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Context



Context

Computer-Aided Cryptography (CAC)

Cryptographic proofs: formal proof of security.
Mechanization: high level of confidence.

Example:
∀A ∈ C . Pr (A breaks P) ≤ ϵ

Standard cryptography: C = PPTM
Polynomial-time
Probabilistic
(classical) Turing Machine

CAC Frameworks: CryptoVerif, Squirrel, EasyCrypt, SSProve
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Context: Quantum Computers

Quantum Computers
Working quantum computer (QC) may arrive
QC breaks many existing crypto systems
Discrete logarithm, Diffie-Hellman, . . .

Post-Quantum Cryptography (PQC)
Secure cryptography against quantum adversaries.

adversary: quantum
protocol: classical

PQC ̸= quantum cryptography (protocol: quantum).
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Context: Post-Quantum Cryptography

PQC effort in progress

PQ primitives: ML-KEM, ML-DSA
PQ protocols: Signal (PQXDH, SPQR), iMessage (PQ3)

CAC for PQC (work-in-progress)
Mechanized cryptographic proofs of PQ security.

∀A ∈ C . Pr (A breaks P) ≤ ϵ ( C = PQTM )

PQC Frameworks: CryptoVerif, Squirrel, EasyPQC, qrhl-tool
̸= tools ⇒ ̸= strengths
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Context: PQ-Squirrel

Limitations of PQ-Squirrel
Expressivity:
Capture PQTMs using black-box interactive machines
⇒ quantum values not represented (e.g. no QROM)
Unusual semantics:

Maintainability (implem)
Lacks latest improvements (theory, implem), e.g. crypto, smt

Goal: improved PQ version of Squirrel
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The Squirrel Prover: Theoretical Foundations

Theoretical foundations: the CCSA logic

1. Modeling
Language: pure λ-calculus
Execution model: encode (A|P) interactions

FO formulas for asymptotic cryptography
Reachability: [ϕP ]
Indistinguishability: u⃗P ∼c u⃗P′

2. Reasoning
Reasoning rules valid w.r.t. classical attackers.
Automation for cryptographic reasoning.
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The Squirrel Prover: Implementation

Proof assistant
Users prove goals using tactics.

Generic maths, e.g. apply, rewrite, smt.
Crypto, e.g. trans, deduce , crypto .
Automated simulator synthesis procedures.

Development done in Proof-General.
As in Rocq, EasyCrypt ...

Open-source: https://squirrel-prover.github.io/
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Context: Building a PQC Verification Framework

Roadmap to adapt a CAC framework to PQC.

Modeling: capture quantum computations and adversaries
Reasoning: capture PQ cryptographic arguments

Challenge (Reasoning)
Reductionistic arguments must be adapted:

Exclude insecure assumptions, e.g. DDH.
No-cloning theorem: ensure that simulators are PQTMs
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Contributions

New execution model for PQC in Squirrel

Faithful logic for PQC

Adapt Squirrel proof systems
Support latest features, e.g. smt, crypto

Implementation

Validation through case-studies
Hybrid KEM Combiners
Hybrid Key-Exchanges
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Execution Model

Goal: encode (A | P) interactions as Squirrel terms

Existing encoding for classical A unsuitable
Require state re-computations ⇒ violates no-cloning

We need a new execution model for PQC
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Execution Model: Squirrel Primer

Pure language
Functional encoding with explicit state :

A stateful ⇒ att stateless
(out← A(in); p) ⇒ let (out, st′ ) = att(in, st ) in p̃

Early-sampled randomness
Names = arrays of pre-sampled i.i.d. randomness

n : timestamp→{0, 1}η

x $← {0, 1}η;
y $← {0, 1}η; . . .

⇒
let x = n t in
let y = n (next t) in . . .
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Execution Model: QC Primer

Classical (probabilistic) machine Ac

Ac(in) =
∑

v∈{0,1}∗

pv · v
∑

v
pv = 1, ∀v . pv ∈ R+

Example: 1
2 · "pq-tls" + 1

2 · "svp"

Quantum machine Aq

Aq(in) =
∑

v∈{0,1}∗

qv · |v⟩
∑

v
|qv |2 = 1, ∀v . qv ∈ C

Example: 1√
2 · |"pq-tls"⟩ − 1√

2 · |"svp"⟩
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Execution Model: QC Primer

Aq(in) =
∑

v∈{0,1}∗

qv · |v⟩
∑

v
|qv |2 = 1

Measurement yield v with proba. |qv |2

Partial measurement (first N bits):

Aq(in) ↪−−−−−−−−→
partial measure

(N bits)

Distr
(
{0, 1}N ×H{0,1}∗

)
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Execution Model: Calling the Quantum Adversary

Aq(in) ↪−−−−−−−−→
partial measure

Distr
(
{0, 1}N ×H{0,1}∗

)

Modeling a PQTM Aq in Squirrel
Stateless attacker att with explicit state st
Pre-sampled randomness for measures:

qrnd : timestamp→ qrand

Encoding of Aq(in) for t-th call:

let (out, st′ ) = att( qrnd t , (in, st )) in . . .

