
Robust Logical Foundations for Mechanizing
Post-Quantum Cryptography in Squirrel
SVP/PQ-TLS Workshop

David Baelde Univ Rennes, IRISA, CNRS
Antoine Dallon AMIAD
Stéphanie Delaune Univ Rennes, IRISA, CNRS
Charlie Jacomme Inria Nancy
Adrien Koutsos Inria Paris

3rd of February 2026, Rennes



Context



Context

Computer-Aided Cryptography (CAC)

Cryptographic proofs: formal proof of security.
Mechanization: high level of confidence.

Example:
∀A ∈ C . Pr (A breaks P) ≤ ϵ

Standard cryptography: C = PPTM
Polynomial-time
Probabilistic
(classical) Turing Machine

CAC Frameworks: CryptoVerif, Squirrel, EasyCrypt, SSProve

1



Context: Quantum Computers

Quantum Computers
Working quantum computer (QC) may arrive
QC breaks many existing crypto systems
Discrete logarithm, Diffie-Hellman, . . .

Post-Quantum Cryptography (PQC)
Secure cryptography against quantum adversaries.

adversary: quantum
protocol: classical

PQC ̸= quantum cryptography (protocol: quantum).

2



Context: Post-Quantum Cryptography

PQC effort in progress

PQ primitives: ML-KEM, ML-DSA
PQ protocols: Signal (PQXDH, SPQR), iMessage (PQ3)

CAC for PQC (work-in-progress)
Mechanized cryptographic proofs of PQ security.

∀A ∈ C . Pr (A breaks P) ≤ ϵ ( C = PQTM )

PQC Frameworks: CryptoVerif, Squirrel, EasyPQC, qrhl-tool
̸= tools ⇒ ̸= strengths

3



Context: PQ-Squirrel

Limitations of PQ-Squirrel
Expressivity:
Capture PQTMs using black-box interactive machines
⇒ quantum values not represented (e.g. no QROM)
Unusual semantics:

Maintainability (implem)
Lacks latest improvements (theory, implem), e.g. crypto, smt

Goal: improved PQ version of Squirrel

4



The Squirrel Prover: Theoretical Foundations

Theoretical foundations: the CCSA logic

1. Modeling
Language: pure λ-calculus
Execution model: encode (A|P) interactions

FO formulas for asymptotic cryptography
Reachability: [ϕP ]
Indistinguishability: u⃗P ∼c u⃗P′

2. Reasoning
Reasoning rules valid w.r.t. classical attackers.
Automation for cryptographic reasoning.

5



The Squirrel Prover: Implementation

Proof assistant
Users prove goals using tactics.

Generic maths, e.g. apply, rewrite, smt.
Crypto, e.g. trans, deduce , crypto .
Automated simulator synthesis procedures.

Development done in Proof-General.
As in Rocq, EasyCrypt ...

Open-source: https://squirrel-prover.github.io/

6

https://squirrel-prover.github.io/


Context: Building a PQC Verification Framework

Roadmap to adapt a CAC framework to PQC.

Modeling: capture quantum computations and adversaries
Reasoning: capture PQ cryptographic arguments

Challenge (Reasoning)
Reductionistic arguments must be adapted:

Exclude insecure assumptions, e.g. DDH.
No-cloning theorem: ensure that simulators are PQTMs

7



Contributions

New execution model for PQC in Squirrel

Faithful logic for PQC

Adapt Squirrel proof systems
Support latest features, e.g. smt, crypto

Implementation

Validation through case-studies
Hybrid KEM Combiners
Hybrid Key-Exchanges

8



An PQ Execution Model



Execution Model

Goal: encode (A | P) interactions as Squirrel terms

Existing encoding for classical A unsuitable
Require state re-computations ⇒ violates no-cloning

We need a new execution model for PQC

9



Execution Model: Squirrel Primer

Pure language
Functional encoding with explicit state :

A stateful ⇒ att stateless
(out← A(in); p) ⇒ let (out, st′ ) = att(in, st ) in p̃

Early-sampled randomness
Names = arrays of pre-sampled i.i.d. randomness

n : timestamp→{0, 1}η

x $← {0, 1}η;
y $← {0, 1}η; . . .

⇒
let x = n t in
let y = n (next t) in . . .

