Decidability of a Sound Set of Inference Rules for Computational Indistinguishability

Adrien Koutsos
LSV, CNRS, ENS Paris-Saclay
June 29, 2019

Introduction

Motivation

- Security protocols are distributed programs which aim at providing some security properties.
- They are extensively used, and bugs can be very costly.
- Security protocols are often short, but the security properties are complex.
\Rightarrow Need to use formal methods.

Introduction

Goal of this work

We focus on fully automatic proofs of indistinguishability properties in the computational model:

Introduction

Goal of this work

We focus on fully automatic proofs of indistinguishability properties in the computational model:

- Computational model: the adversary is any probabilistic polynomial time Turing machine. This offers strong security guarantees.

Introduction

Goal of this work

We focus on fully automatic proofs of indistinguishability properties in the computational model:

- Computational model: the adversary is any probabilistic polynomial time Turing machine. This offers strong security guarantees.
- Indistinguishability properties: e.g. strong secrecy, anonymity or unlinkability.

Introduction

Goal of this work

We focus on fully automatic proofs of indistinguishability properties in the computational model:

- Computational model: the adversary is any probabilistic polynomial time Turing machine. This offers strong security guarantees.
- Indistinguishability properties: e.g. strong secrecy, anonymity or unlinkability.
- Fully automatic: we want a complete decision procedure.

1 Introduction

2 The Bana-Comon Model

3 Inference Rules
■ Unitary Inference Rules
■ Inference Rules

4 Decision Result

5 Conclusion

1 Introduction

2 The Bana-Comon Model

3 Inference Rules
■ Unitary Inference Rules

- Inference Rules

4 Decision Result

5 Conclusion

The Private Authentication Protocol

$$
\begin{aligned}
& \mathrm{A}^{\prime}: \mathrm{n}_{\mathrm{A}^{\prime}} \stackrel{\$}{\leftarrow} \\
& \mathrm{~B}: \mathrm{n}_{\mathrm{B}} \stackrel{\$}{\leftarrow} \\
& 1: \mathrm{A}^{\prime} \longrightarrow \mathrm{B}:\left\{\left\langle\mathrm{A}^{\prime}, \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
& 2: B \longrightarrow A^{\prime}: \begin{cases}\left\{\left\langle\mathrm{n}_{\mathrm{A}^{\prime}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } A^{\prime}=\mathrm{A} \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }\end{cases}
\end{aligned}
$$

Bana-Comon Model: Messages

Messages

We use terms to model protocol messages, build upon:

- Names \mathcal{N}, e.g. $\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}$, for random samplings.
- Function symbols \mathcal{F}, e.g.:

$$
\left.\mathrm{A}, \mathrm{~B},\left\langle_{-},{ }_{-}\right\rangle, \pi_{i}\left(__{-}\right),\left\{_{-}\right\}_{-}, \mathrm{pk}\left(__{-}\right), \mathrm{sk}\left(__{-}\right) \text {, if_then_else_, eq(_, }\right)
$$

- Variables \mathcal{X}.

Bana-Comon Model: Messages

Messages

We use terms to model protocol messages, build upon:

- Names \mathcal{N}, e.g. $\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}$, for random samplings.
- Function symbols \mathcal{F}, e.g.:

$$
\mathrm{A}, \mathrm{~B},\left\langle_{-},{ }_{-}\right\rangle, \pi_{i}\left(__{-}\right),\left\{_{-}\right\}_{-}, \mathrm{pk}\left(__{-}\right), \mathrm{sk}\left(__{-}\right) \text {, if_then_else_, eq(_,_) }
$$

- Variables \mathcal{X}.

