MPRI 2.30: Proofs of Security Protocols

2. A Higher-Order Logic for Mechanization

Adrien Koutsos 2022/2023

Limitations of the framework:

- No built-in support for an arbitrary number of sessions. We use an ambient-level induction
- No systematic and user-friendly encoding of protocols.
 We manually defined out@τ, in@τ, etc at ambient level.
- More generally, large part of the reasoning done in the ambient logic. E.g. the logic lacks a temporal component.

All the above are **obstacles** to **mechanizing** the logic.

Solution

A higher-order indistinguishability logic:

- Supports induction at the logical level.
- User-defined mutually-recursive probabilistic procedures:
 execution model (i.e. out@τ, in@τ, etc) can be internalized
- Temporal reasoning can be done easily.
- Bonus: Support generic higher-order reasonings.
- \Rightarrow suitable for mechanized interactive proofs.

A Higher-Order Indistinguishability Logic

HO Indistinguishability Logic: Types

We assume a set B of **base-types** (e.g. **bool**, **message**). Types are defined by

$$\tau := \tau_{\mathsf{b}} \mid \tau \to \tau \qquad (\tau_{\mathsf{b}} \in \mathbb{B})$$

The interpretation $\llbracket \tau \rrbracket_{\mathbb{M}}^{\eta}$ of a type τ w.r.t. a model \mathbb{M} and $\eta \in \mathbb{N}$: $\llbracket \tau_{\mathbf{h}} \rrbracket_{\mathbb{M}}^{\eta} \stackrel{\text{def}}{=} \mathbb{M}_{\mathbf{T}}(\eta) \qquad \llbracket \tau_{\mathbf{1}} \to \tau_{\mathbf{2}} \rrbracket_{\mathbb{M}}^{\eta} \stackrel{\text{def}}{=} \llbracket \tau_{\mathbf{1}} \rrbracket_{\mathbb{M}}^{\eta} \to \llbracket \tau_{\mathbf{2}} \rrbracket_{\mathbb{M}}^{\eta}$

Details

- M must interpret all base-types as non-empty sets.
- there must exists an injection from M_{τb}(η) to bit-strings. (used later to send such values to the adversary)
- built-in types interpretations are fixed.
 Example: [bool]^η_M = {0,1} for every η

We assume a set x of variables ${\mathcal X}$ and

- $\mathcal{N} \subseteq \mathcal{X}$ a set of names, for random samplings. A name $n \in \mathcal{N}$ type must be $\tau_0 \to \tau_1$ with τ_0 finite. (see typing rules next)
- *F*_{built-ins} ⊆ *X* a set of built-ins, which are variables with a restricted interpretations (e.g. ¬, ∧, att). (see semantics next)
- **v** Using variables for everything allows a more unified treatment.

Terms are defined by:

 $\mathsf{t} := \mathsf{x} \mid (\mathsf{t} \mathsf{t}) \mid \lambda(\mathsf{x} : \tau). \mathsf{t} \mid \forall (\mathsf{x} : \tau). \mathsf{t} \mid \mathsf{if} \mathsf{t} \mathsf{then} \mathsf{t} \mathsf{else} \mathsf{t} \quad (\mathsf{x} \in \mathcal{X})$

(as usual, terms are taken modulo α -renaming)

Terms are taken in an environment \mathcal{E} :

$$\mathcal{E} := \emptyset \mid (x : \tau); \mathcal{E} \mid (x : \tau = t); \mathcal{E} \\ (\text{declaration}) \quad (\text{definition})$$

(we require that environments do not bind the same variable twice)

We require that **terms** and **environments** are **well-typed**. We write $\mathcal{E}(x)$ the type of x.

A Higher-Order Indistinguishability Logic: Term Typing

Term typing judgements

Ε

TY.IF $\mathcal{E} \vdash t$: bool			TY.FUN-APP $\mathcal{E} \vdash t_1 : \tau_0 \to \tau_1$
TY.DECL	$\mathcal{E} \vdash t_i : \boldsymbol{\tau}, i \in \{1, 2\}$		$\mathcal{E} \vdash t_2 : \tau_0$
$\overline{\mathcal{E} \vdash x : \mathcal{E}(x)}$	$\mathcal{E} \vdash if t then t_1 else t_2 : \boldsymbol{\tau}$		$\mathcal{E} \vdash t_1 \; t_2 : \tau_1$
Ty.Lambda $\mathcal{E}, x : \tau_0 \vdash t : \tau_1$		TY.FORALL $\mathcal{E}, x : \tau \vdash t : bool$	
$\mathcal{E} \vdash \lambda(x:\tau_{0}).t:\tau_{0} \to \tau_{1}$		$\mathcal{E} \vdash \dot{\forall}(x: \boldsymbol{\tau}). t: \texttt{bool}$	
invironment typing			
Ty-Env. ϵ	$\begin{array}{c} \text{Ty-Env.Decl} \\ \vdash \mathcal{E} \end{array}$	\vdash	$ ext{-Env.Def} \ \mathcal{E} \mathcal{E} \vdash t : \boldsymbol{ au} \ (\mathcal{N} \cup \mathcal{F}_{built-ins})$

 $\overline{\vdash \epsilon} \qquad \overline{\vdash \mathcal{E}, (\mathsf{x}: \boldsymbol{\tau})}$

7

 $\vdash \mathcal{E}, (x: \tau = t)$

Vames and built-ins symbols can only be declared.

