T

nr

(nt, H((nr , n1), k))

true/false

Y

(if valid hash)

14



The Hash-Lock Protocol

In the applied m-calculus: R T

T(l) . input(ln) (nT, H({ng, n1),k))
vnri.

true/false

let h =H((in, nt:),k) in (i valid hash)
let out = (ny;, h) in
output(out)
R(j) : v NR,j-
output(ng ;).
input(in).
output(mp(in) = H((ng j, m1(in)), k))

Hash-Lock

ii5)



Modeling

How do we model the interaction (& || P) in a pure language?
—— remove all stateful effects:

= network 1/0.

m random samplings.

16



Modeling: Network 1/0

1/0 effects

m Network input = function call to .

For a single 1/0 block T(i):

----------------------------- k]
! input(in) : E in:=¢& () :
: vnT; E : vnTi :
E h:=H((in, nti),k) t—>! h:= H((in, nT),k) :
:out:: (nTi,h) ! ! out ={(nti, h) :
: output(out) ! ! output(out) :

17



Modeling: Network 1/0

1/0 effects

m Network input = function call to .

m Network output = add to §'s knowledge.

For a single 1/0 block T(i):

input(in)
vnT i vnT;

E h:=H((in, nti),k) E—PE h:=H((in, nt:),k) |

h:=H((in, nt:),k)
out := (nt;, h) out := (nt;, h) .
output(out) output(out) .

out := (nt;, h)
frame := frame :: out

17



Modeling: Random Sampling

Probabilistic effects

m Move to an early-sampling semantics with indexed names:

® name n is an array of i.i.d. random samplings.
m random sampling vny; = array access n(i).

1/0 block T(i):

: vnri :
1 h:=H((in, nr3),k) 1—>

>
I
a5
—~
_
5
>
3
—
[
—
~
=
NG

1 out := (nr(i) , h)
i frame := frame :: out

out := (nt;, h)
frame := frame :: out

18



Modeling: Execution Trace

Single 1/0 blocks:

L . Ra(3)

vini= (fame) 1L 2R e
v hi=H((in, nr(i)),k) + ! out := nx(j) A f e _ :
Louti= (e (@), 0) 1 frame = ramesout |} pot o (720 = (00 () )
| frame := frame t o) P e o A !

Many 1/0 blocks, add the time:

m index: type of session numbers.

B timestamp: type of time-points in an execution trace.

=init | T(i) | R1(1) | Ra2(1) (where 1 : index)

19



Modeling: Execution Trace

Execution trace: timestamp + order <.

Example:
init R1(3o) T(3o) R2(3o)

Protocol execution encoded by mutually recursive functions:

m inO7: input at time 7
m out@7: output at time 7

m frame@7: §'s knowledge at time 7, i.e. all out@ry for 75 < 7.

20



Modeling: Execution Trace

in@r = match 7 with
| init — empty
| _ — &(frame@pred(7))

frame@7r = match 7 with

| init — empty
| _ — frame@pred(7) :: out@r

21



Modeling: Execution Trace

R T
in@r = match 7 with
| init — empty - &
| _ — &(frame@pred(7)) <o Hl{n, nm), k)
true/false R
frame@r = match 7 with (if valid hash) "
| init — empty \ M

| _ — frame@pred(7) :: out@r

out@r = match 7 with
| init — empty
| T(1) = {n7(1), H((in®@7, n7(i)),k))
| R1(3) = nr(3)
| Ra(j3) — m2(in@7) = H((ngr(j), m1(in@7)), k)

21



The CCSA Logic: Terms

Core Syntax
A higher-order A-calculus with library, adversarial and recursive
functions; names (for random samplings); and variables.

t o= s|(tt)| AMx:7).t
s e {feFiptU{® € FantU{me FectU{n e N}U{xe X}
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s e {feFiptU{® € FantU{me FectU{n e N}U{xe X}

Types
(t: 7) is the type 7 of term t:
m a base type, e.g.

bool : {true, false} message : {0,1}" int : N
timestamp : time-points index : session numbers

® an arrow type 19 — 71, tuple type 79 * 71, ... e



The CCSA Logic: Terms

Core Syntax
A higher-order A-calculus with library, adversarial and recursive
functions; names (for random samplings); and variables.

t = s|(tt)| Ax:7).t|(t,..., t) | V(x: 7).t | match t with ...
s e {feFiptU{® € FantU{me FectU{n e N}U{xe X}

Types
(t: 7) is the type 7 of term t:
m a base type, e.g.

bool : {true, false} message : {0,1}" int : N
timestamp : time-points index : session numbers

® an arrow type 19 — 71, tuple type 79 * 71, ... e



The CCSA Logic: Terms

The semantics [[t] uses discrete random variables, not distributions!

Shared source of randomness : set of random tapes T .

interpretation of term (t : 7)

[t : T — [7]

random tapes > interpretation domain, e.g.
{true, false} for bool
{0,1}* for message

N for int

Allow probabilistic dependencies between terms.