Examples

$$
\left\langle\mathrm{n}_{\mathrm{A}}, \mathrm{~A}\right\rangle \quad \pi_{1}\left(\mathrm{n}_{\mathrm{B}}\right) \quad\left\{\left\langle\mathrm{A}^{\prime}, \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})}
$$

Bana-Comon Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
& 1: A^{\prime} \longrightarrow B \quad: \quad\left\{\left\langle A^{\prime}, n_{A^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
& 2: B \longrightarrow A^{\prime}: \begin{cases}\left\{\left\langle\widehat{n_{A^{\prime}}}, n_{B}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{A}^{\prime}=A \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }\end{cases}
\end{aligned}
$$

How do we represent the adversary's inputs?

Bana-Comon Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
1: A^{\prime} \longrightarrow B: & \left\{\left\langle A^{\prime}, n_{A^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
2: B \longrightarrow A^{\prime}: & \begin{cases}\left\{\left\langle\mathrm{n}_{A^{\prime}}, n_{B}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{A}^{\prime}=A \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }\end{cases}
\end{aligned}
$$

How do we represent the adversary's inputs?

- We use adversarial functions symbols, typically g.
g takes as input the current knowledge of the adversary (the frame).

Bana-Comon Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
& 1: A^{\prime} \longrightarrow B: \quad\left\{\left\langle A^{\prime}, n_{A^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
& 2: B \longrightarrow A^{\prime}: \begin{cases}\left\{\left\langle\widehat{n_{A^{\prime}}}, n_{B}\right\rangle\right\}_{p k(A)} & \text { if } A^{\prime}=A \\
\left\{\left\langle n_{B}, n_{B}\right\rangle\right\}_{p k(A)} & \text { otherwise }\end{cases}
\end{aligned}
$$

How do we represent the adversary's inputs?

- We use adversarial functions symbols, typically g.
g takes as input the current knowledge of the adversary (the frame).
- Intuitively, they can be any probabilistic polynomial time algorithm.

■ Moreover, branching of the protocol is done using if_then_else \qquad

Bana-Comon Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
1: A^{\prime} \longrightarrow B: & :\left\{\left\langle A^{\prime}, n_{A^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
2: B \longrightarrow \mathrm{~A}^{\prime}: & : \begin{cases}\left\{\left\langle\overline{n_{A^{\prime}}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \overline{\mathrm{A}^{\prime}}=\mathrm{A} \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }\end{cases}
\end{aligned}
$$

Term Representing the Messages in PA

$$
\begin{aligned}
t_{1}= & \left\{\left\langle\mathrm{A}^{\prime}, \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
t_{2}= & \text { if } \left.\quad \text { eq }\left(\pi_{1}\left(\operatorname{dec}\left(\underline{\mathrm{~g}\left(t_{1}\right),}\right) \operatorname{sk}(\mathrm{B})\right)\right) ; \mathrm{A}\right) \\
& \text { then }\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(\underline{\mathrm{~g}\left(t_{1}\right)}, \underline{\operatorname{sk}(\mathrm{B}))}\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})}\right. \\
& \text { elser} \left.\quad\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})}\right)
\end{aligned}
$$

Bana-Comon Model: Protocol Execution

Protocol Execution

The execution of a protocol P is a sequence of terms using adversarial function symbols:

$$
u_{1}^{P}, \ldots, u_{n}^{P}
$$

where u_{i}^{P} is the i-th message sent on the network by P.

Bana-Comon Model: Protocol Execution

Protocol Execution

The execution of a protocol P is a sequence of terms using adversarial function symbols:

$$
u_{1}^{P}, \ldots, u_{n}^{P}
$$

where u_{i}^{P} is the i-th message sent on the network by P.

Remark

This is only possible for a bounded number of messages.

Bana-Comon Model: Security Properties

Formula

Formulas are build using:

- For every $n \in \mathbb{N}$, the predicate \sim_{n} of arity $2 n$.

Bana-Comon Model: Security Properties

Formula

Formulas are build using:

- For every $n \in \mathbb{N}$, the predicate \sim_{n} of arity $2 n$.

Examples

$$
\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}
$$

Bana-Comon Model: Security Properties

Formula

Formulas are build using:

- For every $n \in \mathbb{N}$, the predicate \sim_{n} of arity $2 n$.