Terms are interpreted as η -indexed families of random variables.

probability space: the set T_{M,η} = T^a_{M,η} × T^h_{M,η}, where T^a_{M,η} and T^h_{M,η} are finite same-length set of bit-strings.
 We equip it with the uniform probability measure.
 (T^a_{M,η} for the adversary, T^h_{M,η} for honest functions)

A model \mathbb{M} w.r.t. \mathcal{E} (written $\mathbb{M} : \mathcal{E}$) interprets any **declaration** $(x : \tau) \in \mathcal{E}$ as a family $(X_{\eta})_{\eta \in \mathbb{N}}$ of functions $X_{\eta} : \mathbb{T}_{\mathbb{M},\eta} \to [\![\tau]\!]_{\mathbb{M}}^{\eta}$, which we write $(\mathbb{M}(x)(\eta))_{\eta \in \mathbb{N}}$, with some **restrictions**:

- names are PTIME-computable (in η) random samplings using random in T^h_{M,η} (details later).
- built-ins in *F*_{built-ins} must be PTIME-computable *deterministic* (honest functions) or *adversarial* (random in T^a_{M,η}) functions.

HO Indistinguishability Logic: Term Semantics

The semantics $[t]_{\mathcal{M}\mathcal{L}}^{\eta,\rho}$ of t w.r.t. \mathbb{M} and $\eta \in \mathbb{N}$ is a value in $[\tau]_{\mathcal{M}}^{\eta}$. $[\![\mathbf{x}]\!]_{\mathcal{M},\mathcal{E}}^{\eta,\rho} \stackrel{\text{def}}{=} \mathbb{M}(\mathbf{x})(\eta)(\rho) \qquad (\text{decl.}, \ (\mathbf{x}:\tau) \in \mathcal{E})$ $[\![x]\!]_{\mathbb{M} \cdot \mathcal{E}}^{\eta, \rho} \stackrel{\text{def}}{=} [\![t]\!]_{\mathbb{M} \cdot \mathcal{E}}^{\eta, \rho} \qquad (\text{def.}, (x : \tau = t) \in \mathcal{E})$ $[t t']_{\mathcal{M},\mathcal{C}}^{\eta,\rho} \stackrel{\text{def}}{=} [t]_{\mathcal{M},\mathcal{C}}^{\eta,\rho}([t']_{\mathcal{M},\mathcal{C}}^{\eta,\rho})$ [if t then t₀ else t₁]^{η,ρ} $\stackrel{\text{def}}{=}$ [[t_i]]^{η,ρ} if [[t]]^{η,ρ}_{MA-C} if $\llbracket \lambda(\mathsf{x}:\tau).\,\mathsf{t} \rrbracket_{\mathsf{M}:\mathcal{E}}^{\eta,\rho} \stackrel{\mathsf{def}}{=} \left(a \in \llbracket \tau \rrbracket_{\mathsf{M}}^{\eta} \mapsto \llbracket \mathsf{t} \rrbracket_{\mathsf{M}[\mathsf{x}\mapsto \mathbb{1}^{\eta}]:(\mathcal{E}|\mathsf{x}:\tau)}^{\eta,\rho} \right)$ $[\!\![\dot\forall(\mathsf{x}:\boldsymbol{\tau})\!\!\cdot\!\mathsf{t}]\!]_{\mathbb{M}:\mathcal{E}}^{\eta,\rho} \stackrel{\text{def}}{=} 1 \quad \text{iff. } [\!\![\mathsf{t}]\!]_{\mathbb{M}[\mathsf{x}\mapsto\mathbb{I}_{a}^{\eta}]:(\mathcal{E},\mathsf{x}:\boldsymbol{\tau})}^{\eta} = 1 \text{ for any } a \in [\!\![\boldsymbol{\tau}]\!]_{\mathbb{M}}^{\eta}$ where $\mathbb{1}_{a}^{\eta}$ is the indexed family of functions such that:

•
$$\mathbb{1}^{\eta}_{\mathsf{a}}(\eta)(
ho) = \mathsf{a}$$
 for all $ho \in \mathbb{T}_{\mathbb{M},\eta};$

• $\mathbb{1}^{\eta}_{a}(\eta')(\rho')$ is some arbitrary value in $[\![\tau]\!]^{\eta'}_{\mathbb{M}}$ for any $\eta' \neq \eta$.

A name $n \in \mathcal{N}$ interpretation must be such that

$$\llbracket n \ t \rrbracket_{\mathbb{M}:\mathcal{E}}^{\eta,(\rho_{a},\rho_{h})} = \llbracket n \rrbracket_{\mathbb{M}}(\eta, \llbracket t \rrbracket_{\mathbb{M}:\mathcal{E}}^{\eta,\rho})(\rho_{h})$$

where $[\![n]\!]_{\mathbb{M}}$ is a PTIME in η .

