MPRI 2.30: Proofs of Security Protocols

2. A Higher-Order Logic for Mechanization

Adrien Koutsos
2022/2023

Limitations of the framework:

e No built-in support for an arbitrary number of sessions.
We use an ambient-level induction

e No systematic and user-friendly encoding of protocols.
We manually defined out@t, in@t, etc at ambient level.

e More generally, large part of the reasoning done in the
ambient logic. E.g. the logic lacks a temporal component.

All the above are obstacles to mechanizing the logic.

HO Indistinguishability Logic

Solution
A higher-order indistinguishability logic:
e Supports induction at the logical level.

e User-defined mutually-recursive probabilistic procedures:

execution model (i.e. out@r, in@7, etc) can be internalized
e Temporal reasoning can be done easily.

e Bonus: Support generic higher-order reasonings.

= suitable for mechanized interactive proofs.

A Higher-Order
Indistinguishability Logic

HO Indistinguishability Logic: Types

We assume a set B of base-types (e.g. bool, message).

Types are defined by
TI=Tp|T—=T (7p € B)

The interpretation [7]; of a type 7 w.r.t. a model M and € N:
def def
[l = M) [= nly = [l = Rk

Details
e M must interpret all base-types as non-empty sets.
e there must exists an injection from M;, (1) to bit-strings.
(used later to send such values to the adversary)
e built-in types interpretations are fixed.
Example: [bool], = {0, 1} for every 7

HO Indistinguishability Logic: Variables

We assume a set x of variables X and

e N\ C X a set of names, for random samplings.
A name n € N type must be 79 — 71 with 79 finite.

(see typing rules next)

® Fhuiltins © X a set of built-ins, which are variables with a

restricted interpretations (e.g. -, A, att).

(see semantics next)

@ Using variables for everything allows a more unified treatment.

HO Indistinguishability Logic: Terms

Terms are defined by:

to= x| (tt)| Mx:7).t|V(x:7).t]|iftthentelset (xe X)
(as usual, terms are taken modulo a-renaming)

Terms are taken in an environment &:
E=0] (x:7);& |(x:7=1t); &
(declaration) (definition)

(we require that environments do not bind the same variable twice)

We require that terms and environments are well-typed. We
write £(x) the type of x.

A Higher-Order Indistinguishability Logic: Term Typing

Term typing judgements

Ty.Ir Ty.Fun-App
EFt:bool Erbty 10— 71
g"t,'ZT,I'E{l,2} g"tQZTo

EFx:E(X) Eriftthentyelsety: T EFtit:m

Ty.DECL

Tvy.LAMBDA Tvy.FORALL
Ex:mokt:imn E,x:TkHt:bool

EFAx:m0).tim0 =7 EF V(x:7).t:bool

Environment typing

Tvy-ENV.DEF
S — Ty-ENv.DECL HE&) Ehtor
F& X € (,\ U]:built—ins)
Fe F&E (x:7) FE (x:T=t)

@ Names and built-ins symbols can only be declared.

HO Indistinguishability Logic: Probability Space

Terms are interpreted as 7-indexed families of random variables.

e probability space: the set Ty, = Tg, x m]m, where Tg
and T/, , are finite same-length set of bit-strings.
We equip it with the uniform probability measure.
(T, for the adversary, Tf&l,r} for honest functions)

HO Indistinguishability Logic: Term Semantics

A model M w.r.t. £ (written M : £) interprets any declaration
(x:7) € € as a family (X;),en of functions X, : T, — [7];.
which we write (M(x)(n))neN, with some restrictions:

e names are PTIME-computable (in) random samplings
using random in T,Cﬂm (details later).

e built-ins in Fpiirins must be PTIME-computable deterministic
(honest functions) or adversarial (random in T) functions.