Examples

$$
\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}
$$

Privacy of the PA protocol can be expressed by the ground formula:

$$
t_{1}^{\mathrm{A}}, t_{2}^{\mathrm{A}} \sim t_{1}^{\mathrm{C}}, t_{2}^{\mathrm{C}}
$$

Bana-Comon Model: Security Properties

Formula

Formulas are build using:

- For every $n \in \mathbb{N}$, the predicate \sim_{n} of arity $2 n$.
- Boolean connectives $\wedge, \vee, \neg, \rightarrow$.
- First-order quantifier \forall.

Examples

$$
\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}
$$

Privacy of the PA protocol can be expressed by the ground formula:

$$
t_{1}^{\mathrm{A}}, t_{2}^{\mathrm{A}} \sim t_{1}^{\mathrm{C}}, t_{2}^{\mathrm{C}}
$$

1 Introduction

2 The Bana-Comon Model

3 Inference Rules
■ Unitary Inference Rules
■ Inference Rules

4 Decision Result

5 Conclusion

Unitary Inference Rules

Unitary Inference Rules

We know that some atomic formulas are valid:

- Using α-renaming of random samplings:

$$
\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}} \sim \mathrm{n}_{\mathrm{C}}, \mathrm{n}_{\mathrm{D}}
$$

Unitary Inference Rules

Unitary Inference Rules

We know that some atomic formulas are valid:

- Using α-renaming of random samplings:

$$
\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}} \sim \mathrm{n}_{\mathrm{C}}, \mathrm{n}_{\mathrm{D}}
$$

- Using cryptographic assumptions on the security primitives, e.g. if the encryption scheme is IND-CCA ${ }_{1}$.

Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

$$
\left\{m_{0}\right\}_{\mathrm{pk}} \sim\left\{m_{1}\right\}_{\mathrm{pk}}
$$

Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

$$
\left\{m_{0}\right\}_{\mathrm{pk}} \sim\left\{m_{1}\right\}_{\mathrm{pk}}
$$

Assuming:

- sk occurs only in decryption position in m_{0}, m_{1}

Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

$$
\left\{m_{0}\right\}_{\mathrm{pk}}^{n_{f}} \sim\left\{m_{1}\right\}_{\mathrm{pk}}^{\mathrm{n}_{f}}
$$

Assuming:

- sk occurs only in decryption position in m_{0}, m_{1}
- n_{r} does not appear in m_{0}, m_{1}

Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

$$
\left\{m_{0}\right\}_{\mathrm{pk}}^{n_{f}} \sim\left\{m_{1}\right\}_{\mathrm{pk}}^{n_{r}}
$$

Assuming:

- sk occurs only in decryption position in m_{0}, m_{1}
- n_{r} does not appear in m_{0}, m_{1}

Theorem

The CCA1 rules are valid when the encryption and decryption functions form an IND-CCA ${ }_{1}$ encryption scheme.

Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

$$
\vec{v},\left\{m_{0}\right\}_{\mathrm{pk}}^{n_{f}} \sim \vec{v},\left\{m_{1}\right\}_{\mathrm{pk}}^{\mathrm{n}_{\mathrm{f}}}
$$

Assuming:

- sk occurs only in decryption position in m_{0}, m_{1}, \vec{v}
- n_{r} does not appear in m_{0}, m_{1}, \vec{v}

Theorem

The CCA1 rules are valid when the encryption and decryption functions form an IND-CCA ${ }_{1}$ encryption scheme.

Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

$$
\vec{v},\left\{m_{0}\right\}_{\mathrm{pk}}^{n_{f}} \sim \vec{v},\left\{m_{1}\right\}_{\mathrm{pk}}^{\mathrm{n}_{\mathrm{k}}}
$$

Assuming:

- sk occurs only in decryption position in m_{0}, m_{1}, \vec{v}
- n_{r} does not appear in m_{0}, m_{1}, \vec{v}

Theorem

The CCA1 rules are valid when the encryption and decryption functions form an IND-CCA 1 encryption scheme.

