
MPRI 2.30: Proofs of Security Protocols

2. A Higher-Order Logic for Mechanization

Adrien Koutsos

2022/2023

Limitations

Limitations of the framework:

• No built-in support for an arbitrary number of sessions.
We use an ambient-level induction

• No systematic and user-friendly encoding of protocols.
We manually defined out@τ , in@τ , etc at ambient level.

• More generally, large part of the reasoning done in the
ambient logic. E.g. the logic lacks a temporal component.

All the above are obstacles to mechanizing the logic.

2

HO Indistinguishability Logic

Solution
A higher-order indistinguishability logic:

• Supports induction at the logical level.

• User-defined mutually-recursive probabilistic procedures:
execution model (i.e. out@τ , in@τ , etc) can be internalized

• Temporal reasoning can be done easily.

• Bonus: Support generic higher-order reasonings.

⇒ suitable for mechanized interactive proofs.

3

A Higher-Order
Indistinguishability Logic

HO Indistinguishability Logic: Types

We assume a set B of base-types (e.g. bool, message).

Types are defined by
τ := τb | τ → τ (τb ∈ B)

The interpretation JτKηM of a type τ w.r.t. a model M and η ∈ N:

JτbK
η
M

def
= Mτb(η) Jτ1 → τ2K

η
M

def
= Jτ1K

η
M → Jτ2K

η
M

Details
• M must interpret all base-types as non-empty sets.
• there must exists an injection from Mτb(η) to bit-strings.

(used later to send such values to the adversary)

• built-in types interpretations are fixed.
Example: JboolKηM = {0, 1} for every η

4

HO Indistinguishability Logic: Variables

We assume a set x of variables X and

• N ⊆ X a set of names, for random samplings.
A name n ∈ N type must be τ0 → τ1 with τ0 finite.
(see typing rules next)

• Fbuilt-ins ⊆ X a set of built-ins, which are variables with a
restricted interpretations (e.g.

.¬,
.
∧, att).

(see semantics next)

 Using variables for everything allows a more unified treatment.

5

HO Indistinguishability Logic: Terms

Terms are defined by:

t := x | (t t) | λ(x : τ). t |
.
∀(x : τ). t | if t then t else t (x ∈ X)

(as usual, terms are taken modulo α-renaming)

Terms are taken in an environment E :

E := ∅ | (x : τ); E
(declaration)

| (x : τ = t); E
(definition)

(we require that environments do not bind the same variable twice)

We require that terms and environments are well-typed. We
write E(x) the type of x.

6

A Higher-Order Indistinguishability Logic: Term Typing

Term typing judgements

Ty.Decl

E ` x : E(x)

Ty.If
E ` t : bool

E ` ti : τ, i ∈ {1, 2}
E ` if t then t1 else t2 : τ

Ty.Fun-App
E ` t1 : τ0 → τ1
E ` t2 : τ0

E ` t1 t2 : τ1

Ty.Lambda
E , x : τ0 ` t : τ1

E ` λ(x : τ0). t : τ0 → τ1

Ty.ForAll
E , x : τ ` t : bool

E `
.

∀(x : τ). t : bool

Environment typing

Ty-Env.ε

` ε

Ty-Env.Decl
` E

` E , (x : τ)

Ty-Env.Def
` E E ` t : τ

x 6∈ (N ∪ Fbuilt-ins)

` E ,
(
x : τ = t

)
 Names and built-ins symbols can only be declared. 7

HO Indistinguishability Logic: Probability Space

Terms are interpreted as η-indexed families of random variables.

• probability space: the set TM,η = T a
M,η × T h

M,η, where T a
M,η

and T h
M,η are finite same-length set of bit-strings.