HO Indistinguishability Logic: Term Semantics

The semantics [t];% of t w.r.t. M and n € N is a value in [7]{}:

XI5 & Me)m)(p) (decl., (x:7) € E)
Koo [0 (def. (xiT=1) € €)
def
[t VG = [t (It ThE)
[if t then to else t; 70, % [t;]0e, if L] = i
def
[Mx:7)-thife = (a €7y~ [t M[x—17]: (SXT))
. def
IV(x: 7).]k = 1 iff. [[tﬂ"pw]n] (exry = Lforany ae Rl

where 17 is the indexed family of functions such that:
e 13(n)(p) = afor all p € Ty,
e 12(n')(p') is some arbitrary value in [[Tm for any 1’ # 1.

10

HO Indistinguishability Logic: Name Semantics

A name n €)V interpretation must be such that
[n 8™ = Inlua(n, [¢15%) (o)
where [n]y is a PTIME in 7.
Moreover, pn — [nolm(n,a)(pn) and pn — [nilm(n, a")(pn)

e are independent random samplings when (ng, a) # (n1, a).
They must extract # random bits from py,.

e have the same distribution when ng and n; have the same
output type (i.e. E(ng) = —71and E(n) = — 7).

11

HO Indistinguishability Logic: Name Semantics

Remark

e & contains a finite number of names.
e names have type 790 — 71 where 7q is finite.

e [n]m uses a finite number of bits from py, (since PTIME in 7).

= compatible with requirement that T,{,‘ﬂ , 1S a set of finite tapes.

12

HO Indistinguishability Logic: Satisfiability and Validity

Notations
e Satisfiability: when £ ¢ : bool, we write M : £ = ¢ if
Pro([¢liie = 1) € ow.(n)*

e Wewrite M: E=SifM: E [¢ forevery ¢ €8S.
Remark: S can be infinite.

e Validity: EE= ¢ if M: E = ¢ for every M : €.

1f € ow.(n) iff. (1 — f) € negl(n)
13

HO Indistinguishability Logic: Term Semantics

Summary:
A model M for £ comprises
e The interpretation domains of base types B.
= vyields a type semantics [-];.
e The probability space Ty, = Ty, X 'I]',Q]m.
e The interpretations of declared variables of £.
Defined variables are interpreted by their definitions.
= yields a term semantics [-]{..

Remarks
We restrict possible models in several ways (more to come):
e finiteness required of some types (e.g. to index names).

e constraints on name and built-ins interpretations.

14

HO Indistinguishability Logic: Term Semantics

Key ingredients:

e terms are interpreted as arbitrary random variables, not
necessarily PPTMs.
= support probabilistic user-defined functions (e.g. in@r).
= support uncomputable functions.
= support quantifiers v, 3 over arbitrary types.

e the probability space is finite.
= ensures that (p — [t]{’¢) is a random variable.

@ indeed, any function X : S; — S, (where Sy is a finite
probability space and S, is a measurable space) is a
measurable function.

15

Encoding Protocols

HO Indistinguishability Logic: Recursive Definitions

We first extend the HO logic to allow recursive definitions.

Any type 7 and order <€ Fpyiit-ins With type 7 — 7 — bool can be
tagged as wf(7, <).
= only consider models s.t. ([7]}};, [<]{; ¢) is well-founded.

We allow well-founded recursion over such types.

Details

e we assume a fixed set of type tags S,r.
e we assume a fixed set S,« of terms of type bool (axioms).

e we require that any model M is such that M = S,4 and

(I-1% [[<]]g,ﬂ75) is well-founded (for any wf(7, <) € Syf)

16

HO Indistinguishability Logic: Recursive Definitions

We add a typing rule for recursive definitions:

Ty-ENV.REC-DEF
FE Ex:THt:T wf,f:i (t) x € N U Fouilt-ins

FE, (x:T:)\y.t)

where wf’"Y (t) is any syntactic condition which checks that
e x is used in n-long form in t.
e recursive calls to x are well-founded, i.e. on arguments tg
smaller than y:

£ (Va.¢ to<vy) forany (@ é,x to) € ST(t)
where STZ*(t) are the conditioned subterms of t (see next slide).