Remark

This is an axiom schema!

Inference Rules

Proof Technique

- If $\vec{u} \sim \vec{v}$ is not directly valid, we try to prove it through a succession of rule applications:

$$
\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}
$$

- This is the way cryptographers do proofs.

Inference Rules

Proof Technique

- If $\vec{u} \sim \vec{v}$ is not directly valid, we try to prove it through a succession of rule applications:

$$
\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}
$$

- This is the way cryptographers do proofs.

■ Validity by reduction: given a winning adversary against $\vec{u} \sim \vec{v}$, we can build winning adversary againstan adversary winning $\vec{s} \sim \vec{t}$.

Inference Rules

Proof Technique

- If $\vec{u} \sim \vec{v}$ is not directly valid, we try to prove it through a succession of rule applications:

$$
\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}
$$

- This is the way cryptographers do proofs.

■ Validity by reduction: given a winning adversary against $\vec{u} \sim \vec{v}$, we can build winning adversary againstan adversary winning $\vec{s} \sim \vec{t}$.

Example

$$
\frac{x \sim y}{y \sim x} S y m
$$

Structural Rules

Duplicate

$$
\begin{aligned}
& x \sim y \\
& x, x \sim y, y \\
& \text { Dup }
\end{aligned}
$$

Structural Rules

Duplicate

$$
\frac{\vec{w}_{l}, x \sim \vec{w}_{r}, y}{\vec{w}_{l}, x, x \sim \vec{w}_{r}, y, y} \text { Dup }
$$

Structural Rules

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$
\begin{aligned}
x_{1}, \ldots, x_{n} \sim & y_{1}, \ldots, y_{n} \\
\hline f\left(x_{1}, \ldots, x_{n}\right) \sim & f\left(y_{1}, \ldots, y_{n}\right)
\end{aligned} \text { FA }
$$

Structural Rules

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$
\frac{\vec{w}_{l}, x_{1}, \ldots, x_{n} \sim \vec{w}_{r}, y_{1}, \ldots, y_{n}}{\vec{w}_{l}, f\left(x_{1}, \ldots, x_{n}\right) \sim \vec{w}_{r}, f\left(y_{1}, \ldots, y_{n}\right)} \text { FA }
$$

Structural Rules

Case Study

If we use Function Application on if_then_else_:

$$
\frac{b, u, v \sim b^{\prime}, u^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{FA}
$$

Structural Rules

Case Study

If we use Function Application on if_then_else_:

$$
\frac{b, u, v \sim b^{\prime}, u^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{FA}
$$

But we can do better:

$$
\frac{b, u \sim b^{\prime}, u^{\prime} \quad b, v \sim b^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{CS}
$$

Rewriting Rules

Remark: \sim is not a congruence!
Counter-Example: $\mathrm{n} \sim \mathrm{n}$ and $\mathrm{n} \sim \mathrm{n}^{\prime}$, but $\mathrm{n}, \mathrm{n} \nsim \mathrm{n}, \mathrm{n}^{\prime}$.

Rewriting Rules

Remark: \sim is not a congruence!
Counter-Example: $\mathrm{n} \sim \mathrm{n}$ and $\mathrm{n} \sim \mathrm{n}^{\prime}$, but $\mathrm{n}, \mathrm{n} \nsim \mathrm{n}, \mathrm{n}^{\prime}$.