13



Execution Model: Protocol Interaction (Simplified)

Chaining 2 calls

in ← Aq(out);
out ← P(in);
in ← Aq(out);
. . .

⇒

let (in, st) = att(qrnd t, (out, st)) in
let out = P̃(in) in
let (in, st) = att(qrnd (next t),(out, st)) in
. . .

Chaining many calls: use recursive definitions

in (next t) = att(qrnd t, (out t, st t))#1
st (next t) = att(qrnd t, (out t, st t))#2

out t = P̃(in t)
frame t = ⟨out init, . . . , out t⟩
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Execution Model: Conclusion

Key ideas
Explicit state (st t)
Measurement randomness pre-sampled in qrnd

qrnd ̸= program randomness
capture a physical phenomenon

Careful, terms ̸= QTM
Quantum values duplication(

att(n, 0), att(n, 0)
)

Weirder, quantum randomness re-use(
att(n, 0), att(n, 1)

)
Still, all terms has a well-defined semantics.
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A Faithful Logic for PQC

Cryptographic predicates

Reachability [ϕ], no changes

Pr(not JϕK) ≤ ϵnegl

Indistinguishability
Classical u ∼c v

∀A : PPTM . |Pr(A(JuK) = 1)− Pr(A(JvK) = 1)| ≤ ϵnegl

Quantum u ∼q v

∀A : PHTM . |Pr(A(JuK) = 1)− Pr(A(JvK) = 1)| ≤ ϵnegl
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A Faithful Logic for PQC

Hybrid machine A : PHTM

A(in) = fold(Ac , Aq , S$ , in)

Ac : PPTM , Aq : PQTM

S$ = {r1, . . . , rN} sampled in qrandN

Full computation in polynomial-time

Advantages:
Simplify soundness of reasoning rules
More expressive:
Ac can have classical oracles
Aq can have quantum oracles

17



A Faithful Logic for PQC

Early-sampled probabilities
Finite arrays of pre-sampled randomness ρ . Ensures that:

Pr
ρ

(JuK( ρ ) ∈ E) well-defined

Quantum measurement modeling
(qrnd t) as large as we want
But same size for all terms

⇒ not always enough randomness!
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A Faithful Logic for PQC

Solution
Approximation models M:

finite (qrnd t) Pr(JuKM ∈ E) ✓

Exact models Me:

infinite (qrnd t) Pr(JuKMe ∈ E) ?

Adequacy Theorem
For well-formed terms t:

Ddist
(
JuKM, JuKMe

)
≤ ϵnegl

(Very roughly, well-formed = PQTM simulatable)
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Adapting the Proof System

Goal: adapt Squirrel reasoning capabilities to PQC

Core logical rules: rewrite, apply, smt, . . .

Cryptographic rules:
Basic rules, e.g. trans, fresh, fa, . . .

Automated simplifications: deduce
Reductions to hardness assumptions: crypto
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Adapting the Proof System: Core Logical Rules

We use Squirrel existing semantics.
∼c and ∼q can absorb a negligible error.

⇒ inherit non-reductionist rules for free.

Examples:

smt
⊢smt ϕ

[ϕ]

rewritec

u′ ∼c v [u = u′]
u ∼c v

⇒

rewriteq

u′ ∼q v [u = u′]

u ∼q v
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Adapting the Proof System

Core logical rules: rewrite ✓, apply ✓, smt ✓, . . .

Cryptographic rules:
Basic rules, e.g. trans ✓, fresh ✓, fa , . . .

Automated simplifications: deduce
Reductions to hardness assumptions: crypto

Difficulty
Remaining rules are reduction-based.
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Reductionist Rules: Basic Rules

Classical function application: fac
u ∼c v f ∈ Lib

f (u) ∼c f (v)

Issue: quantum randomness r re-used

att(r, u) ∼q v
att(r, att(r, u) ) ∼q att(r, v )

✗

Quantum function application: faq
u ∼q v ϕr

fresh(u, v)
att(r, u) ∼q att(r, v)

ϕr
fresh(·) re-use existing machinery from fresh

If f classical, there is no problem
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Reductionist Rules: Bi-Deduction

Bi-deduction [CSF’22]

Automate simplifications of ∼ by deterministic simulation.