23



The CCSA Logic: Terms

Examples
m If (n,np : message) then:

[n] ~ sample w in {0,1}"
[(n,no)] ~ sample win {0,1}"
sample w’ in {0,1}" independently
build (w, w')

L
~—~
>
>
N—
=
%

sample w in {0,1}"
build (w, w)

[(n,m)] = (In], [n]) = (w;, w)

24



The CCSA Logic: Terms

Semantics
Standard semantics [t]{’ € [7]y; parameterized by:

m the model M.
m the security parameter 7.

m a pair p = (pn, pa) of random tapes p € T},:
pp for honest randomness, p, for the adversary .

(tapes pp, po must be finite.)

25



The CCSA Logic: Terms

Semantics
Standard semantics [t]{’ € [7]y; parameterized by:

m the model M.
m the security parameter 7.

m a pair p = (pn, pa) of random tapes p € T},:
pp for honest randomness, p, for the adversary .
(tapes pp, po must be finite.)

[f() I < ™Me (n,  [59)
[n(8) 1% < M., (0, pn [eTY)
[$OF < Mg, pa [ti)

Machines Mg, MI,,, Ml 4, are deterministic

ptime (w.r.t. n + size of the args.)
25



The CCSA Logic: Terms

Names

m Take n : index — message.
n(i): uniform random samplings over bit-strings of length 7

26



The CCSA Logic: Terms

Names

m Take n : index — message.
n(i): uniform random samplings over bit-strings of length 7

m (# name symbols or # indices ) = independent samplings.
Thus: ' _ 1
Pr([no(io)]™ = [n(a)]") = 5

if ng # ny or if ([io # i]™? for all n, p).
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The CCSA Logic: Terms

Names

m Take n : index — message.
n(i): uniform random samplings over bit-strings of length 7

m (# name symbols or # indices ) = independent samplings.

Thus: 1
F;f(ﬂ”o(io)]]"’p = [()]™) = 5,

if no # ny or if ([io # ™ for all n, p).
m Going further, if m does not occur in t:
Pr([m = ") = —
p 21

For now, “m does not occur in t" means
t without recursive functions + m ¢ st(t).

26



The CCSA Logic: Terms

m The logic has a standard semantics,

m but a particular interpretation domain.

[t €lllw = [tlw € RVm(7)

RVyp(7): n-families of random-variables over [7]y.

RVi(r) = (T = [l ),

27



Formalizing Cryptographic Proofs

Our formal framework must model and capture:

m P: protocol vV
m § < C: adversarial model v/
m $: security property

m |=: cryptographic arguments

28



The CCSA Logic: Security Predicates

We consider two main security predicates:

m [¢]: the term ¢ of type bool is overwhelmingly true:

M E [¢] iff.  Pr, ([¢]{) negligible in 7.
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We consider two main security predicates:

m [¢]: the term ¢ of type bool is overwhelmingly true:
M E [¢] iff.  Pr, ([¢]{) negligible in 7.
m 0y ~ U1: Up and d; are indistinguishable:

Pr, (&, [Gli pa
M | do ~ 4y iff. Vg € C. o (&0, [l p2)) negligible in n

- Prﬂ (C*(nv [[L_jl &p’ pa))
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The CCSA Logic: Security Predicates

We consider two main security predicates:

m [¢]: the term ¢ of type bool is overwhelmingly true:

M E [¢] iff.  Pr, ([¢]{) negligible in 7.

m 0y ~ U1: Up and d; are indistinguishable:

Pr Ndo]’,
M = dp ~ ty iff. Vg €C. r (L‘#(n [[#O]];Mp pa)) negligible in n
— Pr, (&, [ta]iy’, pa)
< LEO e SERREL I t; and s; have the same type Vi>
Ufl = Silgooog Sp

29



The CCSA Logic: Security Predicates

Authentication for Hash-Lock:

(out@R3(j) = true) =
Jisindex.  Ry(j) < T(i) < Ra(j
A out@R;(j) = in@T(i
A out@T (i) =in@Ry())

) R T
)

nR

(n1, H({(nr, nT), k))

true/false

Weak privacy for Hash-Lock: (foald o)

frame@pred(T (7)), H((in@T (/) , nt(i)), k)
~ frame®@pred(T(/)), Nfresh

30



The CCSA Logic: Global Logic

SQUIRREL's has two kinds of formulas:

m Local formulas are terms of type bool (e.g. ¢o = Ix. (p1 A ¢2)).

pi= NG| |Vx.Pp|t=1t]...

31
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m Local formulas are terms of type bool (e.g. ¢o = Ix. (p1 A ¢2)).

pi= NG| |Vx.Pp|t=1t]...

m Global formulas: FO([-],- ~-,...).
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The CCSA Logic: Global Logic

SQUIRREL's has two kinds of formulas:

m Local formulas are terms of type bool (e.g. ¢o = Ix. (p1 A ¢2)).

pi= NG| |Vx.Pp|t=1t]...

m Global formulas: FO([-],- ~-,...).

