
Mechanized Proofs of Adversarial Complexity
and Application to Universal Composability
SCOT seminar

Manuel Barbosa University of Porto (FCUP) & INESC TEC

Gilles Barthe MPI-SP & IMDEA Software Institute

Benjamin Grégoire Inria Sofia

Adrien Koutsos Inria Paris

Pierre-Yves Strub PQShield

December 15, 2023

1

Cryptographic System Verification

Cryptographic systems provide security to many applications.

Critical + pervasive: high-level of confidence needed.

Formal methods:
precise and rigorous formulation of security properties.
security proofs.

Security proofs are complicated and error-prone.
⇒ proof mechanization: highest level of confidence.

2

Asymmetric Encryption Security (simplified)

Formalizing the security of an asymmetric encryption.

Encryption: enc(m, pk) Decryption: dec(m, sk)

Asymmetric encryption scheme is secure if:

No can distinguish between the encryptions of two plaintexts
even if it chooses them.

Example: enc(0, sk) ∼ enc(1, sk)

3

Asymmetric Encryption Security (simplified)

No can distinguish between the encryptions of two plaintexts
even if it chooses them.

Init: {
b $← {0, 1}
pk, sk $← kg(1η)
}

O(m0,m1) := {
return enc(mb, pk)
}

S

· · ·

output b′

advS() =
∣∣∣Pr

[
b′ ← (O) : b′ = b

]
− 1

2

∣∣∣
4

Cryptographic Games

Security properties for S:
game between an adversary and a challenger.

Challenger for S
O1, . . . ,On

(oracles)
· · ·

output

The advantage advS() is Pr
[

(O1, . . . ,On) wins
]
.

Advantage of an unbounded adversary is often 1.
⇒ ’s resources must be limited.
S secure ⇔ advS() is small for any efficient .

5

Cryptographic Games

Security properties for S:
game between an adversary and a challenger.

Challenger for S
O1, . . . ,On

(oracles)
· · ·

output

The advantage advS() is Pr
[

(O1, . . . ,On) wins
]
.

Advantage of an unbounded adversary is often 1.
⇒ ’s resources must be limited.
S secure ⇔ advS() is small for any efficient .

5

Cryptographic System Verification

Crypto. systems are combined to provide more involved properties.

Secure Channel
secrecy + authentication

Key-Exchange
secret shared key

Encryption
secrecy

Diffie-Hellman
hardness assumption

Signature
authentication

S H denotes cryptographic reduction.
If an efficient adversary can break S

then
there exists an efficient adversary breaking H.

6

Cryptographic System Verification

Crypto. systems are combined to provide more involved properties.

Secure Channel
secrecy + authentication

Key-Exchange
secret shared key

Encryption
secrecy

Diffie-Hellman
hardness assumption

Signature
authentication

S H denotes cryptographic reduction.
If an efficient adversary can break S

then
there exists an efficient adversary breaking H.

6

Cryptographic Reduction

Cryptographic Reduction S H
S reduces to a hardness hypothesis H if:

∀A.∃B. advS(A) ≤ advH(B) + ϵ ∧ cost(B) ≤ cost(A) + δ

where ϵ and δ are small.

7

Mechanizing Cryptographic Reduction

EasyCrypt
A proof assistant to verify cryptographic proofs. It relies on:

general purpose higher-order ambient logic.

probabilistic relational Hoare logic (pRHL).

powerful module system.

Many advanced existing case studies: AWS KMS, SHA3, ...

8

Mechanizing Cryptographic Reduction

In EasyCrypt proof, the adversary against H is explicitly
constructed:

∀A. advS(A) ≤ advH(C[A]) + ϵ (†)

But EasyCrypt lacked support for complexity upper-bounds.

Getting a ∀∃ statement

(†) implies that:

∀A.∃B. advS(A) ≤ advH(B) + ϵ

but this statement is useless, since B is not resource-limited:
its advantage is often 1.

9

Mechanizing Cryptographic Reduction

In EasyCrypt proof, the adversary against H is explicitly
constructed:

∀A. advS(A) ≤ advH(C[A]) + ϵ (†)

But EasyCrypt lacked support for complexity upper-bounds.

Getting a ∀∃ statement

(†) implies that:

∀A.∃B. advS(A) ≤ advH(B) + ϵ

but this statement is useless, since B is not resource-limited:
its advantage is often 1.