Congruence

If eq $(u ; v) \sim$ true then u and v are (almost always) equal \Rightarrow we have a congruence.
$u=v$ syntactic sugar for eq $(u ; v) \sim$ true
Equational Theory: Protocol Functions

- $\pi_{i}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=x_{i}$
- $\operatorname{dec}\left(\{x\}_{\mathrm{pk}(y)}, \operatorname{sk}(y)\right)=x$

Rewriting Rules

Equational Theory: Protocol Functions

If Homomorphism:

$f(\vec{u}$, if b then x else $y, \vec{v})=$ if b then $f(\vec{u}, x, \vec{v})$ else $f(\vec{u}, y, \vec{v})$
if (if b then a else c) then x else $y=$
if b then (if a then x else y) else (if c then x else y)

Rewriting Rules

Equational Theory: Protocol Functions

If Homomorphism:

$f(\vec{u}$, if b then x else $y, \vec{v})=$ if b then $f(\vec{u}, x, \vec{v})$ else $f(\vec{u}, y, \vec{v})$
if (if b then a else c) then x else $y=$
if b then (if a then x else y) else (if c then x else y)
If Rewriting:
if b then x else $x=x$
if b then (if b then x else y) else $z=$ if b then x else z
if b then x else (if b then y else z) $=$ if b then x else z

Rewriting Rules

Equational Theory: Protocol Functions

If Homomorphism:

$f(\vec{u}$, if b then x else $y, \vec{v})=$ if b then $f(\vec{u}, x, \vec{v})$ else $f(\vec{u}, y, \vec{v})$
if (if b then a else c) then x else $y=$
if b then (if a then x else y) else (if c then x else y)

If Rewriting:

if b then x else $x=x$
if b then (if b then x else y) else $z=$ if b then x else z
if b then x else (if b then y else z) $=$ if b then x else z

If Re-Ordering:

if b then (if a then x else y) else $z=$
if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) $=$
if a then (if b then x else y) else (if b then x else z)

1 Introduction

2 The Bana-Comon Model

3 Inference Rules
■ Unitary Inference Rules

- Inference Rules

4 Decision Result

5 Conclusion

Decidability

Decision Problem: Unsatisfiability

Input: A ground formula $\vec{u} \sim \vec{v}$.
Question: Is there a derivation of $\vec{u} \sim \vec{v}$ using $A x$?

Decidability

Decision Problem: Unsatisfiability

Input: A ground formula $\vec{u} \sim \vec{v}$.
Question: Is there a derivation of $\vec{u} \sim \vec{v}$ using $A x$?

or equivalently

Decision Problem: Game Transformations

Input: A game $\vec{u} \sim \vec{v}$.
Question: Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Inference Rules: Summary

The Inference Rules in $A x$

$$
\begin{gathered}
\frac{x \sim y}{x, x \sim y, y} \text { Dup } \\
\frac{x_{1}, \ldots, x_{n} \sim y_{1}, \ldots, y_{n}}{f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)} \text { FA } \\
\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime} \\
b S \\
\frac{\vec{u}^{\prime} \sim \vec{v}^{\prime}}{\vec{u} \sim \vec{v}} R \quad \text { when } \vec{u}=b_{R} \vec{u}^{\prime} \text { and } \vec{v}=R \vec{v}^{\prime} \\
\frac{\vec{u} \sim \vec{v}}{} \text { CCA1 }
\end{gathered}
$$

Term Rewriting System

Theorem
There exists a term rewriting system $\rightarrow_{R} \subseteq=$ such that:

- \rightarrow_{R} is convergent.

■ $=$ is equal to $\left({ }_{R} \leftarrow \cup \rightarrow_{R}\right)^{*}$.

Strategy

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

Strategy

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

Problems

- The rule R is not decreasing!
- CCA1 is a recursive schema.

Strategy

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

Problems

- The rule R is not decreasing!
- CCA1 is a recursive schema.

Naive Idea

R is convergent, so could we restrict proofs to terms in R-normal form?

