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Introduction

Motivation

Security protocols are distributed programs which aim at providing
some security properties.
They are extensively used, and bugs can be very costly.
Security protocols are often short, but the security properties are
complex.

⇒ Need to use formal methods.
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Introduction

Goal of this work
We focus on fully automatic proofs of indistinguishability properties in the
computational model:

Computational model: the adversary is any probabilistic polynomial
time Turing machine. This offers strong security guarantees.
Indistinguishability properties: e.g. strong secrecy, anonymity or
unlinkability.
Fully automatic: we want a complete decision procedure.
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The Private Authentication Protocol

A’ : nA’
$←

B : nB
$←

1 : A’ −→ B : {〈A’ , nA’〉}pk(B)

2 : B −→ A’ :

{
{〈nA’ , nB〉}pk(A) if A’ = A
{〈nB , nB〉}pk(A) otherwise
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Bana-Comon Model: Messages

Messages

We use terms to model protocol messages, build upon:
Names N , e.g. nA, nB, for random samplings.
Function symbols F , e.g.:

A,B, 〈_ , _〉 , πi (_), {_}_ , pk(_), sk(_), if_then_else_, eq(_,_)

Variables X .

Examples

〈nA , A〉 π1(nB) {〈A’ , nA’〉}pk(B)
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Bana-Comon Model: Messages

The Private Authentication Protocol

1 : A’ −→ B : {〈A’ , nA’〉}pk(B)

2 : B −→ A’ :

{{〈
nA’ , nB

〉}
pk(A) if A’ = A

{〈nB , nB〉}pk(A) otherwise

How do we represent the adversary’s inputs?

We use adversarial functions symbols, typically g.
g takes as input the current knowledge of the adversary (the frame).
Intuitively, they can be any probabilistic polynomial time algorithm.
Moreover, branching of the protocol is done using if_then_else_.
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Bana-Comon Model: Messages

The Private Authentication Protocol

1 : A’ −→ B : {〈A’ , nA’〉}pk(B)

2 : B −→ A’ :

{{〈
nA’ , nB

〉}
pk(A) if A’ = A

{〈nB , nB〉}pk(A) otherwise

Term Representing the Messages in PA

t1 = {〈A’ , nA’〉}pk(B)

t2 = if eq(π1(dec(g(t1), sk(B)));A)

then
{〈
π2(dec(g(t1), sk(B))), nB

〉}
pk(A)

else {〈nB , nB〉}pk(A)
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Bana-Comon Model: Protocol Execution

Protocol Execution
The execution of a protocol P is a sequence of terms using adversarial
function symbols:

uP1 , . . . , u
P
n

where uPi is the i-th message sent on the network by P .

Remark
This is only possible for a bounded number of messages.
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Bana-Comon Model: Security Properties

Formula
Formulas are build using:

For every n ∈ N, the predicate ∼n of arity 2n.

Boolean connectives ∧,∨,¬,→.
First-order quantifier ∀.

Examples

n ∼ if g() then n else n’

Privacy of the PA protocol can be expressed by the ground formula:

tA1 , t
A
2 ∼ tC1 , t

C
2
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Unitary Inference Rules

Unitary Inference Rules

We know that some atomic formulas are valid:
Using α-renaming of random samplings:

nA, nB ∼ nC, nD

Using cryptographic assumptions on the security primitives, e.g. if the
encryption scheme is ind-cca1.
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Unitary Inference Rules: Cryptographic Assumptions

CCA1 Rules

~v ,

{m0}

nr

pk ∼

~v ,

{m1}

nr

pk

Assuming:
sk occurs only in decryption position in m0,m1

, ~v

nr does not appear in m0,m1

, ~v

Theorem
The CCA1 rules are valid when the encryption and decryption functions
form an ind-cca1 encryption scheme.

Remark
This is an axiom schema!
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Inference Rules

Proof Technique

If ~u ∼ ~v is not directly valid, we try to prove it through a succession of
rule applications:

~s ∼ ~t
~u ∼ ~v

This is the way cryptographers do proofs.

Validity by reduction: given a winning adversary against ~u ∼ ~v , we
can build winning adversary againstan adversary winning ~s ∼ ~t.

Example

x ∼ y
Symy ∼ x
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Structural Rules

Duplicate

~wl ,

x ∼

~wr ,

y
Dup

~wl ,

x , x ∼

~wr ,

y , y
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Structural Rules

Duplicate

~wl , x ∼ ~wr , y Dup
~wl , x , x ∼ ~wr , y , y
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Structural Rules

Function Application

If you cannot distinguish the arguments, you cannot distinguish
the images.

~wl ,

x1, . . . , xn ∼

~wr ,

y1, . . . , yn FA

~wl ,

f (x1, . . . , xn) ∼

~wr ,

f (y1, . . . , yn)
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Structural Rules

Case Study

If we use Function Application on if_then_else_:

b, u, v ∼ b′, u′, v ′
FA

if b then u else v ∼ if b′ then u′ else v ′

But we can do better:

b, u ∼ b′, u′ b, v ∼ b′, v ′
CS

if b then u else v ∼ if b′ then u′ else v ′
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Rewriting Rules

Remark: ∼ is not a congruence!

Counter-Example: n ∼ n and n ∼ n′, but n, n 6∼ n, n′.