9

Mechanizing Cryptographic Reduction

Hence adversaries constructed in reductions are kept explicit:

∀A. advS(A) ≤ advH(C[A]) + ϵ

Limitations

Not fully verified: C[A]’s complexity is checked manually.

Less composable, as composition is done manually (inlining).

∀A. advS(A) ≤ advH1(C[A]) + ϵ1If

∀D. advH1(D) ≤ advH2(F [D]) + ϵ2and

∀A. advS(A) ≤ advH2(F [C[A]]) + ϵ1 + ϵ2then

10

Our Contributions

A Hoare logic to prove worst-case complexity upper-bounds of
probabilistic programs.
⇒ fully mechanized cryptographic reductions.

Implemented in EasyCrypt, embedded in its ambient
higher-order logic.
⇒ meaningful ∀∃ statements: better composability.

Application: UC formalization in EasyCrypt.

First formalization of EasyCrypt module system.

11

Hoare Logic for Complexity

Example: Bellare-Rogaway, 93

The Bellare-Rogaway scheme builds a public-key encryption from:

a trapdoor permutation

and a random oracle (modeling a hash function).

Encryption
secrecy

Trapdoor Permutation
one-way function

Random Oracle
hash function

Random Oracle
hash function

12

Example: Bellare-Rogaway, 93

The Bellare-Rogaway scheme builds a public-key encryption from:

a trapdoor permutation

and a random oracle (modeling a hash function).

Encryption
secrecy

Trapdoor Permutation
one-way function

Random Oracle
hash function

Random Oracle
hash function

12

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv.choose(pk);

h $←− dptxt;
Adv.guess(y || h);
while (log ̸= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

13

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv.choose(pk);

h $←− dptxt;
Adv.guess(y || h);
while (log ̸= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

13

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv(Log(RO)).choose(pk);

h $←− dptxt;
Adv(Log(RO)).guess(y || h);
while (log ̸= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

13

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv(Log(RO)).choose(pk);

h $←− dptxt;
Adv(Log(RO)).guess(y || h);
while (log ̸= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

13

Example: Bellare-Rogaway, 93

proc invert(pk:pkey,y:rand): rand = {
log ← [];
Adv(Log(RO)).choose(pk);

h $←− dptxt;
Adv(Log(RO)).guess(y || h);
while (log ̸= []) {

r ← head log;
if (f pk r = y) return r;
log ← tail log;

}
} Inverter

proc choose(p:pkey) : unit
proc guess(c:ctxt) : unit

Adv

proc o(r:rand): ptxt = {
log ← r :: log;
return RO.o(r);

}
Log

proc o(r:rand): ptxt
RO

≤ kc

≤ kg

Property: |log| ≤ kc + kg
Complexity: [conc : (5 + tf) · (kc + kg) + 4,

Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg] Memory: Adv must not access the log in Log

Concrete Abstract

13

Key Ingredients

Support programs mixing concrete and abstract code.
Example: Adv(Log(RO))

Complexity upper-bound requires some program invariants.
Example: |log| ≤ kc + kg

Abstract procedures must be restricted:
Complexity: restrict intrinsic cost/number of calls to oracles.
Example: choose can call o ≤ kc times.

Memory footprint: some memory areas are off-limit.
Example: Adv cannot access the log in Log’s memory

14

Key Ingredients

Support programs mixing concrete and abstract code.
Example: Adv(Log(RO))

Complexity upper-bound requires some program invariants.
Example: |log| ≤ kc + kg

Abstract procedures must be restricted:
Complexity: restrict intrinsic cost/number of calls to oracles.
Example: choose can call o ≤ kc times.

Memory footprint: some memory areas are off-limit.
Example: Adv cannot access the log in Log’s memory

14

Module Restrictions

Abstract code modeled as any program implementing some module
signature (à la ML)

, with some restrictions:

Module memory footprint can be restricted.

Procedure complexity can be upper-bounded.

module type RO = {
proc o (r:rand) : ptxt

[intr : to]

}.

module type Adv (H: RO) = {
proc choose(p:pkey) : unit

[intr : tc ,H.o : kc]

proc guess(c:ctxt) : unit

[intr : tg ,H.o : kg]

}.

15

Module Restrictions

Abstract code modeled as any program implementing some module
signature (à la ML), with some restrictions:

Module memory footprint can be restricted.

Procedure complexity can be upper-bounded.

module type RO = {
proc o (r:rand) : ptxt

[intr : to]

}.

module type Adv (H: RO) {+all mem, -Log, -RO, -Inverter} = {
proc choose(p:pkey) : unit

[intr : tc ,H.o : kc]

proc guess(c:ctxt) : unit

[intr : tg ,H.o : kg]

}.