Difficulties

If Introduction: $x \rightarrow$ if b then x else x

$\mathrm{n} \sim$ if $g()$ then n else n^{\prime}

Difficulties

If Introduction: $x \rightarrow$ if b then x else x

$\frac{\text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}} R$

Difficulties

If Introduction: $x \rightarrow$ if b then x else x

$$
\frac{\frac{\overline{\mathrm{n} \sim \mathrm{n}}}{g(), \mathrm{n} \sim g(), \mathrm{n}} \text { FA } \frac{\overline{\mathrm{n} \sim \mathrm{n}^{\prime}}}{g(), \mathrm{n} \sim g(), \mathrm{n}^{\prime}}}{\frac{\text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}} R} R
$$

Difficulties

If Introduction: : $x \rightarrow$ if b then x else x

$$
\frac{\frac{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}}{\vec{u}, g(\vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}), \mathrm{n}} \text { FA, Dup } \frac{\overrightarrow{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}^{\prime}}}{\frac{\vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\vec{u}, \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}} \text { FA, Dup }}{} \text { CS }
$$

Difficulties

If Introduction: : $x \rightarrow$ if b then x else x

$$
\frac{\frac{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}}{\vec{u}, g(\vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}), \mathrm{n}} \text { FA, Dup } \frac{\overrightarrow{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}^{\prime}}}{\overrightarrow{\vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}), \mathrm{n}^{\prime}}} \underset{\frac{\vec{u}, \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\prime}}{ } \text { FS, Dup }}{}
$$

Bounded Introduction

Still, the introduced conditional $g(\vec{u})$ is bounded by the other side.

Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

$$
\frac{\frac{a, s \sim b, t}{\text { if } a \text { then } s \text { else } s \sim \text { if } b \text { then } t \text { else } t}}{s \sim t} R
$$

Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

$$
\frac{\frac{a, s \sim b, t}{\text { if } a \text { then } s \text { else } s \sim \text { if } b \text { then } t \text { else } t}}{s \sim t} R
$$

Lemma

From a proof of $a, s \sim b, t$ we can extract a smaller proof of $s \sim t$.

Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

$$
\frac{\frac{a, s \sim b, t}{\text { if } a \text { then } s \text { else } s \sim \text { if } b \text { then } t \text { else } t}}{s \sim t} R
$$

Lemma

From a proof of $a, s \sim b, t$ we can extract a smaller proof of $s \sim t$.
\Rightarrow Proof Cut Elimination

Decision Procedure

Proof Cut

$$
\frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)}
$$

where $p \equiv$ if c then s else t

Decision Procedure

Proof Cut

$$
\frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)}
$$

where $p \equiv$ if c then s else t

Key Lemma

If $b, b \sim b^{\prime}, b^{\prime \prime}$ can be shown using only FA, Dup and CCA1 then $b^{\prime} \equiv b^{\prime \prime}$.

Decision Procedure

Proof Cut

$$
\frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)}
$$

where $p \equiv$ if c then s else t

Proof Cut Elimination

- $b_{2}, b_{3} \sim c_{2}, d_{3} \quad \Rightarrow \quad c \equiv d$.

Decision Procedure

Proof Cut

$$
\frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)}
$$

where $p \equiv$ if c then s else t

Proof Cut Elimination

■ $b_{2}, b_{3} \sim c_{2}, d_{3} \quad \Rightarrow \quad c \equiv d$.

- $a_{1}, b_{2} \sim d_{1}, c_{2} \quad \Rightarrow \quad a \equiv b$.

Strategy: Theorem

Theorem

The following problem is decidable:
Input: A ground formula $\vec{u} \sim \vec{v}$.
Question: Is there a derivation of $\vec{u} \sim \vec{v}$ using $A x$?

Strategy: Theorem

Theorem

The following problem is decidable:
Input: A ground formula $\vec{u} \sim \vec{v}$.
Question: Is there a derivation of $\vec{u} \sim \vec{v}$ using Ax ?

Remark: Unitary Inference Rules

This holds when using CCA2 as unitary inference rules.

Strategy: Theorem

Theorem

The following problem is decidable:
Input: A ground formula $\vec{u} \sim \vec{v}$.
Question: Is there a derivation of $\vec{u} \sim \vec{v}$ using $A x$?

Remark: Unitary Inference Rules

This holds when using CCA2 as unitary inference rules.

