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Context



Computer-Aided Cryptography (CAC)

m Cryptographic proofs: formal proof of security.

m Mechanization: high level of confidence.

Example:
VAeC. Pr(Abreaks P) <e

Standard cryptography: C = PPTM
m Polynomial-time
m Probabilistic

m (classical) Turing Machine

CAC Frameworks: CryptoVerif, Squirrel, EasyCrypt, SSProve



Context: Quantum Computers

Quantum Computers
m Working quantum computer (QC) may arrive

m QC breaks many existing crypto systems
Discrete logarithm, Diffie-Hellman, ...

Post-Quantum Cryptography (PQC)
Secure cryptography against quantum adversaries.

m adversary: quantum

m protocol: classical

PQC # quantum cryptography (protocol: quantum).



Context: Post-Quantum Cryptography

PQC effort in progress

m PQ primitives: ML-KEM, ML-DSA
m PQ protocols: Signal (PQXDH, SPQR), iMessage (PQ3)

CAC for PQC (work-in-progress)
Mechanized cryptographic proofs of PQ security.
VAe€C. Pr(Abreaks P) <e (C=PQTM)

PQC Frameworks: CryptoVerif, Squirrel, EasyPQC, grhl-tool
# tools = # strengths



Context: PQ-Squirrel

Limitations of PQ-Squirrel

m Expressivity:
Capture PQTMs using black-box interactive machines
= quantum values not represented (e.g. no QROM)

m Unusual semantics:

m Maintainability (implem)
m Lacks latest improvements (theory, implem), e.g. crypto, smt

Goal: improved PQ version of Squirrel



The Squirrel Prover: Theoretical Foundations

Theoretical foundations: the CCSA logic

1. Modeling

m Language: pure A-calculus
Execution model: encode (A|P) interactions

m FO formulas for asymptotic cryptography
m Reachability: [¢p]

m Indistinguishability: ip ~. Up/

2. Reasoning
m Reasoning rules valid w.r.t. classical attackers.

m Automation for cryptographic reasoning.



The Squirrel Prover: Implementation

Proof assistant

Users prove goals using tactics.
m Generic maths, e.g. apply, rewrite, smt.

m Crypto, e.g. trans, deduce, crypto.
Automated simulator synthesis procedures.

Development done in Proof-General.

As in Rocq, EasyCrypt ...

Open-source: https://squirrel-prover.github.io/


https://squirrel-prover.github.io/

Context: Building a PQC Verification Framework

Roadmap to adapt a CAC framework to PQC.

m Modeling: capture quantum computations and adversaries

m Reasoning: capture PQ cryptographic arguments

Challenge (Reasoning)
Reductionistic arguments must be adapted:

m Exclude insecure assumptions, e.g. DDH.

m No-cloning theorem: ensure that simulators are PQTMs



Contributions

m New execution model for PQC in Squirrel

Faithful logic for PQC

Adapt Squirrel proof systems

m Support latest features, e.g. smt, crypto

Implementation

m Validation through case-studies

m Hybrid KEM Combiners
m Hybrid Key-Exchanges



An PQ Execution Model



Execution Model

Goal: encode (A | P) interactions as Squirrel terms

m Existing encoding for classical A unsuitable
Require state re-computations = violates no-cloning

m We need a new execution model for PQC



Execution Model: Squirrel Primer

Pure language

Functional encoding with explicit state:

A stateful = att stateless
(out < A(in); p) = let (out, st’) = att(in, st) in p

Early-sampled randomness
Names = arrays of pre-sampled i.i.d. randomness

n : timestamp — {0, 1}"
x & {0,1}"; let x=nt in
=

y & {0,1}7;... let y =n (next t)in ...
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Execution Model: QC Primer

Classical (probabilistic) machine A,

Ac(in) = Z py -V vazl, Vv.p, € RT

ve{0,1}*

Example: % -"pg-tls" + % - "svp"

Quantum machine A,

Aq(in): Z qu - |v) Z|qv|2:17 Vv.q, €C
ve{0,1}* v

Example: % - ["pg-tls") — \% - ["svp")
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Execution Model: QC Primer

Ag(in)= > qv-|v) > lau)? =1

ve{0,1}*
Measurement yield v with proba. |g, |2

Partial measurement (first N bits):

Aq(in) ————— Distr ({0, 1}" x Hg.1}+)
partial measure ’
(N bits)
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Execution Model: Calling the Quantum Adversary