We equip it with the uniform probability measure.
(T a

M,η for the adversary, T h
M,η for honest functions)

8

HO Indistinguishability Logic: Term Semantics

A model M w.r.t. E (written M : E) interprets any declaration
(x : τ) ∈ E as a family (Xη)η∈N of functions Xη : TM,η → JτKηM,
which we write

(
M(x)(η)

)
η∈N, with some restrictions:

• names are PTIME-computable (in η) random samplings
using random in T h

M,η (details later).

• built-ins in Fbuilt-ins must be PTIME-computable deterministic
(honest functions) or adversarial (random in T a

M,η) functions.

9

HO Indistinguishability Logic: Term Semantics

The semantics JtKη,ρM:E of t w.r.t. M and η ∈ N is a value in JτKηM:

JxKη,ρM:E
def
= M(x)(η)(ρ) (decl., (x : τ) ∈ E)

JxKη,ρM:E
def
= JtKη,ρM:E (def., (x : τ = t) ∈ E)

Jt t′Kη,ρM:E
def
= JtKη,ρM:E(Jt′Kη,ρM:E)

Jif t then t0 else t1K
η,ρ
M:E

def
= JtiK

η,ρ
M:E if JtKη,ρM:E = i

Jλ(x : τ). tKη,ρM:E
def
=
(
a ∈ JτKηM 7→ JtKη,ρ

M[x7→1
η
a]:(E,x:τ)

)
J
.
∀(x : τ). tKη,ρM:E

def
= 1 iff. JtKη,ρ

M[x7→1
η
a]:(E,x:τ)

= 1 for any a ∈ JτKηM

where 1
η
a is the indexed family of functions such that:

• 1
η
a(η)(ρ) = a for all ρ ∈ TM,η;

• 1
η
a(η′)(ρ′) is some arbitrary value in JτKη

′

M for any η′ 6= η.

10

HO Indistinguishability Logic: Name Semantics

A name n ∈ N interpretation must be such that

Jn tKη,(ρa,ρh)
M:E = JnKM(η, JtKη,ρM:E)(ρh)

where JnKM is a PTIME in η.

Moreover, ρh 7→ Jn0KM(η, a)(ρh) and ρh 7→ Jn1KM(η, a′)(ρh)

• are independent random samplings when (n0, a) 6= (n1, a
′).

They must extract 6= random bits from ρh.

• have the same distribution when n0 and n1 have the same
output type (i.e. E(n0) = _→ τ and E(n1) = _→ τ).

11

HO Indistinguishability Logic: Name Semantics

Remark
• E contains a finite number of names.

• names have type τ0 → τ1 where τ0 is finite.

• JnKM uses a finite number of bits from ρh (since PTIME in η).

⇒ compatible with requirement that T h
M,η is a set of finite tapes.

12

HO Indistinguishability Logic: Satisfiability and Validity

Notations
• Satisfiability: when E ` φ : bool, we write M : E |= φ if

Prρ(JφKη,ρM:E = 1) ∈ o.w.(η)1

• We write M : E |= S if M : E |= φ for every φ ∈ S.
Remark: S can be infinite.

• Validity: E |= φ if M : E |= φ for every M : E .

1f ∈ o.w.(η) iff. (1− f) ∈ negl(η)

13

HO Indistinguishability Logic: Term Semantics

Summary:
A model M for E comprises
• The interpretation domains of base types B.
⇒ yields a type semantics J·KηM.
• The probability space TM,η = T a

M,η × T h
M,η.

• The interpretations of declared variables of E .
Defined variables are interpreted by their definitions.
⇒ yields a term semantics J·Kη,ρM:E .

Remarks
We restrict possible models in several ways (more to come):
• finiteness required of some types (e.g. to index names).
• constraints on name and built-ins interpretations.
• . . .

14

HO Indistinguishability Logic: Term Semantics

Key ingredients:

• terms are interpreted as arbitrary random variables, not
necessarily PPTMs.
⇒ support probabilistic user-defined functions (e.g. in@τ).
⇒ support uncomputable functions.
⇒ support quantifiers

.
∀,

.
∃ over arbitrary types.