Congruence

If eq(u; v) ∼ true then u and v are (almost always) equal
⇒ we have a congruence.

u = v syntactic sugar for eq(u; v) ∼ true

Equational Theory: Protocol Functions

πi (〈x1, x2〉) = xi i ∈ {1, 2}
dec({x}pk(y) , sk(y)) = x
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Rewriting Rules

Equational Theory: Protocol Functions
If Homomorphism:
f (~u, if b then x else y , ~v) = if b then f (~u, x , ~v) else f (~u, y , ~v)
if (if b then a else c) then x else y =

if b then (if a then x else y) else (if c then x else y)

If Rewriting:
if b then x else x = x
if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z

If Re-Ordering:
if b then (if a then x else y) else z =

if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =

if a then (if b then x else y) else (if b then x else z)
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Decidability

Decision Problem: Unsatisfiability

Input: A ground formula ~u ∼ ~v .
Question: Is there a derivation of ~u ∼ ~v using Ax?

or equivalently

Decision Problem: Game Transformations
Input: A game ~u ∼ ~v .
Question: Is there a sequence of game transformations in Ax showing that
~u ∼ ~v is secure?
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Inference Rules: Summary

The Inference Rules in Ax

x ∼ y
Dupx , x ∼ y , y

x1, . . . , xn ∼ y1, . . . , yn FA
f (x1, . . . , xn) ∼ f (y1, . . . , yn)

b, u ∼ b′, u′ b, v ∼ b′, v ′
CS

if b then u else v ∼ if b′ then u′ else v ′

~u ′ ∼ ~v ′
R

~u ∼ ~v when ~u =R ~u ′ and ~v =R ~v
′

~u ∼ ~v CCA1
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Term Rewriting System

Theorem
There exists a term rewriting system →R ⊆ = such that:

→R is convergent.
= is equal to (R←∪ →R)

∗.
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Strategy

Deconstructing Rules

Rules CS,FA and Dup are decreasing transformations.

Problems

The rule R is not decreasing!
CCA1 is a recursive schema.

Naive Idea
R is convergent, so could we restrict proofs to terms in R-normal form?
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Difficulties

If Introduction: x → if b then x else x

n ∼ n
g(), n ∼ g(), n

FA
n ∼ n’

g(), n ∼ g(), n’
FA

if g() then n else n ∼ if g() then n else n’

CS

n ∼ if g() then n else n’

R
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Difficulties

If Introduction: : x → if b then x else x

~u, n ∼ ~u , n
~u, g(~u), n ∼ ~u , g(~u ), n

FA,Dup
~u, n ∼ ~u , n’

~u, g(~u), n ∼ ~u , g(~u ), n’
FA,Dup

~u, if g(~u) then n else n ∼ ~u , if g(~u ) then n else n’ CS

~u, n ∼ ~u , if g(~u ) then n else n’ R

Bounded Introduction
Still, the introduced conditional g(~u ) is bounded by the other side.
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Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

a, s ∼ b, t a, s ∼ b, t

if a then s else s ∼ if b then t else t
CS

s ∼ t R

Lemma
From a proof of a, s ∼ b, t we can extract a smaller proof of s ∼ t.

⇒ Proof Cut Elimination
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⇒ Proof Cut Elimination
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Decision Procedure

Proof Cut

a1, b2, b3, u4,w5, u6, v 7 ∼ d1, c2, d3, s4, t5, r6, p7

a1

b2

u4 b3

w5 u6

v 7

∼

d1

c2

s4 d3

t5 r6

p7

FA(3)

if a then u else v ∼ if c then s else t
R

where p ≡ if c then s else t

Key Lemma

If b, b ∼ b′, b′′ can be shown using only FA,Dup and CCA1 then b′ ≡ b′′.
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Decision Procedure
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FA(3)

if a then u else v ∼ if c then s else t
R

where p ≡ if c then s else t

Proof Cut Elimination

b2, b3 ∼ c2, d3 ⇒ c ≡ d .

a1, b2 ∼ d1, c2 ⇒ a ≡ b.
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Strategy: Theorem

Theorem
The following problem is decidable:
Input: A ground formula ~u ∼ ~v .
Question: Is there a derivation of ~u ∼ ~v using Ax?

Remark: Unitary Inference Rules

This holds when using CCA2 as unitary inference rules.

Sketch

Commute rule applications to order them as follows:

(2Box+R�) · CS� · FAif · FAf · Dup · U

We do proof cut eliminations to get a small proof.
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Conclusion

Contribution
Decidability of a set of inference rules for computational indistinguishability.

Limitations

The complexity is high: 3-nexptime.
The cryptographic primitives are fixed: only for CCA2.

Future Works
Study the scope of the result:

Support for a larger class of primitives and associated assumptions.
Undecidability results for extensions of the set of axioms.
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Thanks for your attention
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Commutations

(R | Dup) Commutation

This application
~u, s ∼ ~u ′, s ′

~u, t ∼ ~u ′, t ′
R

~u, t, t ∼ ~u ′, t ′, t ′
Dup

Can be rewritten into:

~u, s ∼ ~u ′, s ′

~u, s, s ∼ ~u ′, s ′, s ′
Dup

~u, t, t ∼ ~u ′, t ′, t ′
R
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Commutations

(R | FA) Commutation

This application:
~u1, ~v1 ∼ ~u ′1, ~v

′
1

~u, ~v ∼ ~u ′, ~v ′
R

~u, f (~v), ~u ′, f (~v ′)
FA

Can be rewritten into:

~u1, ~v1 ∼ ~u ′1, ~v
′
1

~u1, f (~v1) ∼ ~u ′1, f (~v
′
1)

FA

~u, f (~v), ~u ′, f (~v ′)
R
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