Aq(in) ————— Distr ({0, 1}" x Hg.13+)

partial measure

Modeling a PQTM A4 in Squirrel
m Stateless attacker att with explicit state st

m Pre-sampled randomness for measures:

grnd : timestamp — qrand

Encoding of Aq(in) for t-th call:

let (out, st’) = att(qgrnd t,(in, st)) in ...
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Execution Model: Protocol Interaction (Simplified)

Chaining 2 calls

in <« Ag(out); let (in,st) = att(qrnd t, (out,st)) in

out < P(in); let out = P(in) in
=
in <« Ag(out); let (in,st) = att(qrnd (next t),(out,st)) in

Chaining many calls: use recursive definitions
in (next t) = att(qrnd t, (out t,st t))#1
st (next t) = att(qrnd t, (out t,st t))#2

outt = P(in t)

frame t = (out init,...,out t)
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Execution Model: Conclusion

Key ideas

m Explicit state (st t)

m Measurement randomness pre-sampled in qrnd
m qrnd # program randomness
m capture a physical phenomenon

Careful, terms £ QTM

m Quantum values duplication
(att(n,0), att(n,0))
m Weirder, quantum randomness re-use
(att(n,0), att(n, 1))

Still, all terms has a well-defined semantics.
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A Faithful Logic for QC




A Faithful Logic for PQC

Cryptographic predicates

m Reachability [¢], no changes

Pr(not [¢]) < €negl

m Indistinguishability
Classical v ~. v

VA: PPTM. [Pr(A([u]) =1) — Pr(A([v]) = 1)| < €negl
Quantum v ~4 v

YA: PHTM. |Pr(A([u]) = 1) — Pr(A([v]) = 1)| < €neg
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A Faithful Logic for PQC

Hybrid machine A : PHTM
A(in) = fold( Ac, Aq, S ,in)

m A.:PPTM, A, :PQTM
m Sg={r,...,ry} sampled in qrand"

m Full computation in polynomial-time

Advantages:

m Simplify soundness of reasoning rules
m More expressive:

m A, can have classical oracles
m A, can have quantum oracles
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A Faithful Logic for PQC

Early-sampled probabilities
Finite arrays of pre-sampled randomness p. Ensures that:

Ppr([[u]](p) € E) well-defined

Quantum measurement modeling
m (qrnd t) as large as we want

m But same size for all terms
= not always enough randomness!
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A Faithful Logic for PQC

Solution

m Approximation models M:

finite (qrnd t) Pr([uly € E) v

m Exact models M.:

infinite (qrnd t) Pr([uly, €E) ?

Adequacy Theorem
For well-formed terms t:

Daist ([uln> [Ulm.) < €negl

(Very roughly, well-formed = PQTM simulatable)
19



Adapting Squirrel Proof System




Adapting the Proof System

Goal: adapt Squirrel reasoning capabilities to PQC

m Core logical rules: rewrite, apply, smt, ...

m Cryptographic rules:

m Basic rules, e.g. trans, fresh, fa, ...
m Automated simplifications: deduce
m Reductions to hardness assumptions: crypto
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Adapting the Proof System: Core Logical Rules

m We use Squirrel existing semantics.
m ~c and ~q can absorb a negligible error.

= inherit non-reductionist rules for free.

Examples:
smt rewritec rewriteq
Fsme & v ey [u=4] N U ~qvo [u=1]
[¢] u ~cVv u~qVv
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Adapting the Proof System

m Core logical rules: rewrite v/, apply v/, smt v/, ...

m Cryptographic rules:

m Basic rules, e.g. trans v, fresh /, fa, ...
m Automated simplifications: deduce
m Reductions to hardness assumptions: crypto

Difficulty
Remaining rules are reduction-based.
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Reductionist Rules: Basic Rules

U~V f € Lib
f(u) ~c f(v)

Classical function application: (e

Issue: quantum randomness r re-used

att(r,u) ~q v

X
att(r, att(r, u) ) ~q att(r, v)

UnqVv ¢Fresh(uﬂ V)

att(r, u) ~q att(r, v)

Quantum function application: faq

B ¢f., () re-use existing machinery from fresh

m If f classical, there is no problem
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Reductionist Rules: Bi-Deduction

Bi-deduction [CSF'22]
Automate simplifications of ~ by deterministic simulation.

f(uo, u1) >c #(vo,vi) = IF:PTM. f(uw)= w A
f( up ) =V
Key rule:
Uup ~c U1 ﬁ(UOaul) >c ﬁ(VOvvl)
deduce,
Vo ~c V1