Example
€= A\(i: int).if i =0 then empty else (n i, ¢ (pred i))

with wf(int, <) and the axiom V(i : int).i # 0= pred i < i. 17

HO Indistinguishability Logic: Conditioned Subterms

We let ST (t) be the subterms of t, decorated the (typed) bound
variables and the conditions holding at each position.

ST(t) € {(e, true, t)}U

0 ft=xe X

(x : 7).8T (to) ift=0(x:7)to, Q€ {\V}
ST(0) U[o]ST (t1) U [-9]ST (to) if t =if ¢ then ty else to

ST (to) UST(t1) if t=(to t1)

where x is taken fresh in the A and V cases, and where

[¢]S

(x:7).5 g &

" {(@ v A DY) | (@ ,t) € S}
{((@,x:7),9,t) | (@,9,1) € 5}

18

HO Indistinguishability Logic: Conditioned Subterms

Example

ST((x,

U
U

A(x0, X1 @ 7).if o < X1 then xq else x1)) =

{(e, true, {(x, A(xg,x1 : 7). if xo < x1 then xq else x1))}

U {(e, true, x), (e, true, A(xg, x1 : 7).if xo < X1 then xq else x1)}

U {(xo, true, A(x; : 7). if xo < x1 then xq else x1)}

{((x0,x1), true, if xg < x; then xq else x1)}

U {((x0,x1), true,xq < x1)}

u{(
(

(

(x0,x1)

(x0,x1),true A xg < x1,%0)}
{((x0,x1), true A —(xo < x1),x1)}

19

HO Indistinguishability Logic: Protocols

Example: encoding of Basic Hash

in@t = match t with init = d

| — att(frame@pred t)

out@t = match t with init — d
| T(A,i) = (n(A,i),h({in@t,n(A,i)), k A))
|IRj— ...
frame@t = match t with init — d
| — (frame@pred t,out@t)

20

Formulas

HO Indistinguishability Logic: Formulas

Formulas do not change, except that we use higher-order terms.

o:=T|1L
|OAND | OVD|D— | O
|V(x:7).® | 3(x:7).P (xe Xx)
| t1,. . th ~nthti,... tan (t1,...,t2, higher-order terms)

21

HO Indistinguishability Logic: Formula Semantics

Standard FO semantics with 7-indexed sequences of random

variables interpretation domains.

[®]m:c € {0,1} is as expected for boolean connective and FO
quantifiers. E.g.:

[Tlwe &1 [® A Ve 2 [0]5, and [W]5,

[=®]u.e £ not [@]%,

def .
[[\V/(X : T)'CD]]M:E =1 if VA € ([[T]]qu/ﬂ)nel\l’ [[¢HM[X»—>A]:(5,X:T) =1

22

HO Indistinguishability Logic: Formula Semantics

~ is still interpreted as computational indistinguishability.
[ti ~ B]ue = 1iff. V PPTM A, Adv{, (A : i ~ B) is negligible.

Execution Model

e Values in [7,]{; are encoded as bitstrings and sent to A.

e Higher-order terms given to A are oracles, which A can
query on any input it can compute, any number of times.
Remark: queries can yield more oracles, which A can in turn
query (e.g. for type 7o — (11 — 72)).

e We require that terms in ; and t have types 70 — ... — 7

b
(i.e. no higher-order arguments).

23

HO Indistinguishability Logic: Proof System

Our rules still apply, though with minor adaptations.

Example: function application splits into two rules

FA-Aprp FA-CoNsT

- / — 12 — N

ui,ty, ty ~ w2, 2, 1) uy ~ up (where f € Fouite-ins)
L71,t1 tllfVL72,t2 t/2 LTl,fNLTQ,f

Moreover, FA-APP can be extended to apply under a A:

FA-App,
a,(A(x 2 7). t1),(M(x 7).)
~ o, (A(x 1 7). 12),(M(x : 7). t5)

L71,/\(X : 7’). (tl tll) ~ _»2,)\(7’). (t2 tlz)

Remark: soundness proof requires to simulate the oracles.