Fi= FAF|SF|V¥x.F|[@] | t~t]|const(t)]...

Global formulas are Squirrel’'s ambient logic.

31



The CCSA Logic: Global Logic

Semantics of the global logic
Standard FO semantics but particular interpretation domain RVy(7):

m Y(x : 7) means “for all 7-family of random variable x over [7]

MEVY(x:7). F iff. M{x— X} F forall X € RVy(7)

32



The CCSA Logic: Global Logic

Examples of valid global formulas

m [(¢ = true) V (¢ = false)]

33



The CCSA Logic: Global Logic

Examples of valid global formulas

m [(¢ = true) V (¢ = false)]
. (6~ true) & [4]
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The CCSA Logic: Global Logic

Examples of valid global formulas

m [(¢ = true) V (¢ = false)]
m (¢~ true) < [¢]
m([s=t] A u{s}~v) = (uft}~V)
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The CCSA Logic: Global Logic

Examples of valid global formulas
m [(¢ = true) V (¢ = false)]
m (6 ~ true) & [g]
m([s=t] A u{s}~v) = (uft}~V)

m [u=v] = u~ v but not the converse:
e.g. no ~ n1 but [ng # n4]
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The CCSA Logic: Global Logic

Examples of valid global formulas
m [(¢ = true) V (¢ = false)]
n (§~ true) & [g]
m([s=t] A u{s}~v) = (uft}~V)

m [u=v] = u~ v but not the converse:
e.g. no ~ n1 but [ng # n4]

~ is not compositional

(up ~ u1) A(vg~ vi) does not always implies g, vp ~ u1,vq

Counter-example:

ng ~ ng and ng ~ ny but ng, ng 4 ng, ny

33



The CCSA Logic: Global Logic

- between local/global formulas
oAyl & [9] A ly]
oV ] & [9] Y [y]
[0 =] & [¢] = [y]
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The CCSA Logic: Global Logic

- between local/global formulas
[pny] © [9] A ly]
oV ] & [9] Y [y]
[0 =] & [¢] = [y]
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The CCSA Logic: Global Logic

# between local/global formulas

bAY] & (8] Alv]
bVl < [¢]7[v]
[6=4] & (6] Y]

Counter-example for Vv /V:

[(b = true) Vv (b = false)] [b = true] V [b = false]
valid not valid

34



The CCSA Logic: Global Logic

# between local/global formulas

[eAd] < [¢] Ayl
[oVey] < (9] VY]
[¢= 9] = [¢] = [¥]

Counter-example for Vv /V:

[(b = true) v (b = false)] [b = true] V [b = false]
valid not valid

Counter-example for = /=
(r=0)=(=1] [=0=[=1]

not valid valid
34



The CCSA Logic: Global Logic

The global logic is used as ambient logic.

Authentication for Hash-Lock:

(out@R2(j) = true) =
Ji vindex.  Ri(j) < T(i) < Rz2())
A out@R;(j) =in@T(/)
A out@T(i/) =in@Ry())

Weak privacy for Hash-Lock:

frame@pred(T(/)), H((in®@T (i), nt(i)), k)
~ frame®@pred(T (7)), Nfresh
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The CCSA Logic: Global Logic

The global logic is used as ambient logic.

Authentication for Hash-Lock:

(out@Ry(j) = true) =

. o i : index. Rl() ( ) < Rz(_j)
V(j : index). const(j) = A out@R;(j) = in@T()

A out@T(i/) =in@Ry())

Weak privacy for Hash-Lock:

frame@pred(T(/)), H((in®@T (i), nt(i)), k)

V(i : index). const(i) =
~ frame®@pred(T (7)), Nfresh

85



Formalizing Cryptographic Proofs

Our formal framework must model and capture:

m P: protocol vV
m § < C: adversarial model v/
m $: security property v

m |=: cryptographic arguments

36



Cryptographic Arguments

High-level structure of a game-hopping proof:

g0N61”'N€ngn =

gO ~er+-+ten gn
where each step Gj ~,,, Giy1 is justified by:

m a cryptographic reduction to some hardness assumption.
m up-to-bad argument | Pr(G) — Pr(G’)| < Pr(bad).

m Pr(bad) < € through a probabilistic argument (e.g. collision probability).
...

m bridging steps showing that G ~q G'.

— how to capture these arguments in the logic?

37



The CCSA Logic: Reasoning Rules

High-level structure
Basic properties of indistinguishability:

TRANS

SYM
R oo I REFL
un~ w W ~ Vv vV ~Uu
i~ v Uun~v un~u

38



The CCSA Logic: Reasoning Rules

Bridging steps

Captured by our rewriting rule:

[s = t] i{t} ~v

u{s} ~v

REWRITE

and generic mathematical reasoning to prove [s = t].