Moreover, $\rho_h \mapsto \llbracket n_0 \rrbracket_{M}(\eta, a)(\rho_h)$ and $\rho_h \mapsto \llbracket n_1 \rrbracket_{M}(\eta, a')(\rho_h)$

- are independent random samplings when $(n_0, a) \neq (n_1, a')$. They must extract \neq random bits from ρ_h .
- have the same distribution when n_0 and n_1 have the same output type (i.e. $\mathcal{E}(n_0) = _ \rightarrow \tau$ and $\mathcal{E}(n_1) = _ \rightarrow \tau$).

Remark

- $\bullet \ \mathcal{E}$ contains a finite number of names.
- names have type $au_0
 ightarrow au_1$ where au_0 is finite.
- $[n]_{\mathbb{M}}$ uses a finite number of bits from ρ_h (since PTIME in η).

 \Rightarrow compatible with requirement that $\mathbb{T}^{\mathsf{h}}_{\mathbb{M},\eta}$ is a set of **finite** tapes.

Notations

• Satisfiability: when $\mathcal{E} \vdash \phi$: bool, we write $\mathbb{M} : \mathcal{E} \models \phi$ if

$$\mathsf{Pr}_{
ho}(\llbracket \phi
rbracket_{\mathbb{M}:\mathcal{E}}^{\eta,
ho}=1)\in \mathsf{o.w.}(\eta)^1$$

- We write $\mathbb{M} : \mathcal{E} \models \mathbb{S}$ if $\mathbb{M} : \mathcal{E} \models \phi$ for every $\phi \in \mathbb{S}$. Remark: \mathbb{S} can be infinite.
- Validity: $\mathcal{E} \models \phi$ if $\mathbb{M} : \mathcal{E} \models \phi$ for every $\mathbb{M} : \mathcal{E}$.

 $^{{}^{1}}f \in \mathsf{o.w.}(\eta)$ iff. $(1-f) \in \mathsf{negl}(\eta)$

Summary:

A model $\mathbb M$ for $\mathcal E$ comprises

• The interpretation domains of base types **B**.

 \Rightarrow yields a type semantics $\llbracket \cdot \rrbracket_{\mathbb{M}}^{\eta}$.

- The probability space $\mathbb{T}_{\mathbb{M},\eta} = \mathbb{T}^{\mathsf{a}}_{\mathbb{M},\eta} \times \mathbb{T}^{\mathsf{h}}_{\mathbb{M},\eta}$.
- The interpretations of declared variables of *E*.
 Defined variables are interpreted by their definitions.
 ⇒ yields a term semantics [[·]^{η,ρ}_{M:E}.

Remarks

We restrict possible models in several ways (more to come):

- finiteness required of some types (e.g. to index names).
- constraints on name and built-ins interpretations.

• . . .

Key ingredients:

- terms are interpreted as arbitrary **random variables**, not necessarily PPTMs.
 - \Rightarrow support **probabilistic user-defined** functions (e.g. in@ τ).
 - ⇒ support **uncomputable** functions.
 - \Rightarrow support quantifiers \forall, \exists over arbitrary types.
- the probability space is finite.
 - \Rightarrow ensures that $(\rho \mapsto \llbracket t \rrbracket_{M,\mathcal{E}}^{\eta,\rho})$ is a random variable.

 $\$ indeed, any function $X : \mathbb{S}_1 \mapsto \mathbb{S}_2$ (where \mathbb{S}_1 is a **finite** probability space and \mathbb{S}_2 is a measurable space) is a measurable function.

Encoding Protocols

HO Indistinguishability Logic: Recursive Definitions

We first extend the HO logic to allow recursive definitions.

Any type τ and order $<\in \mathcal{F}_{\text{built-ins}}$ with type $\tau \to \tau \to \text{bool}$ can be tagged as wf $(\tau, <)$.

⇒ only consider models s.t. $(\llbracket \tau \rrbracket^{\eta}_{\mathbb{M}}, \llbracket < \rrbracket^{\eta}_{\mathbb{M}, \mathcal{E}})$ is well-founded.

We allow well-founded recursion over such types.

Details

- we assume a *fixed* set of **type tags** S_{wf} .
- we assume a *fixed* set S_{ax} of terms of type **bool** (axioms).
- we require that any model $\mathbb M$ is such that $\mathbb M\models\mathbb S_{\mathsf{ax}}$ and

 $(\llbracket \tau \rrbracket_{\mathbb{M}}^{\eta}, \llbracket < \rrbracket_{\mathbb{M},\mathcal{E}}^{\eta})$ is well-founded (for any $wf(\tau, <) \in \mathbb{S}_{wf}$)

HO Indistinguishability Logic: Recursive Definitions

We add a typing rule for recursive definitions:

 $\frac{\begin{array}{c} \mathrm{Ty}\text{-}\mathrm{Env}\text{.}\mathrm{Rec}\text{-}\mathrm{Def}}{\vdash \mathcal{E} \quad \mathcal{E}, x: \tau \vdash t: \tau \quad \mathsf{wf}_{\tau,<}^{x,y}(t) \quad x \not\in \mathcal{N} \cup \mathcal{F}_{\mathsf{built-ins}}}{\vdash \mathcal{E}, \left(x: \tau = \lambda y. t\right)}$

where $wf_{\tau,<}^{x,y}(t)$ is any syntactic condition which checks that

- x is used in η -long form in t.
- recursive calls to x are well-founded, i.e. on arguments t₀ smaller than y:

 $\mathcal{E} \models (\dot{\forall} \vec{\alpha}. \phi \rightarrow t_0 < \mathsf{y}) \quad \text{for any } (\vec{\alpha}, \phi, \mathsf{x} \ t_0) \in \mathcal{ST}(\mathsf{t})$

where $\mathcal{ST}_{\mathcal{E}}^{\text{rec}}(t)$ are the conditioned subterms of t (see next slide).