24

HO Indistinguishability Logic: Formula and Term Quantifiers

We have two kind of quantifiers: term V and formula V.
But we have only one kind of variable! Why?
Proposition

For every model M of £, we have:

M:EREV(x:7).(p~true) iff. M:EE (V(x:7).¢) ~ true

Preliminary Remark
A function f : S — [0, 1] is overwhelmingly true, written

f(n) € o.w.(n), if (1 —1(n)) € negl(n).
For any term £ I ¢ : bool and model M:

M:EE¢~true iff. Pry([o]ih%) € o.w.(n)

Proof: = take A to be the identity. < trivial up-to-bad reasoning.
25

HO Indistinguishability Logic: Formula and Term Quantifiers

Proof of the Proposition
= case. Assume the following:

M: € (V(x: 7). ¢ ~ true) (%)
Let A€ ([[T]]g/ﬂ)neN be a sequence of random variables. We must show

Pr ([[é]];k]/ﬂ?ﬁ»%A]:(E,x:TQ € OW(]])
where the probability is over p € Ty .

Pr ([[gbﬂgﬂ[iHA] E,x: T))

= ([OHM[XHUA((X))

> Pr(Maegez (810t 1216 em)

= Pr([v(x: 7). ¢lu%)

& ow.(n) (using (+))

26

HO Indistinguishability Logic: Formula and Term Quantifiers

<« case. Assume that

M & = V(x : 7). (6 ~ true) (1)
We need to show that Pr ([V(x : 7). ¢]i:%) € o.w.().
Let A be the family of functions choosing, for any n and p, a value

a € [[7]y, making ¢ false when evaluated on tape p

def | choose{a € [7]y; | [~¢]i% . im. (e .y} if non-empty
A(f/)(p) & { M M[x—=17]:(€,x:7)

dwitness otherwise

where ayitness is an arbitrary value in [7]{; (recall that [7]; # 0), and
choose(S) is an arbitrary choice function for set S.

Since all functions from Ty, to {0; 1} are random variables (thanks to
Tw,,'s finitness), we get that, by applying (1) to A

Pr ([[OM[/;HA] 8. XT)> € o.w.(n) (1)

27

HO Indistinguishability Logic: Formula and Term Quantifiers

Then:

([[OM[/;HA] & x: T))
- ([[Hf]\l/d[/;»—)ﬂ (e)]:(S.X:T))
= Pr (ﬂae[[”ﬂ 4 HQHM{:(HU”]:(E.X:T))

Pr ([[(x:7). 0% ’))
€ o.w.(n) (using (1))

28

HO Indistinguishability Logic: Reachability Proof System

Our reachability proof system hence supports the usual rules for
arbitrary term quantifiers, e.g.

Ex:m;TF¢
ETEY(x:7).¢

= Allow for generic higher-order reasoning in terms.

29

Freshness and Cryptographic Rules

HO Indistinguishability Logic: Name Collision

We allow names (i.e. random samplings) over arbitrary types.
= names can have collisions.

e e.g. Pr([no =n1]) is non-negligible if ng, n; : bool.

Large names are names with around 7 random bits:

e for any name n : 79 — 7 over a large type 7 (e.g. message),
we ask that for any n € N, a € [no]; and b € [7]{},

Py (Inu(n. 3)(pn) = b) < 52

where ¢, > 0 is a positive real number.

30

HO Indistinguishability Logic: Name Collision

How to adapt the rule exploiting probabilistic independence?
Base Logic Rule
t =n ~ false when n & st(t)
where t is a ground low-order term.
Rule for Name Collision (first tentative)

& with only declarations of built-ins and names (~ ground-terms).
t,to well-typed in € and (n: _ — 7) € £ where 7 is large

t=n tg ~ false

when n does not appear in t, tg and all definitions in £.

