Robust Logical Foundations for Mechanizing

Post-Quantum Cryptography in Squirrel

SVP/PQ-TLS Workshop

David Baelde
Antoine Dallon
Stéphanie Delaune
Charlie Jacomme
Adrien Koutsos

3rd of February 2026,

Univ Rennes, IRISA, CNRS
AMIAD
Univ Rennes, IRISA, CNRS

Inria Nancy
Inria Paris

FRANCE
Rennes

Z@3W
-

Context

Computer-Aided Cryptography (CAC)

m Cryptographic proofs: formal proof of security.

m Mechanization: high level of confidence.

Example:
VAeC. Pr(Abreaks P) <e

Standard cryptography: C = PPTM
m Polynomial-time
m Probabilistic

m (classical) Turing Machine

CAC Frameworks: CryptoVerif, Squirrel, EasyCrypt, SSProve

Context: Quantum Computers

Quantum Computers
m Working quantum computer (QC) may arrive

m QC breaks many existing crypto systems
Discrete logarithm, Diffie-Hellman, ...

Post-Quantum Cryptography (PQC)
Secure cryptography against quantum adversaries.

m adversary: quantum

m protocol: classical

PQC # quantum cryptography (protocol: quantum).

Context: Post-Quantum Cryptography

PQC effort in progress

m PQ primitives: ML-KEM, ML-DSA
m PQ protocols: Signal (PQXDH, SPQR), iMessage (PQ3)

CAC for PQC (work-in-progress)
Mechanized cryptographic proofs of PQ security.
VAe€C. Pr(Abreaks P) <e (C=PQTM)

PQC Frameworks: CryptoVerif, Squirrel, EasyPQC, grhl-tool
tools = # strengths

Context: PQ-Squirrel

Limitations of PQ-Squirrel

m Expressivity:
Capture PQTMs using black-box interactive machines
= quantum values not represented (e.g. no QROM)

m Unusual semantics:

m Maintainability (implem)
m Lacks latest improvements (theory, implem), e.g. crypto, smt

Goal: improved PQ version of Squirrel

The Squirrel Prover: Theoretical Foundations

Theoretical foundations: the CCSA logic

1. Modeling

m Language: pure A-calculus
Execution model: encode (A|P) interactions

m FO formulas for asymptotic cryptography
m Reachability: [¢p]

m Indistinguishability: ip ~. Up/

2. Reasoning
m Reasoning rules valid w.r.t. classical attackers.

m Automation for cryptographic reasoning.

The Squirrel Prover: Implementation

Proof assistant

Users prove goals using tactics.
m Generic maths, e.g. apply, rewrite, smt.

m Crypto, e.g. trans, deduce, crypto.
Automated simulator synthesis procedures.

Development done in Proof-General.

As in Rocq, EasyCrypt ...

Open-source: https://squirrel-prover.github.io/

https://squirrel-prover.github.io/

Context: Building a PQC Verification Framework

Roadmap to adapt a CAC framework to PQC.

m Modeling: capture quantum computations and adversaries

m Reasoning: capture PQ cryptographic arguments

Challenge (Reasoning)
Reductionistic arguments must be adapted:

m Exclude insecure assumptions, e.g. DDH.

m No-cloning theorem: ensure that simulators are PQTMs

Contributions

m New execution model for PQC in Squirrel

Faithful logic for PQC

Adapt Squirrel proof systems

m Support latest features, e.g. smt, crypto

Implementation

m Validation through case-studies

m Hybrid KEM Combiners
m Hybrid Key-Exchanges

An PQ Execution Model

Execution Model

Goal: encode (A | P) interactions as Squirrel terms

m Existing encoding for classical A unsuitable
Require state re-computations = violates no-cloning

m We need a new execution model for PQC

Execution Model: Squirrel Primer

Pure language

Functional encoding with explicit state:

A stateful = att stateless
(out < A(in); p) = let (out, st’) = att(in, st) in p

Early-sampled randomness
Names = arrays of pre-sampled i.i.d. randomness

n : timestamp — {0, 1}"
x & {0,1}"; let x=nt in
=

y & {0,1}7;... let y =n (next t)in ...