10



Execution Model: QC Primer

Classical (probabilistic) machine Ac

Ac(in) =
∑

v∈{0,1}∗

pv · v
∑

v
pv = 1, ∀v . pv ∈ R+

Example: 1
2 · "pq-tls" + 1

2 · "svp"

Quantum machine Aq

Aq(in) =
∑

v∈{0,1}∗

qv · |v⟩
∑

v
|qv |2 = 1, ∀v . qv ∈ C

Example: 1√
2 · |"pq-tls"⟩ − 1√

2 · |"svp"⟩

11



Execution Model: QC Primer

Aq(in) =
∑

v∈{0,1}∗

qv · |v⟩
∑

v
|qv |2 = 1

Measurement yield v with proba. |qv |2

Partial measurement (first N bits):

Aq(in) ↪−−−−−−−−→
partial measure

(N bits)

Distr
(
{0, 1}N ×H{0,1}∗

)

12



Execution Model: Calling the Quantum Adversary

Aq(in) ↪−−−−−−−−→
partial measure

Distr
(
{0, 1}N ×H{0,1}∗

)

Modeling a PQTM Aq in Squirrel
Stateless attacker att with explicit state st
Pre-sampled randomness for measures:

qrnd : timestamp→ qrand

Encoding of Aq(in) for t-th call:

let (out, st′ ) = att( qrnd t , (in, st )) in . . .

13



Execution Model: Protocol Interaction (Simplified)

Chaining 2 calls

in ← Aq(out);
out ← P(in);
in ← Aq(out);
. . .

⇒

let (in, st) = att(qrnd t, (out, st)) in
let out = P̃(in) in
let (in, st) = att(qrnd (next t),(out, st)) in
. . .

Chaining many calls: use recursive definitions

in (next t) = att(qrnd t, (out t, st t))#1
st (next t) = att(qrnd t, (out t, st t))#2

out t = P̃(in t)
frame t = ⟨out init, . . . , out t⟩

14



Execution Model: Conclusion

Key ideas
Explicit state (st t)
Measurement randomness pre-sampled in qrnd

qrnd ̸= program randomness
capture a physical phenomenon

Careful, terms ̸= QTM
Quantum values duplication(

att(n, 0), att(n, 0)
)

Weirder, quantum randomness re-use(
att(n, 0), att(n, 1)

)
Still, all terms has a well-defined semantics.

15



A Faithful Logic for QC



A Faithful Logic for PQC

Cryptographic predicates

Reachability [ϕ], no changes

Pr(not JϕK) ≤ ϵnegl

Indistinguishability
Classical u ∼c v

∀A : PPTM . |Pr(A(JuK) = 1)− Pr(A(JvK) = 1)| ≤ ϵnegl

Quantum u ∼q v

∀A : PHTM . |Pr(A(JuK) = 1)− Pr(A(JvK) = 1)| ≤ ϵnegl

16



A Faithful Logic for PQC

Hybrid machine A : PHTM

A(in) = fold(Ac , Aq , S$ , in)

Ac : PPTM , Aq : PQTM

S$ = {r1, . . . , rN} sampled in qrandN

Full computation in polynomial-time

Advantages:
Simplify soundness of reasoning rules
More expressive:
Ac can have classical oracles
Aq can have quantum oracles

17



A Faithful Logic for PQC

Early-sampled probabilities
Finite arrays of pre-sampled randomness ρ . Ensures that:

Pr
ρ

(JuK( ρ ) ∈ E) well-defined

Quantum measurement modeling
(qrnd t) as large as we want
But same size for all terms

⇒ not always enough randomness!

18



A Faithful Logic for PQC

Solution
Approximation models M:

finite (qrnd t) Pr(JuKM ∈ E) ✓

Exact models Me:

infinite (qrnd t) Pr(JuKMe ∈ E) ?

Adequacy Theorem
For well-formed terms t:

Ddist
(
JuKM, JuKMe

)
≤ ϵnegl

(Very roughly, well-formed = PQTM simulatable)
19



Adapting Squirrel Proof System



Adapting the Proof System

Goal: adapt Squirrel reasoning capabilities to PQC

Core logical rules: rewrite, apply, smt, . . .

Cryptographic rules:
Basic rules, e.g. trans, fresh, fa, . . .

Automated simplifications: deduce
Reductions to hardness assumptions: crypto

20



Adapting the Proof System: Core Logical Rules

We use Squirrel existing semantics.
∼c and ∼q can absorb a negligible error.

⇒ inherit non-reductionist rules for free.

Examples:

smt
⊢smt ϕ

[ϕ]

rewritec

u′ ∼c v [u = u′]
u ∼c v

⇒

rewriteq

u′ ∼q v [u = u′]

u ∼q v

21



Adapting the Proof System

Core logical rules: rewrite ✓, apply ✓, smt ✓, . . .

Cryptographic rules:
Basic rules, e.g. trans ✓, fresh ✓, fa , . . .

Automated simplifications: deduce
Reductions to hardness assumptions: crypto

Difficulty
Remaining rules are reduction-based.

22



Reductionist Rules: Basic Rules

Classical function application: fac
u ∼c v f ∈ Lib

f (u) ∼c f (v)

Issue: quantum randomness r re-used

att(r, u) ∼q v
att(r, att(r, u) ) ∼q att(r, v )

✗

Quantum function application: faq
u ∼q v ϕr

fresh(u, v)
att(r, u) ∼q att(r, v)

ϕr
fresh(·) re-use existing machinery from fresh

If f classical, there is no problem

23



Reductionist Rules: Bi-Deduction

Bi-deduction [CSF’22]

Automate simplifications of ∼ by deterministic simulation.