Example

 $\ell = \lambda(i: int)$ if $i \doteq 0$ then empty else $\langle n \ i, \ell \ (pred \ i) \rangle$

with wf(int, <) and the axiom $\forall (i: int). i \neq 0 \rightarrow \text{pred } i < i.$ 17

HO Indistinguishability Logic: Conditioned Subterms

We let ST(t) be the subterms of t, decorated the (typed) bound variables and the conditions holding at each position.

$$\begin{split} \mathcal{ST}(\mathsf{t}) &\stackrel{\text{def}}{=} \{(\epsilon,\mathsf{true},\mathsf{t})\} \cup \\ \begin{cases} \emptyset & \text{if } \mathsf{t} = \mathsf{x} \in \mathcal{X} \\ (\mathsf{x}:\boldsymbol{\tau}).\mathcal{ST}(\mathsf{t}_0) & \text{if } \mathsf{t} = \mathcal{Q}(\mathsf{x}:\boldsymbol{\tau}).\mathsf{t}_0, \ \mathcal{Q} \in \{\lambda, \dot{\forall}\} \\ \mathcal{ST}(\phi) \cup [\phi]\mathcal{ST}(t_1) \cup [\neg\phi]\mathcal{ST}(t_0) & \text{if } \mathsf{t} = \text{if } \phi \text{ then } \mathsf{t}_1 \text{ else } \mathsf{t}_0 \\ \mathcal{ST}(\mathsf{t}_0) \cup \mathcal{ST}(\mathsf{t}_1) & \text{if } \mathsf{t} = (\mathsf{t}_0 \ \mathsf{t}_1) \end{split}$$

where x is taken fresh in the λ and \forall cases, and where

$$\begin{array}{l} [\phi]S \stackrel{\text{def}}{=} \{ (\vec{\alpha}, \psi \land \phi, \mathsf{t}) \mid (\vec{\alpha}, \psi, \mathsf{t}) \in S \} \\ (\mathsf{x}: \tau).S \stackrel{\text{def}}{=} \{ ((\vec{\alpha}, \mathsf{x}: \tau), \psi, \mathsf{t}) \mid (\vec{\alpha}, \psi, \mathsf{t}) \in S \} \end{array}$$

Example

$$\begin{split} \mathcal{ST}(\langle x,\,\lambda(x_0,x_1:\tau).\,\text{if }x_0< x_1\text{ then }x_0\text{ else }x_1\rangle) &=\\ & \{(\epsilon,\text{true},\langle x,\,\lambda(x_0,x_1:\tau).\,\text{if }x_0< x_1\text{ then }x_0\text{ else }x_1\rangle)\}\\ & \cup \{(\epsilon,\text{true},x),(\epsilon,\text{true},\lambda(x_0,x_1:\tau).\,\text{if }x_0< x_1\text{ then }x_0\text{ else }x_1)\}\\ & \cup \{(x_0,\text{true},\lambda(x_1:\tau).\,\text{if }x_0< x_1\text{ then }x_0\text{ else }x_1)\}\\ & \cup \{((x_0,x_1),\text{true},\text{if }x_0< x_1\text{ then }x_0\text{ else }x_1)\}\\ & \cup \{((x_0,x_1),\text{true},x_0< x_1)\}\\ & \cup \{((x_0,x_1),\text{true},\lambda(x_0< x_1,x_0)\}\\ & \cup \{((x_0,x_1),\text{true }\dot{\wedge}x_0< x_1,x_1)\} \end{split}$$

Example: encoding of Basic Hash

$$\begin{split} & \mathsf{in}@t = \mathsf{match} \ t \ \mathsf{with} \ \mathsf{init} \to d \\ & | _ \to \mathsf{att}(\mathsf{frame}@\mathsf{pred} \ t) \\ & \mathsf{out}@t = \mathsf{match} \ t \ \mathsf{with} \ \mathsf{init} \to d \\ & | \ \mathsf{T}(\mathsf{A},\mathsf{i}) \to \langle \mathsf{n}(\mathsf{A},\mathsf{i}),\mathsf{h}(\langle \mathsf{in}@t,\mathsf{n}(\mathsf{A},\mathsf{i})\rangle,\mathsf{k} \ \mathsf{A}) \rangle \\ & | \ \mathsf{R} \ \mathsf{j} \to \ldots \end{split}$$

 $\begin{array}{l} \mathsf{frame@}t = \mathtt{match} \ t \ \mathtt{with} \ \mathtt{init} \rightarrow d \\ | \ _ \rightarrow \langle \mathtt{frame@pred} \ t, \mathtt{out@}t \rangle \end{array}$

Formulas

Formulas do not change, except that we use higher-order terms.

$$\begin{split} \Phi &:= \top \mid \bot \\ & \mid \Phi \land \Phi \mid \Phi \lor \Phi \mid \Phi \to \Phi \mid \neg \Phi \\ & \mid \forall (\mathsf{x} : \tau) . \Phi \mid \exists (\mathsf{x} : \tau) . \Phi \qquad (\mathsf{x} \in \mathcal{X}) \\ & \mid \mathsf{t}_1, \dots, \mathsf{t}_n \sim_n \mathsf{t}_{n+1}, \dots, \mathsf{t}_{2n} \quad (\mathsf{t}_1, \dots, \mathsf{t}_{2n} \text{ higher-order terms}) \end{split}$$

Standard FO semantics with η -indexed sequences of random variables interpretation domains.

