
MPRI 2.30: Proofs of Security Protocols

1. The CCSA Approach to Computational Security

Adrien Koutsos

2022/2023

Introduction

Introduction

The Computationally Complete Symbolic Attacker (CCSA) [2] is a
symbolic approach in the computational model to verify security
protocols.

Its key ingredients are:

• Interpret a protocol execution as the sequence of terms
seen by the adversary (the frame).

• Interpret terms as PTIME-computable bitstring distributions.
I Functions symbol (e.g. the pair < _,_ >) are functions over

bitstrings.
I Names (e.g. n) are (uniform) distributions over bitstrings.

• Use cryptographic hardness assumptions (e.g. IND-CCA).

• Symbolic approach: no probabilities, no security parameter.

2

Protocols as Sequences of Terms

Example of a Protocol

To illustrate what terms we need to consider, we consider a simple
authentication protocol:

The Private Authentication (PA) Protocol, v1

1 : A→ B : ν nA. out(cA, {〈pkA , nA〉}pkB
)

2 : B→ A : ν nB. in(cA, x). out(cB, {〈π2(dec(x, skA)) , nB〉}pkA
)

where pkA ≡ pk(kA) and pkB ≡ pk(kB).

Notation: we use ≡ to denote syntactic equality of terms.

3

Terms

We use terms to model protocol messages, built upon:
• Names N , e.g. nA, nB , for random samplings.
• Function symbols F , e.g.:

A, B, 〈_ , _〉, π1(_), π2(_), {_}__, pk(_), sk(_),

if_then_else_, _ .
= _, _

.
∧_, _

.
∨_, _ .→_

Examples

pk(kA) {〈pkA , nA〉}pkB
π1(nA)

Types. Also, each function symbol f ∈ F comes with a type:

type(f) = (τ1 ? · · · ? τn)→ τ

For now, we use the message and bool types. We require that
terms are well-typed. 4

Protocol Constructs

But this is not enough to translate a protocol execution into a
sequence of terms. We also need to:

• model inputs of the protocol as terms.

• account for protocol branching (i.e. if φ then P1 else P2).

Moreover, we forbid unbounded replication !, since we want to
build finite sequences of terms.
We will discuss how to retrieve replication briefly later.

5

Protocols as Sequences of Terms

Protocol Inputs

Inputs

The PA Protocol, v1

1 : A→ B : ν nA. out(cA, {〈pkA , nA〉}pkB
)

2 : B→ A : ν nB. in(cA, x). out(cB, {〈π2(dec(x , skA)) , nB〉}pkA
)

How do we represent the adversary’s inputs?
• We use adversarial functions symbols att ∈ G,

which takes as input the current knowledge of the adversary.
• Intuitively, att can be any probabilistic PTIME computation.

Example: Terms for PA, v1

t1 ≡ {〈pkA , nA〉}pkB

t2 ≡ {〈π2(dec(att(t1) , skA)) , nB〉}pkA

6

Inputs

More generally, if:

• there has already been n outputs, represented by the terms
t1, . . . , tn;

• and we are doing the j-th input since the protocol started;

then the input bitstring is represented by:

attj(t1, . . . , tn)

where attj ∈ G is an adversarial function symbol of arity n.

 j allows to have different values for consecutive inputs.

7

Terms

We extend our set of terms accordingly:

• Names N .

• Variables X .
• Function symbols F .
• Adversarial function symbols G, of any arity.

We note this set of terms T (F ,G,N ,X).

We will see the use of variables in X later.

8

Protocols as Sequences of Terms

Protocol Branching

Protocol Branching

In our first version of PA, B does not check that its comes from A.
We propose a second version fixing this:

The PA Protocol, v2

1 : A→ B : ν nA. out(cA, {〈pkA , nA〉}pkB
)

2 : B→ A : ν nB. in(cA, x). if π1(d)
.

= pkA

then out(cB, {〈π2(d) , nB〉}pkA
)

else out(cB, {0}pkA
)

where d ≡ dec(x, skA).

 In the else branch, we return an encryption, to hide to the
adversary which branch was taken.

9

Protocol Branching

The PA Protocol, v2

1 : A→ B : ν nA. out(cA, {〈pkA , nA〉}pkB
)

2 : B→ A : ν nB. in(cA, x). if π1(d)
.

= pkA

then out(cB, {〈π2(d) , nB〉}pkA
)

else out(cB, {0}pkA
)

The bitstring outputted in the second message of the protocol
depends on which branch was taken.

Moreover, the adversary may not know which branch was taken.

⇒ branching is pushed (or folded) in the outputted terms, using
the if_then_else_ function symbol.

10

Protocol Branching

Example: Terms for PA, v2

t1 ≡ {〈pkA , nA〉}pkB

t2 ≡ if π1(d1)
.

= pkA

then {〈π2(d1) , nB〉}pkA

else {0}pkA

where d1 ≡ dec(att(t1), skA).

11

Folding

Folding

We describe a systematic method to compute, given a process P
and a trace tr of observable actions, the terms representing the
outputted messages during the execution of P over tr.

This is the folding of P over tr.

We deal with inputs and protocol branching using the two
techniques we just saw.

12

Non-Determinism and Computational Semantics

First, we require that processes are deterministic.

Indeed, consider a simple process:

P = out(c, t0) | out(c, t1)

• in a symbolic setting, this is a non-deterministic choice
between t0 and t1.

• in a computational setting, the semantics of P is unclear: how
do non-determinism and probabilities interacts?

Hence, we choose to forbid such process: we only consider
action-deterministic processes.

13

Action-Deterministic Processes

A process P is action-deterministic if the observable executions,
starting from P , is described by a deterministic transition system.