E.g. functional properties can be stated as axioms:

[Vm, k. sdec(senc(m, k), k) = m]

39



The CCSA Logic: Reasoning Rules

Up-to-bad arguments
Two games G, G’ such that:
Pr(G A —bad) = Pr(G’ A —bad).

Then | Pr(G) — Pr(G")| < Pr(bad).

In the CCSA logic:
[#bad] [—¢bad = 1 = V]

i~ v

U2B

(similar to the rewrite rule for overwhelmingly equalities.)

40



The CCSA Logic: Reasoning Rules

Up-to-bad arguments
Two games G, G’ such that:
Pr(G A —bad) = Pr(G’ A —bad).

Then | Pr(G) — Pr(G")| < Pr(bad).

In the CCSA logic:
[#bad] [—¢bad = 1 = V]

i~ v

U2B

(similar to the rewrite rule for overwhelmingly equalities.)

Other direction [-] = (- ~ ) also exists:
W] ¢~y
[¢]

— enables back-and-forth between both predicates.

REWRITE-EQUIV

40



The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings

n a name of type message:

INDEP if n does not occur in t

41



The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings

n a name of type message:

INDEP if n does not occur in t

How to check that n does not occur in t?

m no recursive functions: direct syntactic check.

Example: [n # &(no)]
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The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings

n a name of type message:

INDEP if n does not occur in t

How to check that n does not occur in t?

m no recursive functions: direct syntactic check.
Example: [n # &(no)]

m with recursive functions: check recursive function definitions.
Example: [n # & (frame@7)]

41



The CCSA Logic: Reasoning Rules

More complicated with indexed names, e.g. ng(j,) # &(frame@7).
—> use local formulas to ensure freshness.

1
i frame@7 = .
i match 7 with '
1 out@r = - :
i\ match 7 with | init — empty 1
| init — empty | _ — frame®@pred(7) :: out@r E
i | T() = (n(3), H((in@7, nT()),k)) _ '
! . . in@7 = ,
[ | R1(3) — nr(3) match 7 with !
: ‘ RQ(J) 7 7r2(in@7) = H(< HR(j) y 7r1(in@7)>,k) ‘ init — empty E
i | _ — &(frameQpred(7)) |
L e e e e e LY 42



The CCSA Logic: Reasoning Rules

More complicated with indexed names, e.g. ng(j,) # &(frame@7).
—> use local formulas to ensure freshness.

Indices at which ng is read in §(frame@7):

{ilRi(G) <TorRo(j) <7} ={j|Ru(j) <7}

1
i frame@7 = .
i match 7 with '
1 out@r = - :
i\ match 7 with | init — empty 1
| init — empty | _ — frame®@pred(7) :: out@r E
i | T() = (n(3), H((in@7, nT()),k)) , '
! . . in@7 = ,
[ | R1(3) — nr(3) match 7 with !
: ‘ RQ(J) 7 7r2(in@7) = H(< HR(j) ) 7r1(in@7)>,k) ‘ init — empty E
i | _ — &(frameQpred(7)) |
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The CCSA Logic: Reasoning Rules

More complicated with indexed names, e.g. ng(j,) # &(frame@7).
—> use local formulas to ensure freshness.

Indices at which ng is read in §(frame@7):

{ilRi(G) <TorRo(j) <7} ={j|Ru(j) <7}

Thus, we can take:

1
i frame@7 = .
i match 7 with '
1 out@r = - :
i\ match 7 with | init — empty 1
| init — empty | _ — frame®@pred(7) :: out@r E
1| T() = (n7(3), H((in@7, nT()),k)) , '
! . . in@7r = ,
[ | R1(3) — nr(3) match 7 with !
: ‘ RQ(J) 7 7r2(in@7) = H(< HR(j) ) 7r1(in@7)>,k) ‘ init — empty E
i | _ — &(frameQpred(r)) |
L e e e e e LY 42



The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings
. N, (-

General case: local formula ¢ (&).

Ensures that n(/) fresh in 4.

INDEP

[k (t, 1) = (t # n(i))]

43



The CCSA Logic: Reasoning Rules

Probabilistic reasoning: collision of random samplings
. N, (-

General case: local formula ¢ (&).

Ensures that n(/) fresh in 4.

INDEP

[¢fresh( ) = (t# n(l))]

Computing such freshness formulas is non-trivial. Indeed:
grt (F(t)) <= cell i of array n never read in f(t) computation

This is undecidable.
— we rely on approximations.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
An obvious reduction rule:
o ~ v

————— FA  wherefe {fe Fip} U{& € Faav}
f(Vo) ~ f(Vl)
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
An obvious reduction rule:
o ~ v
S FA where f & {f & \F’“b} @] {(“% & Fadv}
f(o) ~ f(v1)

Proof
Take a model M and A against the conclusion.