Example: drop v + compute ((Ax. H(x)) u)
#(uo, u1), #(vo, vi), Ax. H(x) e #(uo, tn), H (#(uo, u1))

= u used twice above, quantum variant unsound
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Reductionist Rules: Bi-Deduction

Quantum bi-deduction
Generalization: deterministic = error-free.
f(uo, u1) >q B(vo,va) : 3IF: PQTMg. f(ug) =w A
(i) =w1

Error-free quantum machines PQTMg

m Avoid difficulties with measurement randomness
i.e. f independent from (u, v)

m For quantum values, only basic manipulations
Example: swapping (c, q) > (q, ¢)

m For more complex manipulations:
automatic deduce + manual fa for att(-)
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Reductionist Rules: Bi-Deduction

Proof system: >4 ~ > + linear usage of quantum values

Example: transitivity

ub.w u,wp>cv C,q D>qw C,q,WDqV

ubcv C,q1, 92 I>q"

m Classical value ¢ can be re-used

m Quantum value qi1, q» used linearly
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Adapting the Proof System

m Core logical rules: rewrite v/, apply v/, smt v/, ...

m Cryptographic rules:

m Basic rules, e.g. trans v, fresh v/, fa /, ...
m Automated simplifications: deduce v
m Reductions to hardness assumptions: crypto
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Reductionist Rules: Cryptographic Bi-Deduction

Cryptographic reduction to game G = #(Go, G1)
Vreve  if 3S:PPTM.S% =y A
591 =V

Examples: IND-CCA, PRF, DDH

Classical cryptographic bi-deduction [CCS'24]

CF H(uo, 1) & 4(vo, v1)

m Complex semantics: S probabilistic + G stateful (--- )
m Proof system for >¢

m Automatic proof-search, including induction
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Reductionist Rules: Cryptographic Bi-Deduction

Challenges
m S probabilistic = quantum error-free insufficient

m Generalize S to PQTM complex:
= change semantics + rules + proof-search

Key Idea
m Encapsulate quantum manipulation in the game

m Safe quantum APl Q: force linear usage of quantum state

JA:PPTM.ACY9 =y = JB:PQTM.BY = u

BQ:(AQ)Q:AQ-(}
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Reductionist Rules: Cryptographic Bi-Deduction

Safe Quantum API

game Q = {
(* quantum state )
var state : Hmessage = --.;

(* classical state, next protocol input *)
var input : message = ...;

(* update state using att *)
oracle step (t, out) = {
r & grand;
(input,state) = att(r, (state,out));

}

(* retrieve last attacker input *)
oracle get_input () = { return input; }

}
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Reductionist Rules: Cryptographic Bi-Deduction

m Semantics of >Y unchanged
(except minor adaptation to have G quantum)

m Proof system unchanged
m New induction rule specialized for the quantum execution model

x}—inxbcg out x

th'Q frame t

No manipulation of state by S.

m Implementation: re-use most machinery
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Case-Studies




Case studies in our post-quantum Squirrel

m Four KEM combiners (CPA/CCA):
XOR, XOR-then-MAC, Dual-PRF, Nested Dual-PRF

m Two hybrid key-exchange protocols (strong secrecy):
BCGNP [S&P'22], Csigma

m Case studies use Squirrel latest features: crypto, smt
Proof strategy
m First proof in classical setting/execution model (= pers. months)

m Then, adapted to post-quantum (= pers. days)
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Conclusion




Conclusion

m Execution model for PQC

m A faithful logic for PQC
Adequacy result

m Adapt Squirrel proof systems
Latest features, e.g. smt, crypto

m Implementation + validation
Case-studies: Hybrid KEM Combiners + KE

Thank you for your attention
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Execution Model (Simplified)

let rec frame (t : timestamp) =
(state t, transcript t)

and transcript (t : timestamp) =
(transcript (pred t), input t, output t )

and state (t : timestamp) =
att(qrnd (pred t), frame (pred t))#2

and input (t : timestamp) =
att(qrnd (pred t), frame (pred t))#1

and output (t : timestamp) = ... (x protocol specific, uses input t =)



	Context
	The Squirrel prover
	Building a PQC Verification Framework

	An PQ Execution Model
	A Faithful Logic for QC
	Adapting Squirrel Proof System
	Core Logical Rules
	Basic Rules
	Simple Simulator Synthesis
	Cryptographic Simulator Synthesis

	Case-Studies
	Conclusion
	Appendix