= not very useful!

31

HO Indistinguishability Logic: Name Collision

How to do better? Lets see on an example.

& with only declarations of built-ins and names, except for a
single inductive definition:

= A(i: int).if i =0 then empty else (n i, ¢ (pred i))

where n : int — message.

Rule (special case)
Terms t,to well-typed in £ that do not use ¢ and n:

(att(£t) =n to) = to < t ~ true

Indeed, att(¢ t) only depends on the random samplings
n 1,...,n t, which are independent from n tg when t < to.
= requires in-depth analysis of recursive definitions.

32

HO Indistinguishability Logic: Name Collision

Key ldeas: conditions under which this name collision rule is sound

t=nty— _.|¢fresh ~ true

e Collect all occurrences at which name n is sampled in t, to,
including in recursive calls.
= use the set of generalized subterms ST77°¢(-).
(STFEE(t) can be infinite)

® Ofesh Must ensure independence w.r.t. (n tp), i.e. that all
generalized occurrences (n s) in STg*(t,tg) are s.t. s £ tg.

33

HO Indistinguishability Logic: Generalized Subterms

ST£(t) are the generalized subterms of t.

ST (x) def {(e, true,x)} if(x:7)elorx¢gé&

SﬁreC(X) d:ef S’Tgrec(to) if (X 9= to) e¢

STE(x t) & ST (to{y = t}) if (x:7=Ay.to) € E

def 1(€, true, t to) JU

STrec tt el
& (O) S%reC(t) U Sﬁrec(to)

if no other case applies

where the if-then-else and quantifier cases are as in ST(-), and y is
taken fresh in the A case.

Q STZe(+) ignores variable that can be unrolled into their
definitions.

34

HO Indistinguishability Logic: Freshness Condition

Rule for Name Collision
& with only declarations of built-ins and names (~ ground-terms).
t,to well-typed in € and (n: _ — 7) € € where 7 is large

t=n tg = TPgesh ~ true
if t,tg is eta-long form and if, for every model M : £, n € N and p:
[Pfresh iz = 1 implies [¢]{:" = 1 for every ¢ € S

where S is a (possibly infinite) set formulas stating that n tg is not
sampled in t, to.

SE{(vay = s £ o) | (31,0 5) € ST(t,t0)}

Proof: On the blackboard, using the Proposition shown later.

35

HO Indistinguishability Logic: Name Collision

Example

Assume t, tg do not use n nor £.

(att(£t) =n to) > to < t ~ true
All occurrences of name n in ST (att(¢ t)) are of the form
(e,t;«éOApredt;;éO/\-'-/\predjt%O,n (predj t))
for j € N (there are infinitely many occurrences).
All of these are guaranteed fresh by the formula t < tg:
(t < to) = (pred’ t # to)

Hence t < tg is a suitable candidate for ¢fesp, yielding the rule

(att(€ t) =n to) > (t < tg) ~ true

& (att(ft)=nto) >to <t~ true >

HO Indistinguishability Logic: Name Collision

The semantics of a term t w.r.t. a model M : £ and two different
tapes p; and p» is identical, if the interpretation of declared
variables by M coincides on p; and p;.

Proposition

Let t well-typed in & in eta-long form. Then [¢]72 = [t]{72 if

M(x)(n)(p1)(a) = M(x)()(p2)(a) with a = [0 -
for all (&, ¢, (x 1)) € STZ*(t) such that:

e x is a variable declaration bound in £ (not in @)
e M’ extends M into a model of (€, @)

¢ [[‘Zsmﬁlg,& =1

Proof Sketch: induction over the generalized subterms of t

7,01

involved in [t]{72.

37

	A Higher-Order Indistinguishability Logic
	Encoding Protocols
	Formulas
	Freshness and Cryptographic Rules