Take B(V) := { x < M¢(V); return A(x) }.
B is polynomial-time since Ms and A are.

Thus Adv(A) = Adv(B), negligible by hypothesis.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
An obvious reduction rule:
o ~ v
S FA where f & {f & \F’“b} @] {(“% & .Fadv}
f(o) ~ f(v1)

Proof
Take a model M and A against the conclusion.

Take B(V) := { x < M¢(V); return A(x) }.
B is polynomial-time since Ms and A are.

Thus Adv(A) = Adv(B), negligible by hypothesis.

= F'A moves a deterministic computation in the top-level adv.
(or a computation using adversarial randomness)
44



The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Simple reductions rules:

g, Vo ~ U1, 1

o, f(Vo) ~ i, f(va)

FA  where fe {fe Fp} U{¥ € Faav}

[Sfraan (T, 1) A Dl (7,4)]

i~ v

- - - - FRESH
d, n(i) ~ v, m(j)
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Simple reductions rules:

g, Vo ~ U1, 1

o, f(Vo) ~ i, f(va)

FA  where fe {fe Fp} U{¥ € Faav}

n,i - N % Mmoo .
[(bfresh(U? 12 A (zifresh(v7j)] [jO’ tg ~ L717 t1
ur~v = = Dup
FRrRESH up, to, to ~ Uy, t1, t1

d, n(i) ~ V, m(./)
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Simple reductions rules:

g, Vo ~ U1, 1

—————————FA  where fe {fe Fip} U{& € Foav}
to, f(vo) ~ iy, f(¥a)

n,i m,J =
[(bfresh( 2 _'fresh( )] ﬁO; tg ~ L_jl) t1
ur~v = = Dup
FRrRESH up, to, to ~ Uy, t1, t1

d, n(i) ~ V, m(./)

= mostly book-keeping rules.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Rules capturing reduction to hardness assumptions.

[Ien(mo) = Ien(ml)]

CPA

El El
/—\
TT
v

PRF — -
u, H(t7 k) ~ U, Nfresh
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Rules capturing reduction to hardness assumptions.

B (Qckey - k only used in encryption key

[ Qsekey ] [ ¢rand ] . .
position enc(+, k, -) with fresh rands.
[len(mg) = len(my)]

CPA B Prand: ¢ fresh name.

m i, mg, my ptime-computable.

PRF — -
u, H(t, k) ~ U, Nfresh

As for INDEP, we have side-conditions.
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Rules capturing reduction to hardness assumptions.

B (Qckey - k only used in encryption key
position enc(+, k, -) with fresh rands.

[ ¢ekey ] [ ¢rand ]
| = |
CPA [en(mo) en(m1)] B Prand: ¢ fresh name.

nc(mo, k, r)

nc(my, k, r) m i, mg, my ptime-computable.

El El

B Qpkey - k only used in hash key

osition H(-, k).
PRF [¢hkey] [d)hash] P ( )
’ ; hash H(-, k).
L_iv H(t7 k) ~ L_i7 Nfresh - ¢hash £ MEEP [IERiEs by ( ’ )

m i, t ptime-computable.

As for INDEP, we have side-conditions.
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The CCSA Logic: Reasoning Rules

High-level structure
The induction rule:

i(0) ~ v(0)
Y(N :int). G(N) ~ V(N) = G(N+1) ~ ¥(N + 1)
V(N :int). G(N) ~ ¥(N)
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The CCSA Logic: Reasoning Rules

High-level structure
The induction rule:

i(0) ~ v(0)
Y(N :int). G(N) ~ V(N) = G(N+1) ~ ¥(N + 1)
V(N :int). G(N) ~ ¥(N)

Only for a constant number of steps .
Same reason as for hybrid arguments:

L7(0) ~ ~ L7(N) —— L7(0) ~an) T () L7(N) ((f,), negligible)
— 1(0) Y ien filn) 505

>i<n fi(n) may not be negligible if N polynomial in 7.
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The CCSA Logic: Reasoning Rules

High-level structure
The induction rule:

i(0) ~ v(0)
Y(N :int). (const(N) A G(N) ~ V(N)) = G(N+1) ~ ¥(N + 1)
Y(N :int). const(N) = G(N) ~ ¥(N)

Only for a constant number of steps .
Same reason as for hybrid arguments:

L7(0) ~ ~ L7(N) —— L7(0) ~an) T () L7(N) ((f,), negligible)
— 1(0) Y ien filn) 505

>i<n fi(n) may not be negligible if N polynomial in 7.
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Formalizing Cryptographic Proofs

Our formal framework must model and capture:

m P: protocol v
m § < C: adversarial model v/
m $: security property v

m |=: cryptographic arguments v/

We are done with our framework!
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The CCSA Logic: Summary

m Logic with a probabilistic interpretation of terms:
protocol execution = terms of the logic.

m Security predicates [¢] and dy ~ 0.

m Abstract predicates: no probabilities and security parameter.
m Can express temporal properties as formulas [¢]:
direct quantification on the execution trace (no encoding).

m Reasoning rules to capture crypto. arguments:

m generic math. reasoning m probabilistic arguments
m game-hopping steps m crypto. reductions

The application conditions for crypto. and probabilistic rules are the
difficult part.