15

Module Restrictions

Abstract code modeled as any program implementing some module
signature (à la ML), with some restrictions:

Module memory footprint can be restricted.

Procedure complexity can be upper-bounded.

module type RO = {
proc o (r:rand) : ptxt [intr : to]

}.

module type Adv (H: RO) {+all mem, -Log, -RO, -Inverter} = {
proc choose(p:pkey) : unit [intr : tc ,H.o : kc]

proc guess(c:ctxt) : unit [intr : tg ,H.o : kg]

}.

15

Complexity Judgements: Programs

E ⊢ {ϕ} s {ψ | c }

Pre-condition Post-condition

Environment Program
statement

Cost vector

Assuming ϕ, evaluating s guarantees ψ, and takes time at most c .

Example: E ⊢ {⊤} Inverter(Adv,RO).invert {|log| ≤ kc + kg | c}

16

Complexity Judgements: Programs

E ⊢ {ϕ} s {ψ | c }

Pre-condition Post-condition

Environment Program
statement

Cost vector

Assuming ϕ, evaluating s guarantees ψ, and takes time at most c .

Example: E ⊢ {⊤} Inverter(Adv,RO).invert {|log| ≤ kc + kg | c}

16

Cost Vectors

c ::= [conc : k , O1.f1 : k1 , . . . , Ol .fl : kl]

Concrete
cost

Integers

Abstract
procedures

Example: [conc : (5 + tf) · (kc + kg) + 4,
Adv.choose : 1,
Adv.guess : 1,
RO.o : kc + kg]

17

Concrete and Abstract Cost: Example

s1

sc

s2

. . .

sc

B

sc

. . .

s3A:

B:

C:

concrete

intrinsic A

abstract

⊢ {⊤} A(B,C).a {⊤ | [conc 7→ tconc,B.b 7→ 1]}
where B = abs(TB) is abstract.

18

Concrete and Abstract Cost: Example

s1

sc

s2

. . .

sc

B

sc

. . .

s3A:

B:

C:

concrete intrinsic A abstract

⊢ {⊤} A(B,C).a {⊤ | [conc 7→ tconc,B.b 7→ 1]}
where B = abs(TB) is abstract.

18

Semantics

Denotational semantics of programs:

JsK
ρ
ν ∈ D (M× N)

Valuation

Memory

D (M× N): discrete distributions over memories and cost.
Valuation ρ of abstract modules.
Must respect restrictions in E .

Worst-case complexity, E ⊢ {ϕ} s {ψ | c} valid if:

∀ρ : E .∀ν ∈ ϕ.

supp(

π1(JsKρν)

)

⊆ ψ

∧ sup
(
π2(JsKρν)

)

)

≤ c[conc] +
∑
O.g

c[O.g] · intrρ
(
O.g

)

19

Semantics

Denotational semantics of programs:

JsK
ρ
ν ∈ D (M× N)

Valuation

Memory

D (M× N): discrete distributions over memories and cost.
Valuation ρ of abstract modules.
Must respect restrictions in E .

Worst-case complexity, E ⊢ {ϕ} s {ψ | c} valid if:

∀ρ : E .∀ν ∈ ϕ.

supp(

π1(JsKρν)

)

⊆ ψ

∧ sup
(
π2(JsKρν)

)

)

≤ c[conc] +
∑
O.g

c[O.g] · intrρ
(
O.g

)
19

Semantics

Denotational semantics of programs:

JsK
ρ
ν ∈ D (M× N)

Valuation

Memory

D (M× N): discrete distributions over memories and cost.
Valuation ρ of abstract modules.
Must respect restrictions in E .

Worst-case complexity, E ⊢ {ϕ} s {ψ | c} valid if:

∀ρ : E .∀ν ∈ ϕ.
supp(π1(JsKρν)) ⊆ ψ

∧ sup
(
supp

(
π2(JsKρν)

))
≤ c[conc] +

∑
O.g

c[O.g] · intrρ
(
O.g

)
19

Hoare Logic for Cost

We designed a Hoare logic for cost.
Many rules are straightforward:
memory and cost upper-bound handled separately.
Example: conditional rule.
More complex rules:
simultaneously prove memory and cost upper-bound.
Examples: abstract call and instantiation rules.