• the probability space is finite.
⇒ ensures that (ρ 7→ JtKη,ρM,E) is a random variable.

 indeed, any function X : S1 7→ S2 (where S1 is a finite
probability space and S2 is a measurable space) is a
measurable function.

15

Encoding Protocols

HO Indistinguishability Logic: Recursive Definitions

We first extend the HO logic to allow recursive definitions.

Any type τ and order <∈ Fbuilt-ins with type τ → τ → bool can be
tagged as wf(τ,<).
⇒ only consider models s.t. (JτKηM, J<KηM,E) is well-founded.

We allow well-founded recursion over such types.

Details
• we assume a fixed set of type tags Swf.

• we assume a fixed set Sax of terms of type bool (axioms).

• we require that any model M is such that M |= Sax and

(JτKηM, J<KηM,E) is well-founded (for any wf(τ,<) ∈ Swf)

16

HO Indistinguishability Logic: Recursive Definitions

We add a typing rule for recursive definitions:
Ty-Env.Rec-Def
` E E , x : τ ` t : τ wf x,yτ,<(t) x 6∈ N ∪ Fbuilt-ins

` E ,
(
x : τ = λy. t

)
where wf x,yτ,<(t) is any syntactic condition which checks that
• x is used in η-long form in t.
• recursive calls to x are well-founded, i.e. on arguments t0

smaller than y:

E |= (
.
∀~α. φ .→ t0 < y) for any (~α, φ, x t0) ∈ ST (t)

where ST rec
E (t) are the conditioned subterms of t (see next slide).

Example
` = λ(i : int). if i .

= 0 then empty else 〈n i , ` (pred i)〉

with wf(int, <) and the axiom
.
∀(i : int). i

.
6= 0 .→ pred i < i . 17

HO Indistinguishability Logic: Conditioned Subterms

We let ST (t) be the subterms of t, decorated the (typed) bound
variables and the conditions holding at each position.

ST (t) def
= {(ε, true, t)}∪

∅ if t = x ∈ X
(x : τ).ST (t0) if t = Q(x : τ).t0, Q ∈ {λ,

.

∀}
ST (φ) ∪ [φ]ST (t1) ∪ [¬φ]ST (t0) if t = if φ then t1 else t0
ST (t0) ∪ ST (t1) if t = (t0 t1)

where x is taken fresh in the λ and
.
∀ cases, and where

[φ]S
def
= {(~α, ψ

.
∧ φ, t) | (~α, ψ, t) ∈ S}

(x : τ).S
def
= {((~α, x : τ), ψ, t) | (~α, ψ, t) ∈ S}

18

HO Indistinguishability Logic: Conditioned Subterms

Example

ST (〈x , λ(x0, x1 : τ). if x0 < x1 then x0 else x1〉) =

{(ε, true, 〈x , λ(x0, x1 : τ). if x0 < x1 then x0 else x1〉)}
∪ {(ε, true, x), (ε, true, λ(x0, x1 : τ). if x0 < x1 then x0 else x1)}
∪ {(x0, true, λ(x1 : τ). if x0 < x1 then x0 else x1)}
∪ {((x0, x1), true, if x0 < x1 then x0 else x1)}
∪ {((x0, x1), true, x0 < x1)}
∪ {((x0, x1), true

.
∧ x0 < x1, x0)}

∪ {((x0, x1), true
.
∧ .¬(x0 < x1), x1)}

19

HO Indistinguishability Logic: Protocols

Example: encoding of Basic Hash

in@t = match t with init→ d

| _→ att(frame@pred t)

out@t = match t with init→ d

| T(A, i)→ 〈n(A, i), h(〈in@t, n(A, i)〉, k A)〉
| R j→ . . .

frame@t = match t with init→ d

| _→ 〈frame@pred t, out@t〉

20

Formulas

HO Indistinguishability Logic: Formulas

Formulas do not change, except that we use higher-order terms.