49



Two limitations of this CCSA logic:

m guarantees provided: parametric vs polynomial security.

m modularity: ad hoc rules for a fixed number of crypto. assumptions.
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A Concrete Security CCSA Logic

with D. Baelde, C. Fontaine, G. Scerri, T. Vignon




Limitation: Polynomial vs Parametric Security

We reason over a fixed trace 7 given by [timestamp]y.
This only yields parametric security. Informally, M |= ¢ implies:

VT .VA. Pr(® holds in T against A) is overwhelming in 7

We expect the stronger polynomial security:

VA. Pr(® holds in 7 chosen by A) is overwhelming in 7

Hil}



Limitation: Polynomial vs Parametric Security

How to obtain polynomial security using CCSA [Bae+24, to appear]:

m Change the execution model.
E.g. frame@N where (N : int) instead of frame®r.

m Difficulty: previous induction rule requires a constant number of
steps.
because Z,.SP(,/) fi(n) is not always negligible,
even if f;(n) negligible Vi and P(n) polynomial.
m Solution: move to a concrete security setting.
m concrete security predicates [¢]. and iy ~ U;.
m reasoning rules with explicit bounds.
m support general induction:
user must prove a uniform bound on all f’s.

m For now, theoretical work (implementation in SQUIRREL is WIP).
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From Hardness Assumptions to
Logical Rules

with D. Baelde, J. Sauvage




Hardness Assumption: Example

message <_| |—> key

A cryptographic hash function H( m, key).

Unforgeability: cannot produce valid hashes without knowing key.
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Hardness Assumption: Example

message <_| |—> key

A cryptographic hash function H( m, key).

Unforgeability: cannot produce valid hashes without knowing key.

Init: key &-;
Ohash(mg) =
— | L+ my: L
.
return H(mg, key
s |- (o, k)
—
- Ochallenge(mv 5) =

m ¢ L and s = H(m, key)  (left game)
return
false (right game)
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Hardness Assumption: Example

Example

&(H(0, k), H(1,K)) =H(m,k) = m=0V m=1

Proof by reduction
Build an adversary *§, against UNFORGEABILITY (UF):

m compute hy < Onash(0) and hy < Ohasn(1);
m black-box call: s < §(ho, h1);
m compute m;

m return Ochallenge(m7s)'

Advyr(f) = Adv(g) & € PPTM implies §, € PPTM
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Hardness Assumption: Example

Example

&(H(0, k), H(1,K)) =H(m,k) = m=0V m=1

Proof by reduction
Build an adversary *§, against UNFORGEABILITY (UF):

m compute hy < Onash(0) and hy < Ohasn(1);
m black-box call: s < §(ho, h1);
m compute m;

m return Ochallenge(m7s)'

Advyr(f) = Adv(g) & € PPTM implies §, € PPTM

Remark: rule valid only if m computable by the adversary.
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From Hardness Assumptions to Logical Rules

Until recently:

m SQUIRREL supported a limited set of hardness assumptions

(symmetric/asymmetric encryption, signature, hash, DH, ...)

m Built-in tactics for each such assumptions:

hardness assumption (imperative, stateful programs)
()
reasoning rules (pure, logic)

m Adding rules for new hardness assumptions is:
tedious, error-prone, and not in user-space (Ocaml code).
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From Hardness Assumptions to Logical Rules

Systematic cryptographic reductions: allows to translate hardness

assumptions into cryptographic rules.

Inputs:
m an (imperative, stateful) hardness assumption Gy ~ G .

m an indistinguishability property, e.g. up ~ u; to prove, i.e.
v [Prd([w0])) — Pr(&([u]))| < negl(n)

| | 59 ()= [uo]
Goal: synthesize S poly-time such that
and S91 () = [ ]

Thus, for any §:
AdVUONul(Ly) = AdVgoggl (* © S) < neg'(ﬁ)
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From Hardness Assumptions to Logical Rules

m General framework to add new hardness assumptions.
m Proof system to establish the existence of S.

m Fully automated implementation (heuristic based = incomplete)
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Take an hardness assumption Gy ~ G;.

Bi-Terms

The bi-terms uy = #(uo; ur) represent a pair of left/right scenarios.

Factorize common behavior, e.g. f(v, #(ug; u1)) = #(f (v, up); (v, u1))
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Take an hardness assumption Gy ~ G;.