10

Execution Model: QC Primer

Classical (probabilistic) machine A,

Ac(in) = Z py -V vazl, Vv.p, € RT

ve{0,1}*

Example: % -"pg-tls" + % - "svp"

Quantum machine A,

Aq(in): Z qu - |v) Z|qv|2:17 Vv.q, €C
ve{0,1}* v

Example: % - ["pg-tls") — \% - ["svp")

11

Execution Model: QC Primer

Ag(in)= > qv-|v) > lau)? =1

ve{0,1}*
Measurement yield v with proba. |g, |2

Partial measurement (first N bits):

Aq(in) ————— Distr ({0, 1}" x Hg.1}+)
partial measure ’
(N bits)

12

Execution Model: Calling the Quantum Adversary

Aq(in) ————— Distr ({0, 1}" x Hg.13+)

partial measure

Modeling a PQTM A4 in Squirrel
m Stateless attacker att with explicit state st

m Pre-sampled randomness for measures:

grnd : timestamp — qrand

Encoding of Aq(in) for t-th call:

let (out, st’) = att(qgrnd t,(in, st)) in ...

13

Execution Model: Protocol Interaction (Simplified)

Chaining 2 calls

in <« Ag(out); let (in,st) = att(qrnd t, (out,st)) in

out < P(in); let out = P(in) in
=
in <« Ag(out); let (in,st) = att(qrnd (next t),(out,st)) in

Chaining many calls: use recursive definitions
in (next t) = att(qrnd t, (out t,st t))#1
st (next t) = att(qrnd t, (out t,st t))#2

outt = P(in t)

frame t = (out init,...,out t)

14

Execution Model: Conclusion

Key ideas

m Explicit state (st t)

m Measurement randomness pre-sampled in qrnd
m qrnd # program randomness
m capture a physical phenomenon

Careful, terms £ QTM

m Quantum values duplication
(att(n,0), att(n,0))
m Weirder, quantum randomness re-use
(att(n,0), att(n, 1))

Still, all terms has a well-defined semantics.

5

A Faithful Logic for QC

A Faithful Logic for PQC

Cryptographic predicates

m Reachability [¢], no changes

Pr(not [¢]) < €negl

m Indistinguishability
Classical v ~. v

VA: PPTM. [Pr(A([u]) =1) — Pr(A([v]) = 1)| < €negl
Quantum v ~4 v

YA: PHTM. |Pr(A([u]) = 1) — Pr(A([v]) = 1)| < €neg

16

A Faithful Logic for PQC

Hybrid machine A : PHTM
A(in) = fold(Ac, Aq, S ,in)

m A.:PPTM, A, :PQTM
m Sg={r,...,ry} sampled in qrand"

m Full computation in polynomial-time

Advantages:

m Simplify soundness of reasoning rules
m More expressive:

m A, can have classical oracles
m A, can have quantum oracles

17

A Faithful Logic for PQC

Early-sampled probabilities
Finite arrays of pre-sampled randomness p. Ensures that:

Ppr([[u]](p) € E) well-defined

Quantum measurement modeling
m (qrnd t) as large as we want

m But same size for all terms
= not always enough randomness!

18

A Faithful Logic for PQC

Solution

m Approximation models M:

finite (qrnd t) Pr([uly € E) v

m Exact models M.:

infinite (qrnd t) Pr([uly, €E) ?

Adequacy Theorem
For well-formed terms t:

Daist ([uln> [Ulm.) < €negl

(Very roughly, well-formed = PQTM simulatable)
19

Adapting Squirrel Proof System

Adapting the Proof System

Goal: adapt Squirrel reasoning capabilities to PQC

m Core logical rules: rewrite, apply, smt, ...

m Cryptographic rules:

m Basic rules, e.g. trans, fresh, fa, ...
m Automated simplifications: deduce
m Reductions to hardness assumptions: crypto

20

Adapting the Proof System: Core Logical Rules

m We use Squirrel existing semantics.
m ~c and ~q can absorb a negligible error.

= inherit non-reductionist rules for free.

Examples:
smt rewritec rewriteq
Fsme & v ey [u=4] N U ~qvo [u=1]
[¢] u ~cVv u~qVv

21

Adapting the Proof System

m Core logical rules: rewrite v/, apply v/, smt v/, ...

m Cryptographic rules:

m Basic rules, e.g. trans v, fresh /, fa, ...
m Automated simplifications: deduce
m Reductions to hardness assumptions: crypto

Difficulty
Remaining rules are reduction-based.