♯(u0, u1) ▷c ♯(v0, v1) : ∃f : PTM. f ( u0 ) = v0 ∧
f ( u1 ) = v1

Key rule:

deducec
u0 ∼c u1 ♯(u0, u1) ▷c ♯(v0, v1)

v0 ∼c v1

Example: drop v + compute ((λx . H(x)) u)

♯(u0, u1), ♯(v0, v1) , λx . H(x) ▷c ♯(u0, u1), H (♯(u0, u1))

⇒ u used twice above, quantum variant unsound

24



Reductionist Rules: Bi-Deduction

Quantum bi-deduction
Generalization: deterministic ⇒ error-free.

♯(u0, u1) ▷q ♯(v0, v1) : ∃f : PQTME . f (u0) = v0 ∧
f (u1) = v1

Error-free quantum machines PQTME

Avoid difficulties with measurement randomness
i.e. f independent from (u, v)
For quantum values, only basic manipulations
Example: swapping (c, q) ▷ (q, c)
For more complex manipulations:
automatic deduce + manual fa for att(·)

25



Reductionist Rules: Bi-Deduction

Proof system: ▷q ≈ ▷c + linear usage of quantum values

Example: transitivity

u ▷c w u, w ▷c v
u ▷c v

⇒
c , q1 ▷q w c , q2 , w ▷q v

c , q1 , q2 ▷q v

Classical value c can be re-used
Quantum value q1 , q2 used linearly

26



Adapting the Proof System

Core logical rules: rewrite ✓, apply ✓, smt ✓, . . .

Cryptographic rules:
Basic rules, e.g. trans ✓, fresh ✓, fa ✓, . . .

Automated simplifications: deduce ✓

Reductions to hardness assumptions: crypto

27



Reductionist Rules: Cryptographic Bi-Deduction

Cryptographic reduction to game G = ♯(G0,G1)

v0 ∼c v1 if ∃S : PPTM. S G0 = v0 ∧

S G1 = v1

Examples: IND-CCA, PRF, DDH

Classical cryptographic bi-deduction [CCS’24]

· · · ⊢ ♯(u0, u1) ▷ G
c ♯(v0, v1)

Complex semantics: S probabilistic + G stateful ( · · · )
Proof system for ▷G

c

Automatic proof-search, including induction

28



Reductionist Rules: Cryptographic Bi-Deduction

Challenges
S probabilistic ⇒ quantum error-free insufficient
Generalize S to PQTM complex:
⇒ change semantics + rules + proof-search

Key Idea
Encapsulate quantum manipulation in the game
Safe quantum API Q : force linear usage of quantum state

∃A : PPTM . A Q ·G = u ⇒ ∃B : PQTM . BG = u

BG = (A Q )G = A Q ·G

29



Reductionist Rules: Cryptographic Bi-Deduction

Safe Quantum API
game Q = {

(∗ quantum state ∗)
var state : Hmessage = ...;

(∗ classical state, next protocol input ∗)
var input : message = ...;

(∗ update state using att ∗)
oracle step (t, out) = {

r $← qrand;
(input,state) = att(r, (state,out));

}

(∗ retrieve last attacker input ∗)
oracle get_input () = { return input; }

}

30



Reductionist Rules: Cryptographic Bi-Deduction

Semantics of ▷G
c unchanged

(except minor adaptation to have G quantum)

Proof system unchanged

New induction rule specialized for the quantum execution model

x ⊢ in x ▷
G
c out x

t ▷ G · Q
c frame t

No manipulation of state by S.

Implementation: re-use most machinery

31



Case-Studies



Case Studies

Case studies in our post-quantum Squirrel
Four KEM combiners (CPA/CCA):
XOR, XOR-then-MAC, Dual-PRF, Nested Dual-PRF
Two hybrid key-exchange protocols (strong secrecy):
BCGNP [S&P’22], CSigma

Case studies use Squirrel latest features: crypto, smt

Proof strategy
First proof in classical setting/execution model (≈ pers. months)
Then, adapted to post-quantum (≈ pers. days)

32



Conclusion



Conclusion

Execution model for PQC

A faithful logic for PQC
Adequacy result

Adapt Squirrel proof systems
Latest features, e.g. smt, crypto

Implementation + validation
Case-studies: Hybrid KEM Combiners + KE

Thank you for your attention

33





Execution Model (Simplified)


	Context
	The Squirrel prover
	Building a PQC Verification Framework

	An PQ Execution Model
	A Faithful Logic for QC
	Adapting Squirrel Proof System
	Core Logical Rules
	Basic Rules
	Simple Simulator Synthesis
	Cryptographic Simulator Synthesis

	Case-Studies
	Conclusion
	Appendix