Bi-Terms
The bi-terms uy = #(uo; ur) represent a pair of left/right scenarios.
Factorize common behavior, e.g. f(v, #(ug; u1)) = #(f (v, up); (v, u1))

Bi-deduction
New predicate uu >gy~g, v which means:
§%([uo] ) =[w]

3S € PPTM.
{and S ([u] ) =[w]
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Take an hardness assumption Gy ~ G;.

Bi-Terms

The bi-terms uy = #(uo; ur) represent a pair of left/right scenarios.

Factorize common behavior, e.g. f(v, #(ug; u1)) = #(f (v, up); (v, u1))

Bi-deduction

New predicate uu >gy~g, v which means:

S%([uo] ) =[vo]

3S € PPTM.
{and S ([u] ) =[w]

Inference Rule
0 >go~g, #(uo; u1)

bp ~ Uy

BI-DEDUCE
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Bi-Deduction: Rules

A few simple bi-deduction rules:

m Transitivity

H#DV# U#,V#DW# v

l._j# > \7#7 W/#
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Bi-Deduction: Rules

A few simple bi-deduction rules:

m Transitivity

H#DV# U#,V#DW/#

l._j# > \7#7 W/#

m Function application

L_i# > \7#
iy > (V)

(where f € Fiip U Fady)

S(d) == v« Si(0)
X < Mf(V)
return x

59



Bi-Deduction: Rules

Bi-deduction rules handling randomness:

OR,A;:&LE ., ‘?(E) = v+ S1(d)
— X <i Ohash(\_/)
g > H(vg, k) return x

R S(@) = v « 81(7)
—E x & My, (v, pn)
U > n(vy)

return x
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Bi-Deduction: Rules

Bi-deduction rules handling randomness:

OR,A;:&LE ., ‘?(E) = v+ S1(d)
— X <i Ohash(\_/)
g > H(vg, k) return x

R S = v = 51(7)
_,#7# X & Mﬂf(\/? ph)
U > n(vy)

return x

Problem: the NAME rule allow S to read k!
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Bi-Deduction: Constraints

m Problem: & should not access the game secret keys.

m Solution: track randomness usage using logical constraints .
E.g. ensures that S does not directly use key.
m Annotated bi-deduction predicate:

ORACLE
[ U# > V#

(k: T&Y) F by > H(vg, k) (n:Ts) Figen

NAME
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Bi-Deduction: Constraints

Eventually, check that the constraints are valid :
C 0> #(uo; ur) = [Valid(C)]

up ~ U1

BI-DEDUCE

Example:
B [Valid((k : TEY), (k = Ts))]
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Bi-Deduction: Constraints

Eventually, check that the constraints are valid :
C 0> #(uo; ur) = [Valid(C)]

up ~ U1

BI-DEDUCE

Example:
B [Valid((k : TEY), (k = Ts))]

Some additional difficulties:
m We need to handle indexed names and conditions:
(n,i,o:T)
m Some weird constraints must be avoided, e.g.:
(n,n=0,Ts) A (n,n#0,Tg)
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Bi-Deduction: Statefulness

We also need to account for G's statefulness.
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Bi-Deduction: Statefulness

We also need to account for G's statefulness.

Init: key <;
Ohash(mo) =
— | L+ mg: L
| return H(mg, ke
4 ( y)
—
- Ochallenge(ma 5) =

m¢ L and s = H(m, key)  (left game)
return
false (right game)
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Bi-Deduction: Statefulness

We track the state of G:
m Add Hoare pre- and post- conditions:
(o,9v)F Uy D> vy
m Semantics:

ISe PPTM.Vu = ¢. (S)9(ui) = (¢, [vi])  (Vie{0,1})

m

where 1/ = 1
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Bi-Deduction: Statefulness

We track the state of G:
m Add Hoare pre- and post- conditions:
(o,9v)F Uy D> vy
m Semantics:

ISe PPTM.Vu = ¢. (S)9(ui) = (¢, [vi])  (Vie{0,1})

m

where 1/ = 1
m Modified proof-system:

(¢, x)Fip>vy  (x, )k gy, Vg > wy
(¢, V) F iy > Vy, Wy

TRANS
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Conclusion: From Hardness Assumptions to Logical Rules

m Framework to add new hardness assumptions using bi-deduction.

m Proof system for bi-deduction.

m Correct randomness usage using logical constraints.
E.g. ensures that S does not directly use k.

m Tracking the state of G: Hoare pre- and post-conditions.
E.g. track the set of hashed messages L.

m Soundness: existence of a suitable probabilistic coupling.

m Implementation: fully automated (heuristic based = incomplete).
Approximate G state 4+ randomness constraints (discharged to SQUIRREL).
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Conclusion




Conclusion

m The CCSA logic behind SQUIRREL.
m Modeling protocols as pure terms.
m Reasoning rules to capture crypto. arguments.

m Concrete security variant of the logic.

m Framework to add new hardness assumptions
using bi-deduction.