22

Reductionist Rules: Basic Rules

U~V f € Lib
f(u) ~c f(v)

Classical function application: (e

Issue: quantum randomness r re-used

att(r,u) ~q v

X
att(r, att(r, u)) ~q att(r, v)

UnqVv ¢Fresh(uﬂ V)

att(r, u) ~q att(r, v)

Quantum function application: faq

B ¢f., () re-use existing machinery from fresh

m If f classical, there is no problem

23

Reductionist Rules: Bi-Deduction

Bi-deduction [CSF'22]
Automate simplifications of ~ by deterministic simulation.

f(uo, u1) >c #(vo,vi) = IF:PTM. f(uw)= w A
f(up) =V
Key rule:
Uup ~c U1 ﬁ(UOaul) >c ﬁ(VOvvl)
deduce,
Vo ~c V1

Example: drop v + compute ((Ax. H(x)) u)
#(uo, u1), #(vo, vi), Ax. H(x) e #(uo, tn), H (#(uo, u1))

= u used twice above, quantum variant unsound

24

Reductionist Rules: Bi-Deduction

Quantum bi-deduction
Generalization: deterministic = error-free.
f(uo, u1) >q B(vo,va) : 3IF: PQTMg. f(ug) =w A
(i) =w1

Error-free quantum machines PQTMg

m Avoid difficulties with measurement randomness
i.e. f independent from (u, v)

m For quantum values, only basic manipulations
Example: swapping (c, q) > (q, ¢)

m For more complex manipulations:
automatic deduce + manual fa for att(-)

25

Reductionist Rules: Bi-Deduction

Proof system: >4 ~ > + linear usage of quantum values

Example: transitivity

ub.w u,wp>cv C,q D>qw C,q,WDqV

ubcv C,q1, 92 I>q"

m Classical value ¢ can be re-used

m Quantum value qi1, q» used linearly

26

Adapting the Proof System

m Core logical rules: rewrite v/, apply v/, smt v/, ...

m Cryptographic rules:

m Basic rules, e.g. trans v, fresh v/, fa /, ...
m Automated simplifications: deduce v
m Reductions to hardness assumptions: crypto

27

Reductionist Rules: Cryptographic Bi-Deduction

Cryptographic reduction to game G = #(Go, G1)
Vreve if 3S:PPTM.S% =y A
591 =V

Examples: IND-CCA, PRF, DDH

Classical cryptographic bi-deduction [CCS'24]

CF H(uo, 1) & 4(vo, v1)

m Complex semantics: S probabilistic + G stateful (---)
m Proof system for >¢

m Automatic proof-search, including induction

28

Reductionist Rules: Cryptographic Bi-Deduction

Challenges
m S probabilistic = quantum error-free insufficient

m Generalize S to PQTM complex:
= change semantics + rules + proof-search

Key Idea
m Encapsulate quantum manipulation in the game

m Safe quantum APl Q: force linear usage of quantum state

JA:PPTM.ACY9 =y = JB:PQTM.BY = u

BQ:(AQ)Q:AQ-(}

29

Reductionist Rules: Cryptographic Bi-Deduction

Safe Quantum API

game Q = {
(* quantum state)
var state : Hmessage = --.;

(* classical state, next protocol input *)
var input : message = ...;

(* update state using att *)
oracle step (t, out) = {
r & grand;
(input,state) = att(r, (state,out));

}

(* retrieve last attacker input *)
oracle get_input () = { return input; }

}

30

Reductionist Rules: Cryptographic Bi-Deduction

m Semantics of >Y unchanged
(except minor adaptation to have G quantum)

m Proof system unchanged
m New induction rule specialized for the quantum execution model

x}—inxbcg out x

th'Q frame t

No manipulation of state by S.

m Implementation: re-use most machinery

31

Case-Studies

Case studies in our post-quantum Squirrel

m Four KEM combiners (CPA/CCA):
XOR, XOR-then-MAC, Dual-PRF, Nested Dual-PRF

m Two hybrid key-exchange protocols (strong secrecy):
BCGNP [S&P'22], Csigma

m Case studies use Squirrel latest features: crypto, smt
Proof strategy
m First proof in classical setting/execution model (= pers. months)

m Then, adapted to post-quantum (= pers. days)

32

Conclusion

Conclusion

m Execution model for PQC

m A faithful logic for PQC
Adequacy result

m Adapt Squirrel proof systems
Latest features, e.g. smt, crypto

m Implementation + validation
Case-studies: Hybrid KEM Combiners + KE

Thank you for your attention

33

Execution Model (Simplified)

let rec frame (t : timestamp) =
(state t, transcript t)

and transcript (t : timestamp) =
(transcript (pred t), input t, output t)

and state (t : timestamp) =
att(qrnd (pred t), frame (pred t))#2

and input (t : timestamp) =
att(qrnd (pred t), frame (pred t))#1

and output (t : timestamp) = ... (x protocol specific, uses input t =)

	Context
	The Squirrel prover
	Building a PQC Verification Framework

	An PQ Execution Model
	A Faithful Logic for QC
	Adapting Squirrel Proof System
	Core Logical Rules
	Basic Rules
	Simple Simulator Synthesis
	Cryptographic Simulator Synthesis

	Case-Studies
	Conclusion
	Appendix