 $[\![\Phi]\!]_{\mathbb{M}:\mathcal{E}} \in \{0,1\}$ is as expected for boolean connective and FO quantifiers. E.g.:

$$\llbracket \top \rrbracket_{\mathcal{M}:\mathcal{E}} \stackrel{\text{def}}{=} 1 \qquad \llbracket \Phi \land \Psi \rrbracket_{\mathcal{M}:\mathcal{E}} \stackrel{\text{def}}{=} \llbracket \Phi \rrbracket_{\mathcal{M}}^{\sigma} \text{ and } \llbracket \Psi \rrbracket_{\mathcal{M}}^{\sigma}$$
$$\llbracket \neg \Phi \rrbracket_{\mathcal{M}:\mathcal{E}} \stackrel{\text{def}}{=} \text{not } \llbracket \Phi \rrbracket_{\mathcal{M}}^{\sigma}$$
$$\forall (\mathsf{x}:\tau).\Phi \rrbracket_{\mathcal{M}:\mathcal{E}} \stackrel{\text{def}}{=} 1 \quad \text{if } \forall A \in \left(\llbracket \tau \rrbracket_{\mathcal{M}}^{\eta} \right)_{\eta \in \mathbb{N}}, \llbracket \Phi \rrbracket_{\mathcal{M}[\mathsf{x} \mapsto A]:(\mathcal{E},\mathsf{x}:\tau)} = 1$$

HO Indistinguishability Logic: Formula Semantics

 \sim is still interpreted as computational indistinguishability.

 $\llbracket \vec{t}_1 \sim \vec{t}_2
rbracket_{M:\mathcal{E}} = 1$ iff. \forall PPTM \mathcal{A} , $\mathsf{Adv}^{\eta}_{\mathbb{M}:\mathcal{E}}(\mathcal{A}: \vec{t}_1 \sim \vec{t}_2)$ is negligible.

Execution Model

- Values in $[\![\tau_b]\!]_{\mathbb{M}}^{\eta}$ are encoded as bitstrings and sent to \mathcal{A} .
- Higher-order terms given to A are oracles, which A can query on any input it can compute, any number of times. Remark: queries can yield more oracles, which A can in turn query (e.g. for type τ₀ → (τ₁ → τ₂)).
- We require that terms in $\vec{t_1}$ and $\vec{t_2}$ have types $\tau_b^0 \to ... \to \tau_b^n$ (i.e. no higher-order arguments).

HO Indistinguishability Logic: Proof System

Our rules still apply, though with minor adaptations.

Example: function application splits into two rules

 $\begin{array}{ll} \text{FA-APP} & \text{FA-CONST} \\ \hline \vec{u_1}, t_1, t_1' \sim \vec{u_2}, t_2, t_2' & \hline \vec{u_1} \sim \vec{u_2}, f \\ \hline \vec{u_1}, t_1, t_1' \sim \vec{u_2}, t_2, t_2' & \hline \vec{u_1}, f \sim \vec{u_2}, f \end{array} (\text{where } f \in \mathcal{F}_{\text{built-ins}})$

Moreover, FA-APP can be extended to apply under a λ :

$$\begin{array}{c} \operatorname{FA-App}_{\lambda} \\ \vec{u}_{1}, (\lambda(x:\tau), t_{1}), (\lambda(x:\tau), t_{1}') \\ \\ \sim \quad \vec{u}_{2}, (\lambda(x:\tau), t_{2}), (\lambda(x:\tau), t_{2}') \\ \hline \\ \vec{u}_{1}, \lambda(x:\tau), (t_{1}, t_{1}') \sim \quad \vec{u}_{2}, \lambda(x:\tau), (t_{2}, t_{2}') \end{array}$$

Remark: soundness proof requires to simulate the oracles.

HO Indistinguishability Logic: Formula and Term Quantifiers

We have two kind of **quantifiers**: term \forall and formula \forall .

But we have only one kind of variable! Why?

Proposition

For every model \mathbb{M} of \mathcal{E} , we have:

 $\mathbb{M}: \mathcal{E} \models \forall (\mathsf{x}: \boldsymbol{\tau}). \ (\phi \sim \mathsf{true}) \quad \text{ iff. } \quad \mathbb{M}: \mathcal{E} \models \left(\stackrel{\cdot}{\forall} (\mathsf{x}: \boldsymbol{\tau}). \ \phi \right) \sim \mathsf{true}$

Preliminary Remark

A function $f : \mathbb{S} \mapsto [0, 1]$ is **overwhelmingly true**, written $f(\eta) \in \text{o.w.}(\eta)$, if $(1 - f(\eta)) \in \text{negl}(\eta)$.