20

Hoare Logic for Cost: If

if
{ϕ} e ≤ te E ⊢ {ϕ ∧ e} s1 {ψ | t} E ⊢ {ϕ ∧ ¬e} s2 {ψ | t}

E ⊢ {ϕ} if e then s1 else s2 {ψ | t + te}

Whenever:
e takes time ≤ te ;

s1, assuming ϕ ∧ e, guarantees ψ in time ≤ t;

s2, assuming ϕ ∧ ¬e, guarantees ψ in time ≤ t;
then the conditional, assuming ϕ, guarantees ψ in time ≤ t + te .

21

Hoare Logic for Cost: Abstract Call

Abstract call rule without cost.
(for one oracle O with one procedure g)

A : abs
(
func(X). sig proc f {λm} end

)

FV(ϕ) ∩ λm = ∅ ⊢ {ϕ} O.g {ϕ}

⊢ {ϕ} A(O).f {ϕ}

Memory restriction: FV(ϕ) ∩ λm = ∅
⇒ ensures that (all pieces of) A preserves ϕ.

Premise: ⊢ {ϕ} O.g {ϕ}
⇒ ensures that the oracle preserves ϕ.

22

Hoare Logic for Cost: Abstract Call

Abstract call rule without cost.
(for one oracle O with one procedure g)

A : abs
(
func(X). sig proc f {λm} end

)
FV(ϕ) ∩ λm = ∅

⊢ {ϕ} O.g {ϕ}

⊢ {ϕ} A(O).f {ϕ}

Memory restriction: FV(ϕ) ∩ λm = ∅
⇒ ensures that (all pieces of) A preserves ϕ.

Premise: ⊢ {ϕ} O.g {ϕ}
⇒ ensures that the oracle preserves ϕ.

22

Hoare Logic for Cost: Abstract Call

Abstract call rule without cost.
(for one oracle O with one procedure g)

A : abs
(
func(X). sig proc f {λm} end

)
FV(ϕ) ∩ λm = ∅ ⊢ {ϕ} O.g {ϕ}

⊢ {ϕ} A(O).f {ϕ}

Memory restriction: FV(ϕ) ∩ λm = ∅
⇒ ensures that (all pieces of) A preserves ϕ.

Premise: ⊢ {ϕ} O.g {ϕ}
⇒ ensures that the oracle preserves ϕ.

22

Hoare Logic for Cost: Abstract Call

Abstract call rule with cost.

A : abs
(
func(X). sig proc f {λm} : λc end

)
FV(ϕ) ∩ λm = ∅

λc = compl[intr : K ,O.g : Ko]

∀k < Ko , ⊢ {ϕ k} O.g {ϕ (k + 1) | co k}
⊢ {ϕ 0} A(O).f {∃k , ϕ k ∧ 0 ≤ k ≤ Ko | Tabs}

where Tabs =
[
A.f 7→ 1

]
+

∑Ko−1
k=0 co k .

field-by-field addition

23

Hoare Logic for Cost

Hoare logic for cost

+ typing rules for module restrictions.

Rules handling abstract code are the most interesting.
24

Hoare Logic for Cost

Hoare logic for cost + typing rules for module restrictions.
Rules handling abstract code are the most interesting.

24

Soundness

Formalization and proof of soundness of our logic. This includes:

Formalization of the semantics and cost of programs.
First formalization of EasyCrypt module system.

Subject reduction for module resolution.
⇒ Complexity and memory footprint restrictions are preserved.

25

Implementation in EasyCrypt

Hoare logic for cost has been implemented in EasyCrypt.

Integrated in EasyCrypt ambient higher-order logic.
⇒ meaningful existential quantification over abstract code

(e.g. ∀∃ statements).

Established the complexity of classical examples:
BR93, Hashed El-Gamal, Cramer-Shoup.

26

Application: Universal
Composability in EasyCrypt

Universal Composability

UC is a general framework providing strong security guarantees

π1 UC-computes π2 if π1 can safely replace π2 in any context.

Fundamentals properties: transitivity and composability.
⇒ allow for modular and composable proofs.

27

Universal Composability

π1
Z

I/O Backdoor

Z
π2 S

≈

∃S ∈ Sim,∀Z ∈ Env,

|Pr[Z(π1) : true]− Pr[Z(⟨π2 ◦ S⟩) : true] | ≤ ϵ

Z is the adversary: its complexity must be bounded.

if S’s complexity is unbounded, UC key theorems become useless.