Φ := > | ⊥
| Φ ∧ Φ | Φ ∨ Φ | Φ→ Φ | ¬Φ

| ∀(x : τ).Φ | ∃(x : τ).Φ (x ∈ X)

| t1, . . . , tn ∼n tn+1, . . . , t2n (t1, . . . , t2n higher-order terms)

21

HO Indistinguishability Logic: Formula Semantics

Standard FO semantics with η-indexed sequences of random
variables interpretation domains.

JΦKM:E ∈ {0, 1} is as expected for boolean connective and FO
quantifiers. E.g.:

J>KM:E
def
= 1 JΦ ∧ΨKM:E

def
= JΦKσM and JΨKσM

J¬ΦKM:E
def
= not JΦKσM

J∀(x : τ).ΦKM:E
def
= 1 if ∀A ∈

(
JτKηM

)
η∈N, JΦKM[x7→A]:(E,x:τ) = 1

22

HO Indistinguishability Logic: Formula Semantics

∼ is still interpreted as computational indistinguishability.

J~t1 ∼ ~t2KM:E = 1 iff. ∀ PPTM A, AdvηM:E(A : ~t1 ∼ ~t2) is negligible.

Execution Model

• Values in JτbK
η
M are encoded as bitstrings and sent to A.

• Higher-order terms given to A are oracles, which A can
query on any input it can compute, any number of times.
Remark: queries can yield more oracles, which A can in turn
query (e.g. for type τ0 → (τ1 → τ2)).

• We require that terms in ~t1 and ~t2 have types τ0
b → ...→ τnb

(i.e. no higher-order arguments).

23

HO Indistinguishability Logic: Proof System

Our rules still apply, though with minor adaptations.

Example: function application splits into two rules

FA-App
~u1, t1, t′1 ∼ ~u2, t2, t′2
~u1, t1 t′1 ∼ ~u2, t2 t′2

FA-Const
~u1 ∼ ~u2

~u1, f ∼ ~u2, f

(where f ∈ Fbuilt-ins)

Moreover, FA-App can be extended to apply under a λ:

FA-Appλ
~u1,(λ(x : τ). t1),(λ(x : τ). t′1)

∼ ~u2,(λ(x : τ). t2),(λ(x : τ). t′2)

~u1, λ(x : τ). (t1 t′1) ∼ ~u2, λ(x : τ). (t2 t′2)

Remark: soundness proof requires to simulate the oracles.

24

HO Indistinguishability Logic: Formula and Term Quantifiers

We have two kind of quantifiers: term
.
∀ and formula ∀.

But we have only one kind of variable! Why?

Proposition
For every model M of E , we have:

M : E |= ∀(x : τ). (φ ∼ true) iff. M : E |=
(.
∀ (x : τ). φ

)
∼ true

Preliminary Remark
A function f : S 7→ [0, 1] is overwhelmingly true, written
f (η) ∈ o.w.(η), if (1− f (η)) ∈ negl(η).

For any term E ` φ : bool and model M:

M : E |= φ ∼ true iff. Prρ(JφKη,ρM:E) ∈ o.w.(η)

Proof: ⇒ take A to be the identity. ⇐ trivial up-to-bad reasoning.
25

HO Indistinguishability Logic: Formula and Term Quantifiers

Proof of the Proposition
⇒ case. Assume the following:

M : E |= (
.

∀(x : τ). φ ∼ true) (?)

Let A ∈
(
JτKηM

)
η∈N

be a sequence of random variables. We must show

Pr
(
JφKη,ρ

M[x 7→A]:(E,x :τ)
)
∈ o.w.(η)

where the probability is over ρ ∈ TM,η.