For any term $\mathcal{E} \vdash \phi$: **bool** and model M:

$$\mathbb{M}: \mathcal{E} \models \phi \sim \text{true} \quad \text{iff.} \quad \mathsf{Pr}_{\rho}(\llbracket \phi \rrbracket_{\mathbb{M}:\mathcal{E}}^{\eta,\rho}) \in \text{o.w.}(\eta)$$

Proof: \Rightarrow take \mathcal{A} to be the identity. \Leftarrow trivial up-to-bad reasoning.

HO Indistinguishability Logic: Formula and Term Quantifiers

Proof of the Proposition

 \Rightarrow case. Assume the following:

$$\mathbb{M}: \mathcal{E} \models (\forall (x: \tau). \phi \sim \mathsf{true}) \tag{(*)}$$

Let $A \in (\llbracket \tau \rrbracket_{\mathbb{M}}^{\eta})_{\eta \in \mathbb{N}}$ be a sequence of random variables. We must show $\Pr\left(\llbracket \phi \rrbracket_{\mathbb{M}[x \mapsto A]:(\mathcal{E}, x: \tau)}^{\eta, \rho}\right) \in \text{o.w.}(\eta)$

where the probability is over $\rho \in \mathbb{T}_{\mathbb{M},\eta}$.

$$\begin{aligned} \Pr\left(\llbracket\phi\rrbracket_{\mathcal{M}[x\mapsto\mathcal{A}]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) &= \Pr\left(\llbracket\phi\rrbracket_{\mathcal{M}[x\mapsto\mathcal{H}]}^{\eta,\rho} \\ &\geq \Pr\left(\bigcap_{a\in\llbracket\tau\rrbracket_{\mathcal{M}}^{\eta}}\llbracket\phi\rrbracket_{\mathcal{M}[x\mapsto\mathcal{H}_{a}^{\eta}]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) \\ &\geq \Pr\left(\bigcap_{a\in\llbracket\tau\rrbracket_{\mathcal{M}}^{\eta}}\llbracket\phi\rrbracket_{\mathcal{M}[x\mapsto\mathcal{H}_{a}^{\eta}]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) \\ &= \Pr\left(\llbracket\dot{\forall}(x:\tau),\phi\rrbracket_{\mathcal{M}:\mathcal{E}}^{\eta,\rho}\right) \\ &\in \text{o.w.}(\eta) \qquad (\text{using }(\star)) \end{aligned}$$

HO Indistinguishability Logic: Formula and Term Quantifiers

 \leftarrow **case.** Assume that

$$\mathbb{M}: \mathcal{E} \models \forall (x:\tau). (\phi \sim \mathsf{true}) \tag{(\dagger)}$$

We need to show that $\Pr\left(\left[\!\left[\dot{\forall}(x:\tau),\phi\right]\!\right]^{\eta,\rho}_{\mathbb{M}:\mathcal{E}}\right) \in \mathrm{o.w.}(\eta).$

Let A be the family of functions choosing, for any η and ρ , a value $a \in [\![\tau]\!]_{\mathbb{M}}^{\eta}$ making ϕ false when evaluated on tape ρ

$$A(\eta)(\rho) \stackrel{\text{def}}{=} \begin{cases} \text{choose} \{ a \in \llbracket \tau \rrbracket_{\mathbb{M}}^{\eta} \mid \llbracket \neg \phi \rrbracket_{\mathbb{M}[x \mapsto \mathbb{1}_{a}^{\eta}]:(\mathcal{E}, x:\tau)}^{\eta} \} & \text{if non-empty} \\ a_{\text{witness}} & \text{otherwise} \end{cases}$$

where a_{witness} is an arbitrary value in $[\![\tau]\!]_{\mathbb{M}}^{\eta}$ (recall that $[\![\tau]\!]_{\mathbb{M}}^{\eta} \neq \emptyset$), and choose(\mathbb{S}) is an arbitrary choice function for set \mathbb{S} .

Since all functions from $\mathbb{T}_{\mathbb{M},\eta}$ to $\{0;1\}$ are random variables (thanks to $\mathbb{T}_{\mathbb{M},\eta}$'s finitness), we get that, by applying (†) to A

$$\Pr\left(\llbracket\phi\rrbracket_{\mathbb{M}[x\mapsto A]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) \in \text{o.w.}(\eta) \tag{\ddagger}$$

Then:

$$\begin{aligned} \mathsf{Pr}\left(\llbracket\phi\rrbracket_{\mathbb{M}[x\mapsto\mathcal{A}]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) &= \mathsf{Pr}\left(\llbracket\phi\rrbracket_{\mathbb{M}[x\mapsto\mathbb{1}^{\eta}_{\mathcal{A}(\eta)(\rho)}]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) \\ &= \mathsf{Pr}\left(\bigcap_{a\in\llbracket\tau\rrbracket_{\mathbb{M}}^{\eta}}\llbracket\phi\rrbracket_{\mathbb{M}[x\mapsto\mathbb{1}^{\eta}_{a}]:(\mathcal{E},x:\tau)}^{\eta,\rho}\right) \\ &= \mathsf{Pr}\left(\llbracket\dot{\forall}(x:\tau),\phi\rrbracket_{\mathbb{M}:\mathcal{E}}^{\eta,\rho}\right) \\ &\in \mathrm{o.w.}(\eta) \qquad (\mathrm{using}\ (\ddagger)) \end{aligned}$$