Project web-page:
https://squirrel-prover.github.io/
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Conclusion

m The CCSA logic behind SQUIRREL.
m Modeling protocols as pure terms.
m Reasoning rules to capture crypto. arguments.

m Concrete security variant of the logic.

m Framework to add new hardness assumptions
using bi-deduction.

Project web-page:
https://squirrel-prover.github.io/

Thank you for your attention
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The CCSA Logic: Reasoning Rules

Cryptographic reasoning
Reduction to hardness assumptions using specific rules.
E.g. for PRE:
PRF
[ Gty (8:1) ]

d, H(t, k) ~ 4, if d)t,;tsh(l_ja t) then nfeh
else H(t, k)

—

] <Z>Ekey(v7): k only used in hash key position H(-, k) in w.

] qu;ih(vT}): t was never hashed by H(-, k) in w.

((byk]atsh(v_!?) A m hashed by k in W) = m#t



The CCSA Logic: Reasoning Rules

Example: messages hashed by k in §(frame@7g):
{(in@T(1), nr(i)) | T(1) < 7o}
U {{nr(3), m(in@R2(3))) | R2(3) < 70}

1
: frame@r = :
i match 7 with 1
1 out@r = - .
| match 7 with | init — empty 1
' | init — empty | _ — frame@pred(7) :: out@r E
i | T() = (nr(i), H((in@7, nT()),k)) o '
1 in@r =
' | Ru(3) = nr(3) match 7 with E
i IRa(3) = ma(in@7) = H((nr(3), m(in@r)) , k) | init — empty '
E | _ — &(frameQpred(r)) |
1 1



The CCSA Logic: Reasoning Rules

Example: messages hashed by k in §(frame@7g):
{n@T(3), nr(3)) | T(3) < o)
U {{nr(3), m(in@R>(3))) | Ra(3) < 7o}
Thus, we can take:
ok (}(frame@m))dﬁf Vi.T(i) <79 = t# (in@T(i), n7(i))
A V3. Ra(3) < 70=t# (nr(j), m(in@R2(3)))

| _ — &(frameQ@pred(7))

1
: frame@r = :
: match 7 with !
1 out@r = . :
\ match 7 with | init — empty 1
' |init = empty | _ — frame@pred(7) :: out@r E
1| T(E) = (nr(4), H( (in@7, nT(1)), k)) o ;
1 in@r =
' | Ru(3) = nr(3) match 7 with E
: ‘ RQ(J) — 7r2(in@7) = H( <HR(j), 7T1(ih@‘f)> ,k) ‘ init — empty :
! 1
i :



The CCSA Logic: Reasoning Rules

Example: weak privacy for Hash-Lock.
frame@pred(T(igp)), H(t, k) ~ frame®@pred(T(i0)), Nfresh

where t & (in@T(i0), nr(i0) ).

Since in@T(ip) = &(frame®@T(ip)), same scenario as previous slide!



The CCSA Logic: Reasoning Rules

Example: weak privacy for Hash-Lock.
frame@pred(T(igp)), H(t, k) ~ frame®@pred(T(i0)), Nfresh

where t & (in@T(i0), nr(i0) ).

Since in@T(ip) = &(frame®@T(ip)), same scenario as previous slide!
Thus, using PRF+REWRITE:
Vi. T(i) < T(ig) =t # (in@T(i), nv(i) )

A V3. Ra(3) <T(io) = t # (nr(3) , m(in@Rx(3)) )
frame@pred(T(i9)), H(t, k) ~ frame®@pred(T(i0)), Nfresh
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Example: weak privacy for Hash-Lock.
frame@pred(T(igp)), H(t, k) ~ frame®@pred(T(i0)), Nfresh

where t & (in@T(i0), nr(io)).

Since in@T(ip) = &(frame®@T(ip)), same scenario as previous slide!
Thus, using PRF+REWRITE:
Vi. T(i) < T(ig) =t # (in@T(i), nv(i))

A V3. Ra(3) <T(io) = t # (nr(j), m(in@Rx(3)))
frame@pred(T(i9)), H(t, k) ~ frame®@pred(T(i0)), Nfresh




The CCSA Logic: Reasoning Rules

Example: weak privacy for Hash-Lock.
frame@pred(T(igp)), H(t, k) ~ frame®@pred(T(i0)), Nfresh

where t & (in@T(i0), nr(io)).

Since in@T(ip) = &(frame®@T(ip)), same scenario as previous slide!
Thus, using PRF+REWRITE:
Vi. T(i) < T(ig) =t # (in@T(i), nv(i))

A V3. Ra(3) <T(io) = t # (nr(j), m(in@Rx(3)))
frame@pred(T(i9)), H(t, k) ~ frame®@pred(T(i0)), Nfresh

Concludes using generic maths. reasoning + twice INDEP to show:
T(i) < T(i0) = nt(io) # nt(i)
R2(j) < T(i0) = nt(i0) # m(in@R>(3))
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