Pr
(
JφKη,ρ

M[x 7→A]:(E,x :τ)
)

= Pr
(
JφKη,ρ

M[x 7→1
η
A(η)(ρ)

]:(E,x :τ)
)

≥ Pr
(⋂

a∈JτKηM
JφKη,ρ

M[x 7→1
η
a]:(E,x :τ)

)
= Pr

(
J
.

∀(x : τ). φKη,ρM:E
)

∈ o.w.(η) (using (?))

26

HO Indistinguishability Logic: Formula and Term Quantifiers

⇐ case. Assume that

M : E |= ∀(x : τ). (φ ∼ true) (†)

We need to show that Pr
(
J
.

∀(x : τ). φKη,ρM:E
)
∈ o.w.(η).

Let A be the family of functions choosing, for any η and ρ, a value
a ∈ JτKηM making φ false when evaluated on tape ρ

A(η)(ρ)
def
=

choose
{
a ∈ JτKηM | J¬φKη,ρ

M[x 7→1
η
a]:(E,x :τ)

} if non-empty

awitness otherwise

where awitness is an arbitrary value in JτKηM (recall that JτKηM 6= ∅), and
choose(S) is an arbitrary choice function for set S.

Since all functions from TM,η to {0; 1} are random variables (thanks to
TM,η’s finitness), we get that, by applying (†) to A

Pr
(
JφKη,ρ

M[x 7→A]:(E,x :τ)
)
∈ o.w.(η) (‡)

27

HO Indistinguishability Logic: Formula and Term Quantifiers

Then:

Pr
(
JφKη,ρ

M[x 7→A]:(E,x :τ)
)

= Pr
(
JφKη,ρ

M[x 7→1
η
A(η)(ρ)

]:(E,x :τ)
)

= Pr
(⋂

a∈JτKηM
JφKη,ρ

M[x 7→1
η
a]:(E,x :τ)

)
= Pr

(
J
.

∀(x : τ). φKη,ρM:E
)

∈ o.w.(η) (using (‡))

28

HO Indistinguishability Logic: Reachability Proof System

Our reachability proof system hence supports the usual rules for
arbitrary term quantifiers, e.g.

E , x : τ ; Γ ` φ

E ; Γ `
.
∀(x : τ). φ

⇒ Allow for generic higher-order reasoning in terms.

29

Freshness and Cryptographic Rules

HO Indistinguishability Logic: Name Collision

We allow names (i.e. random samplings) over arbitrary types.
⇒ names can have collisions.

• e.g. Pr(Jn0
.

= n1K) is non-negligible if n0, n1 : bool.

Large names are names with around η random bits:

• for any name n : τ0 → τ over a large type τ (e.g. message),
we ask that for any η ∈ N, a ∈ Jτ0K

η
M and b ∈ JτKηM,

Prρh

(
JnKM(η, a)(ρh) = b

)
≤ 1

2cτ ·η

where cτ > 0 is a positive real number.

30

HO Indistinguishability Logic: Name Collision

How to adapt the rule exploiting probabilistic independence?

Base Logic Rule

t
.

= n ∼ false when n 6∈ st(t)

where t is a ground low-order term.

Rule for Name Collision (first tentative)
E with only declarations of built-ins and names (≈ ground-terms).
t, t0 well-typed in E and (n : _→ τ) ∈ E where τ is large

t .
= n t0 ∼ false

when n does not appear in t, t0 and all definitions in E .
⇒ not very useful!

31

HO Indistinguishability Logic: Name Collision

How to do better? Lets see on an example.

E with only declarations of built-ins and names, except for a
single inductive definition:

` = λ(i : int). if i .
= 0 then empty else 〈n i , ` (pred i)〉

where n : int→ message.

Rule (special case)
Terms t, t0 well-typed in E that do not use ` and n:(

att(` t) .
= n t0

) .→ t0 ≤ t ∼ true

Indeed, att(` t) only depends on the random samplings
n 1, . . . , n t, which are independent from n t0 when t < t0.
⇒ requires in-depth analysis of recursive definitions.