Our **reachability proof system** hence supports the usual rules for **arbitrary term quantifiers**, e.g.

$$\frac{\mathcal{E}, \mathsf{x} : \boldsymbol{\tau}; \boldsymbol{\Gamma} \vdash \boldsymbol{\phi}}{\mathcal{E}; \boldsymbol{\Gamma} \vdash \boldsymbol{\dot{\forall}}(\mathsf{x} : \boldsymbol{\tau}). \boldsymbol{\phi}}$$

 \Rightarrow Allow for generic higher-order reasoning in terms.

Freshness and Cryptographic Rules

We allow **names** (i.e. random samplings) over arbitrary types. ⇒ names can have collisions.

• e.g. $Pr(\llbracket n_0 \doteq n_1 \rrbracket)$ is non-negligible if $n_0, n_1 : bool$.

Large names are names with around η random bits:

• for any name $n : \tau_0 \to \tau$ over a large type τ (e.g. message), we ask that for any $\eta \in \mathbb{N}$, $a \in [\![\tau_0]\!]_{\mathbb{M}}^{\eta}$ and $b \in [\![\tau]\!]_{\mathbb{M}}^{\eta}$,

$$\mathsf{Pr}_{\rho_{\mathsf{h}}}\left(\llbracket \mathsf{n} \rrbracket_{\mathsf{M}}(\eta, \mathsf{a})(\rho_{\mathsf{h}}) = b\right) \leq \frac{1}{2^{c_{\tau} \cdot \eta}}$$

where $c_{\tau} > 0$ is a positive real number.

HO Indistinguishability Logic: Name Collision

How to adapt the rule exploiting **probabilistic independence**? Base Logic Rule

 $\overline{t \doteq n \sim \text{false}}$ when $n \not\in \text{st}(t)$

where *t* is a ground low-order term.

Rule for Name Collision (first tentative)

 \mathcal{E} with only declarations of built-ins and names (\approx ground-terms). t, t₀ well-typed in \mathcal{E} and (n : _ $\rightarrow \tau$) $\in \mathcal{E}$ where τ is large

 $t \doteq n \ t_0 \sim \mathsf{false}$

when n does not appear in t, t_0 and all definitions in \mathcal{E} . \Rightarrow not very useful!

HO Indistinguishability Logic: Name Collision

How to do better? Lets see on an example.

 ${\cal E}$ with only declarations of built-ins and names, except for a single inductive definition:

 $\ell = \lambda(i: int)$ if $i \doteq 0$ then empty else $\langle n i, \ell (pred i) \rangle$

where $n : int \rightarrow message$.

Rule (special case)

Terms t, t₀ well-typed in \mathcal{E} that **do not use** ℓ **and** n:

$$(\operatorname{\mathtt{att}}(\ell \ t) \stackrel{.}{=} n \ t_0) \stackrel{.}{
ightarrow} t_0 \leq t \sim \mathsf{true}$$

Indeed, att(ℓ t) only depends on the random samplings n 1,...,n t, which are independent from n t₀ when t < t₀. \Rightarrow requires in-depth analysis of recursive definitions. Key Ideas: conditions under which this name collision rule is sound

$$t \doteq n \ t_0 \rightarrow \neg \phi_{\mathsf{fresh}} \sim \mathsf{true}$$

• Collect all occurrences at which name n is sampled in $t,t_{0}, \\ \mbox{including in recursive calls}.$

⇒ use the set of generalized subterms $ST_{\mathcal{E}}^{\text{rec}}(\cdot)$. ($ST_{\mathcal{E}}^{\text{rec}}(t)$ can be infinite)

φ_{fresh} must ensure independence w.r.t. (n t₀), i.e. that all generalized occurrences (n s) in ST_ε^{rec}(t, t₀) are s.t. s ≠ t₀.

 $\mathcal{ST}_{\mathcal{E}}^{\text{rec}}(t)$ are the generalized subterms of t.

$$\begin{split} \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{x}) &\stackrel{\text{def}}{=} \{(\epsilon, \mathsf{true}, \mathsf{x})\} & \text{if } (\mathsf{x} : \tau) \in \mathcal{E} \text{ or } \mathsf{x} \notin \mathcal{E} \\ \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{x}) &\stackrel{\text{def}}{=} \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{t}_{0}) & \text{if } (\mathsf{x} : \tau = \mathsf{t}_{0}) \in \mathcal{E} \\ \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{x} \mathsf{t}) &\stackrel{\text{def}}{=} \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{t}_{0}\{\mathsf{y} \mapsto \mathsf{t}\}) & \text{if } (\mathsf{x} : \tau = \lambda \mathsf{y}, \mathsf{t}_{0}) \in \mathcal{E} \\ \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{t} \mathsf{t}_{0}) &\stackrel{\text{def}}{=} \frac{\{(\epsilon, \mathsf{true}, \mathsf{t} \mathsf{t}_{0})\} \cup}{\mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{t}) \cup \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{t}_{0})} & \text{if no other case applies} \end{split}$$

where the if-then-else and quantifier cases are as in $\mathcal{ST}(\cdot)$, and y is taken fresh in the λ case.