♯(u0, u1) ▷c ♯(v0, v1) : ∃f : PTM. f ( u0 ) = v0 ∧
f ( u1 ) = v1

Key rule:

deducec
u0 ∼c u1 ♯(u0, u1) ▷c ♯(v0, v1)

v0 ∼c v1

Example: drop v + compute ((λx . H(x)) u)

♯(u0, u1), ♯(v0, v1) , λx . H(x) ▷c ♯(u0, u1), H (♯(u0, u1))

⇒ u used twice above, quantum variant unsound
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Reductionist Rules: Bi-Deduction

Quantum bi-deduction
Generalization: deterministic ⇒ error-free.

♯(u0, u1) ▷q ♯(v0, v1) : ∃f : PQTME . f (u0) = v0 ∧
f (u1) = v1

Error-free quantum machines PQTME

Avoid difficulties with measurement randomness
i.e. f independent from (u, v)
For quantum values, only basic manipulations
Example: swapping (c, q) ▷ (q, c)
For more complex manipulations:
automatic deduce + manual fa for att(·)
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Reductionist Rules: Bi-Deduction

Proof system: ▷q ≈ ▷c + linear usage of quantum values

Example: transitivity

u ▷c w u, w ▷c v
u ▷c v

⇒
c , q1 ▷q w c , q2 , w ▷q v

c , q1 , q2 ▷q v

Classical value c can be re-used
Quantum value q1 , q2 used linearly
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Adapting the Proof System

Core logical rules: rewrite ✓, apply ✓, smt ✓, . . .

Cryptographic rules:
Basic rules, e.g. trans ✓, fresh ✓, fa ✓, . . .

Automated simplifications: deduce ✓

Reductions to hardness assumptions: crypto
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Reductionist Rules: Cryptographic Bi-Deduction

Cryptographic reduction to game G = ♯(G0,G1)

v0 ∼c v1 if ∃S : PPTM. S G0 = v0 ∧

S G1 = v1

Examples: IND-CCA, PRF, DDH

Classical cryptographic bi-deduction [CCS’24]

· · · ⊢ ♯(u0, u1) ▷ G
c ♯(v0, v1)

Complex semantics: S probabilistic + G stateful ( · · · )
Proof system for ▷G

c

Automatic proof-search, including induction
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Reductionist Rules: Cryptographic Bi-Deduction

Challenges
S probabilistic ⇒ quantum error-free insufficient
Generalize S to PQTM complex:
⇒ change semantics + rules + proof-search

Key Idea
Encapsulate quantum manipulation in the game
Safe quantum API Q : force linear usage of quantum state

∃A : PPTM . A Q ·G = u ⇒ ∃B : PQTM . BG = u

BG = (A Q )G = A Q ·G
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Reductionist Rules: Cryptographic Bi-Deduction

Safe Quantum API
game Q = {

(∗ quantum state ∗)
var state : Hmessage = ...;

(∗ classical state, next protocol input ∗)
var input : message = ...;

(∗ update state using att ∗)
oracle step (t, out) = {

r $← qrand;
(input,state) = att(r, (state,out));

}

(∗ retrieve last attacker input ∗)
oracle get_input () = { return input; }

}
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Reductionist Rules: Cryptographic Bi-Deduction

Semantics of ▷G
c unchanged

(except minor adaptation to have G quantum)

Proof system unchanged

New induction rule specialized for the quantum execution model

x ⊢ in x ▷
G
c out x

t ▷ G · Q
c frame t

No manipulation of state by S.

Implementation: re-use most machinery
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Case Studies

Case studies in our post-quantum Squirrel
Four KEM combiners (CPA/CCA):
XOR, XOR-then-MAC, Dual-PRF, Nested Dual-PRF
Two hybrid key-exchange protocols (strong secrecy):
BCGNP [S&P’22], CSigma

Case studies use Squirrel latest features: crypto, smt

Proof strategy
First proof in classical setting/execution model (≈ pers. months)
Then, adapted to post-quantum (≈ pers. days)
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Conclusion

Execution model for PQC

A faithful logic for PQC
Adequacy result

Adapt Squirrel proof systems
Latest features, e.g. smt, crypto

Implementation + validation
Case-studies: Hybrid KEM Combiners + KE

Thank you for your attention
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Execution Model (Simplified)
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