32

HO Indistinguishability Logic: Name Collision

Key Ideas: conditions under which this name collision rule is sound

t .
= n t0

.→ .¬φfresh ∼ true

• Collect all occurrences at which name n is sampled in t, t0,
including in recursive calls.
⇒ use the set of generalized subterms ST rec

E (·).
(ST rec

E (t) can be infinite)

• φfresh must ensure independence w.r.t. (n t0), i.e. that all
generalized occurrences (n s) in ST rec

E (t, t0) are s.t. s
.
6= t0.

33

HO Indistinguishability Logic: Generalized Subterms

ST rec
E (t) are the generalized subterms of t.

ST rec
E (x)

def
= {(ε, true, x)} if (x : τ) ∈ E or x 6∈ E

ST rec
E (x)

def
= ST rec

E (t0) if (x : τ = t0) ∈ E

ST rec
E (x t) def

= ST rec
E (t0{y 7→ t}) if (x : τ = λy . t0) ∈ E

ST rec
E (t t0)

def
=
{(ε, true, t t0)}∪
ST rec

E (t) ∪ ST rec
E (t0)

if no other case applies

where the if-then-else and quantifier cases are as in ST (·), and y is
taken fresh in the λ case.

 ST rec
E (·) ignores variable that can be unrolled into their

definitions.

34

HO Indistinguishability Logic: Freshness Condition

Rule for Name Collision
E with only declarations of built-ins and names (≈ ground-terms).
t, t0 well-typed in E and (n : _→ τ) ∈ E where τ is large

t .
= n t0

.→ .¬φfresh ∼ true

if t, t0 is eta-long form and if, for every model M : E , η ∈ N and ρ:

JφfreshK
η,ρ
M:E = 1 implies JφKη,ρM:E = 1 for every φ ∈ S

where S is a (possibly infinite) set formulas stating that n t0 is not
sampled in t, t0.

S
def
=
{

(
.
∀~α.ψ ⇒ s 6= t0) | (~α, ψ, n s) ∈ ST rec

E (t, t0)
}

Proof: On the blackboard, using the Proposition shown later.

35

HO Indistinguishability Logic: Name Collision

Example
Assume t, t0 do not use n nor `.(

att(` t) .
= n t0

) .→ t0 ≤ t ∼ true

All occurrences of name n in ST rec
E (att(` t)) are of the form

(ε, t 6= 0 ∧ pred t
.
6= 0

.
∧ · · ·

.
∧ pred j t

.
6= 0, n (pred j t))

for j ∈ N (there are infinitely many occurrences).

All of these are guaranteed fresh by the formula t < t0:

(t < t0)
.→ (pred j t

.
6= t0)

Hence t < t0 is a suitable candidate for φfresh, yielding the rule(
att(` t) .

= n t0
) .→ .¬(t < t0) ∼ true

⇔
(
att(` t) .

= n t0
) .→ t0 ≤ t ∼ true 36

HO Indistinguishability Logic: Name Collision

The semantics of a term t w.r.t. a model M : E and two different
tapes ρ1 and ρ2 is identical, if the interpretation of declared
variables by M coincides on ρ1 and ρ2.

Proposition
Let t well-typed in E in eta-long form. Then JtKη,ρ1

M:E = JtKη,ρ2
M:E if

M(x)(η)(ρ1)(a) = M(x)(η)(ρ2)(a) with a
def
= J~u Kη,ρ1

M′:E,~α

for all (~α, φ, (x ~u)) ∈ ST rec
E (t) such that:

• x is a variable declaration bound in E (not in ~α)
• M′ extends M into a model of (E , ~α)

• JφKη,ρ1
M′:E,~α = 1

Proof Sketch: induction over the generalized subterms of t
involved in JtKη,ρ1

M:E .

37

	A Higher-Order Indistinguishability Logic
	Encoding Protocols
	Formulas
	Freshness and Cryptographic Rules