Sketch

- Commute rule applications to order them as follows:

$$
\left(2 \mathrm{Box}+R_{\square}\right) \cdot \mathrm{CS}_{\square} \cdot \mathrm{FA}_{\mathrm{if}} \cdot \mathrm{FA}_{\mathrm{f}} \cdot \mathrm{Dup} \cdot \mathrm{U}
$$

■ We do proof cut eliminations to get a small proof.

1 Introduction

2 The Bana-Comon Model

3 Inference Rules
■ Unitary Inference Rules

- Inference Rules

4 Decision Result

5 Conclusion

Conclusion

Contribution

Decidability of a set of inference rules for computational indistinguishability.

Conclusion

Contribution

Decidability of a set of inference rules for computational indistinguishability.

Limitations

- The complexity is high: 3-nexptime.
- The cryptographic primitives are fixed: only for CCA2.

Conclusion

Contribution

Decidability of a set of inference rules for computational indistinguishability.

Limitations

- The complexity is high: 3-nexptime.
- The cryptographic primitives are fixed: only for CCA2.

Future Works

Study the scope of the result:
■ Support for a larger class of primitives and associated assumptions.

- Undecidability results for extensions of the set of axioms.

Thanks for your attention

Commutations

($R \mid$ Dup) Commutation

This application

$$
\frac{\frac{\vec{u}, s \sim \vec{u}^{\prime}, s^{\prime}}{\vec{u}, t \sim \vec{u}^{\prime}, t^{\prime}} R}{\vec{u}, t, t \sim \vec{u}^{\prime}, t^{\prime}, t^{\prime}} \text { Dup }
$$

Commutations

($R \mid$ Dup) Commutation

This application

$$
\frac{\frac{\vec{u}, s \sim \vec{u}^{\prime}, s^{\prime}}{\vec{u}, t \sim \vec{u}^{\prime}, t^{\prime}} R}{\vec{u}, t, t \sim \vec{u}^{\prime}, t^{\prime}, t^{\prime}} \text { Dup }
$$

Can be rewritten into:

$$
\frac{\vec{u}, s \sim \vec{u}^{\prime}, s^{\prime}}{\frac{\vec{u}, s, s \sim \vec{u}^{\prime}, s^{\prime}, s^{\prime}}{\vec{u}, t, t \sim \vec{u}^{\prime}, t^{\prime}, t^{\prime}}} \text { Dup }
$$

Commutations

($R \mid$ FA) Commutation

This application:

$$
\begin{aligned}
& \frac{\vec{u}_{1}, \vec{v}_{1} \sim \vec{u}_{1}^{\prime}, \vec{v}_{1}^{\prime}}{\vec{u}, \vec{v} \sim \vec{u}^{\prime}, \vec{v}^{\prime}} R \\
& \vec{u}, f(\vec{v}), \vec{u}^{\prime}, f\left(\vec{v}^{\prime}\right) \\
& \text { FA }
\end{aligned}
$$

Commutations

($R \mid$ FA) Commutation

This application:

$$
\frac{\frac{\vec{u}_{1}, \vec{v}_{1} \sim \vec{u}_{1}^{\prime}, \vec{v}_{1}^{\prime}}{\vec{u}, \vec{v} \sim \vec{u}^{\prime}, \vec{v}^{\prime}} R}{\frac{\vec{u}, f(\vec{v}), \vec{u}^{\prime}, f\left(\vec{v}^{\prime}\right)}{} \text { FA }}
$$

Can be rewritten into:

$$
\frac{\vec{u}_{1}, \vec{v}_{1} \sim \vec{u}_{1}^{\prime}, \vec{v}_{1}^{\prime}}{\frac{\vec{u}_{1}, f\left(\vec{v}_{1}\right) \sim \vec{u}_{1}^{\prime}, f\left(\vec{v}_{1}^{\prime}\right)}{\vec{u}, f(\vec{v}), \vec{u}^{\prime}, f\left(\vec{v}^{\prime}\right)}} R
$$