28

Universal Composability

π1
Z

I/O Backdoor

Z
π2 S

≈

∃S ∈ Sim[csim],∀Z ∈ Env[cenv],

|Pr[Z(π1) : true]− Pr[Z(⟨π2 ◦ S⟩) : true] | ≤ ϵ

Z is the adversary: its complexity must be bounded.

if S’s complexity is unbounded, UC key theorems become useless.

28

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim

[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim

[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim

[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.

29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim[c12
sim]

∀Z ∈ Env

[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim[c23
sim]

∀Z ∈ Env

[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim[c12
sim + c23

sim]

∀Z ∈ Env

[cenv]

S

⇒ precise complexity bounds are crucial here.
29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim[c12
sim]

∀Z ∈ Env[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim[c23
sim]

∀Z ∈ Env[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim[c12
sim + c23

sim]

∀Z ∈ Env[cenv]

S

⇒ precise complexity bounds are crucial here.
29

Universal Composability: Transitivity

π1
Z Z

π2 S12

≈∃S12 ∈ Sim[c12
sim]

∀Z ∈ Env[cenv]

π2
Z Z

π3 S23

≈∃S23 ∈ Sim[c23
sim]

∀Z ∈ Env[cenv + c12
sim],

π1
Z Z

π1π2 S12π3 S23 S12

≈∃S ∈ Sim[c12
sim + c23

sim]

∀Z ∈ Env[cenv]

S

⇒ precise complexity bounds are crucial here.
29

Universal Composability in EasyCrypt

UC formalization in EasyCrypt, with fully mechanized general
UC theorems (transitivity, composability).

Our formalization exploits EasyCrypt machinery:
module restrictions for complexity/memory footprint constraints;
message passing done through procedure calls.

30

Application: One-Shot Secure Channel

Diffie-Hellman UC-computes a Key-Exchange ideal functionality,
assuming DDH.

One-Time Pad+Key-Exchange UC-computes a one-show Secure
Channel ideal functionality.

Diffie-Hellman+One-Time Pad UC-computes a one-shot Secure
Channel ideal functionality, assuming DDH.

Final security statements with precise probability and complexity
bounds.

31

Application: One-Shot Secure Channel

Diffie-Hellman UC-computes a Key-Exchange ideal functionality,
assuming DDH.

One-Time Pad+Key-Exchange UC-computes a one-show Secure
Channel ideal functionality.

Diffie-Hellman+One-Time Pad UC-computes a one-shot Secure
Channel ideal functionality, assuming DDH.

Final security statements with precise probability and complexity
bounds.

31

Conclusion

Conclusion

Designed a Hoare logic for worst-case complexity upper-bounds.

Implemented in EasyCrypt, embedded in its ambient
higher-order logic.
⇒ fully mechanized and composable crypto. reductions.

First formalization of EasyCrypt module system.

Main application: UC formalization in EasyCrypt.
Key results (transitivity, composability) and examples (DH+OTP)
are fully mechanized.

Thank you for your attention.

32

Conclusion

Designed a Hoare logic for worst-case complexity upper-bounds.

Implemented in EasyCrypt, embedded in its ambient
higher-order logic.
⇒ fully mechanized and composable crypto. reductions.

First formalization of EasyCrypt module system.

Main application: UC formalization in EasyCrypt.
Key results (transitivity, composability) and examples (DH+OTP)
are fully mechanized.

Thank you for your attention.

32

Complexity Judgements: Expressions

{ϕ} e ≤ te

Pre-condition Integer cost

Expression

Assuming ϕ, evaluating expression e takes time at most te .

Example: Cost of an addition:

(ϕ⇒ |a| ≤ N)⇒ (ϕ⇒ |b| ≤ N)⇒
{ϕ} a ≤ ta ⇒ {ϕ} b ≤ tb ⇒

{ϕ} a+ b ≤ (ta + tb + cadd N)

33

Complexity Judgements: Expressions

{ϕ} e ≤ te

Pre-condition Integer cost

Expression

Assuming ϕ, evaluating expression e takes time at most te .

Example: Cost of an addition:

(ϕ⇒ |a| ≤ N)⇒ (ϕ⇒ |b| ≤ N)⇒
{ϕ} a ≤ ta ⇒ {ϕ} b ≤ tb ⇒

{ϕ} a+ b ≤ (ta + tb + cadd N)

33

	Hoare Logic for Complexity
	Application: Universal Composability in EasyCrypt
	Conclusion