 $\mathcal{ST}_{\mathcal{E}}^{rec}(\cdot)$ ignores variable that can be unrolled into their definitions.

Rule for Name Collision

 \mathcal{E} with only declarations of built-ins and names (\approx ground-terms). t, t₀ well-typed in \mathcal{E} and (n : _ $\rightarrow \tau$) $\in \mathcal{E}$ where τ is large

$$\mathsf{t} \doteq \mathsf{n} \ \mathsf{t}_0 \rightarrow \neg \phi_{\mathsf{fresh}} \sim \mathsf{true}$$

if t, t₀ is eta-long form and if, for every model $M : \mathcal{E}$, $\eta \in \mathbb{N}$ and ρ :

$$\llbracket \phi_{\mathsf{fresh}} \rrbracket_{\mathsf{M}:\mathcal{E}}^{\eta,
ho} = 1$$
 implies $\llbracket \phi \rrbracket_{\mathsf{M}:\mathcal{E}}^{\eta,
ho} = 1$ for every $\phi \in \mathbb{S}$

where S is a (possibly infinite) set formulas stating that n t₀ is **not** sampled in t, t₀.

$$\mathbb{S} \stackrel{\text{def}}{=} \left\{ (\dot{\forall} \vec{\alpha}.\psi \Rightarrow \mathsf{s} \neq \mathsf{t}_0) \mid (\vec{\alpha},\psi,\mathsf{n} \ \mathsf{s}) \in \mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{t},\mathsf{t}_0) \right\}$$

Proof: On the blackboard, using the Proposition shown later.

Example

Assume t,t_0 do not use n nor $\ell.$

$$\big(\text{att}(\ell \ t) \mathop{\doteq} n \ t_0\big) \stackrel{.}{\rightarrow} t_0 \leq t \sim \text{true}$$

All occurrences of name n in $\mathcal{ST}_{\mathcal{E}}^{\mathsf{rec}}(\mathsf{att}(\ell t))$ are of the form

$$(\epsilon, \mathsf{t} \neq \mathsf{0} \land \mathsf{pred} \ \mathsf{t} \stackrel{\cdot}{\neq} \mathsf{0} \stackrel{\cdot}{\land} \cdots \stackrel{\cdot}{\land} \mathsf{pred}^{j} \ \mathsf{t} \stackrel{\cdot}{\neq} \mathsf{0}, \mathsf{n} \ (\mathsf{pred}^{j} \ \mathsf{t}))$$

for $j \in \mathbb{N}$ (there are infinitely many occurrences).

All of these are **guaranteed fresh** by the formula $t < t_0$:

$$(\mathsf{t} < \mathsf{t}_0) \stackrel{.}{
ightarrow} (\mathsf{pred}^j \ \mathsf{t} \stackrel{.}{\neq} \mathsf{t}_0)$$

Hence t < t₀ is a suitable candidate for ϕ_{fresh} , yielding the rule

$$\left(\mathsf{att}(\ell \ t) \stackrel{.}{=} \mathsf{n} \ t_0 \right) \stackrel{.}{\rightarrow} \stackrel{.}{\neg} (t < t_0) \sim \mathsf{true}$$

$$\Leftrightarrow \quad \left(\mathsf{att}(\ell \ t) \stackrel{.}{=} \mathsf{n} \ \mathsf{t}_0 \right) \stackrel{.}{\to} \mathsf{t}_0 \leq \mathsf{t} \sim \mathsf{true}$$

HO Indistinguishability Logic: Name Collision

The semantics of a term t w.r.t. a model \mathbb{M} : \mathcal{E} and two different tapes ρ_1 and ρ_2 is identical, if the interpretation of declared variables by \mathbb{M} coincides on ρ_1 and ρ_2 .

Proposition

Let t well-typed in \mathcal{E} in eta-long form. Then $[t]_{\mathfrak{M}:\mathcal{E}}^{\eta,\rho_1} = [t]_{\mathfrak{M}:\mathcal{E}}^{\eta,\rho_2}$ if

 $\mathbb{M}(x)(\eta)(\rho_1)(a) = \mathbb{M}(x)(\eta)(\rho_2)(a) \quad \text{with } a \stackrel{\text{def}}{=} \llbracket \vec{u} \rrbracket_{\mathbb{M}':\mathcal{E},\vec{\alpha}}^{\eta,\rho_1}$

for all $(\vec{\alpha}, \phi, (x \ \vec{u})) \in S\mathcal{T}_{\mathcal{E}}^{\mathsf{rec}}(t)$ such that:

- x is a variable declaration bound in \mathcal{E} (not in $\vec{\alpha}$)
- \mathbb{M}' extends \mathbb{M} into a model of $(\mathcal{E}, \vec{\alpha})$
- $\llbracket \phi \rrbracket_{\mathbb{M}':\mathcal{E},\vec{\alpha}}^{\eta,\rho_1} = 1$

Proof Sketch: induction over the generalized subterms of t involved in $[t]_{\mathbb{M}:\mathcal{E}}^{\eta,\rho_1}$.