Action-deterministic Process

A configuration A is action-deterministic iff for any A→∗ A′, for
any observable action α, if A′ α→ A1 and A′

α→ A2 then A1 = A1,
for any term interpretation domain.

P is action-deterministic if the initial configuration (P, ∅, ∅) is.

14

Action-Deterministic Processes: Exercise

Exercise
Determine if the following protocols are action-deterministic.

out(c, t1) | in(c, x). out(c, t2)

if b then out(c, t1) else in(c, x). out(c, t2)

out(c, t1) | if b then out(c, t2) else out(c0, t3)

15

Folding

Folding Algorithm

Folding Configuration

Folding configuration

A folding configuration is a tuple (Φ;σ; j ; Π1, . . . ,Πl) where:

• Φ is a sequence of terms (in T (F ,G,N ,X)).

• σ is a finite sequence of mappings (x 7→ t) where t is a term.

• j ∈ N.

• for every i , Πi = (Pi , bi) where Pi is a protocol and bi is a
boolean term.

16

Folding Configuration: Intuition

In a folding configuration (Φ;σ; j ; Π1, . . . ,Πl):

• Φ is the frame, i.e. the sequence of terms outputted since the
execution started.

• σ records inputs, it maps input variable to their
corresponding term.

• j counts the number of inputs since the execution started.

• (P, b) represent the protocol P if b is true (and is null
otherwise).
Using this interpretation, Π1, . . . ,Πl is the current process.

Initial configuration: (ε; ∅; 0; (P,>))

17

Folding: New and Branching Rules

Rule for protocol branching:

(Φ;σ; j ; (if b then P1 else P2, b
′),Π1, . . . ,Πl)

↪→ (Φ;σ; j ; (P1, b
′ ∧ b), (P2, b

′ ∧ ¬b),Π1, . . . ,Πl)

Rule for new:

(Φ;σ; j ; (ν n,P, b),Π1, . . . ,Πl)

↪→ (Φ;σ; j ; (P[n 7→ nf], b),Π1, . . . ,Πl)

if nf does not appear in the lhs configuration

↪→-irreducibility

A folding configuration K is ↪→-irreducible if for any K ′, we have
K 6↪→ K ′.

18

Folding: Input Rule

Rule for inputs:

(Φ;σ; j ; (in(c, x).P1, b1), . . . , (in(c, x).Pn, bn),Π1, . . . ,Πl)

in(c)
↪→ (Φ;σ[x 7→ attj(Φ)]; j + 1; (P1, b1), . . . , (Pn, bn),Π1, . . . ,Πl)

if x 6∈ dom(σ), the lhs folding configuration is ↪→-irreducible and if
for every i , Π1 does not start by an input on c.

Alternative
If the computational semantics of processes tell the adversary if
an input succeeded or not, we replace Φ (in the rhs) by:

Φ,
∨̇

1≤i≤n bi

19

Folding: Output Rule

Rule for outputs:

(Φ;σ; j ; (out(c, t1).P1, b1), . . . , (out(c, tn).Pn, bn),Π1, . . . ,Πl)

out(c)
↪→ (Φ, tσ;σ; j ; (P1, b1), . . . , (Pn, bn),Π1, . . . ,Πl)

if the lhs folding configuration is ↪→-irreducible and if for every i ,
Π1 does not start by an output on c and:

t ≡ if b1 then t1 else . . . if bn then tn else error

 The input and output rules makes sense because we restrict
ourselves to action-deterministic processes.

Remark: we omit the error message when (
∨̇

1≤i≤n bi)⇔ true.

20

Folding

A folding observable action a is either in(c) or out(c).

Given an action-deterministic process P and a trace tr of
folding observable, if:

(ε; ∅; 0; (P,>))
tr
↪→ (Φ;_;_;_)

then Φ is the folding of P over tr, denoted fold(P, tr).

21

Folding: Exercises

Exercise
What are all the possible foldings of the following protocols?

in(c, x). out(c, t) out(c, t1) | in(c0, x). out(c0, t2)

if b then out(c, t1) else out(c, t2)

if b then out(c1, t1) else out(c2, t2)

Exercise
Extend the folding algorithm with a rule allowing to handle
processes with let bindings.

22

Semantics of Terms

Semantics of Terms

We showed how to represent protocol execution, on some fixed
trace of observables tr, as a sequence of terms.

Intuitively, the terms corresponds to PTIME-computable
bitstring distributions.

Example

If 〈_ , _〉 is the concatenation, and samplings are done uniformly
at random among bitstrings of length η ∈ N, then folding:

ν n0, ν n1, out(c, 〈n0 , 〈00 , n1〉〉) yields 〈n0 , 〈00 , n1〉〉

which represent a distribution over bitstrings of length 2 · η + 2,
where all bits are sampled uniformly and independently, except for
the bits at positions η and η + 1, which are always 0.

23

Semantics of Terms

We interpret t ∈ T (F ,G,N ,X) as a Probabilistic
Polynomial-time Turing machine (PPTM), with:

• a working tape (also used as input tape);

• two read-only infinite tapes ρ = (ρp, ρa) for protocol and
adversary randomness.

We let D be the set of such machines.

 The machine must be polynomial in the size of its input on the
working tape only (obviously).

24

Term Interpretation

The interpretation JtKσM is parameterized by:

• a valuation σ : X 7→ D of variables as PPTMs;

• a computational modelM, which interprets function
symbols.

We often omitM, as it is fixed throughout the interpretation.

We now define the machine JtKσ ∈ D, by defining its behavior for
every η ∈ N and pairs of random tapes ρ = (ρp, ρa).

25

Term Interpretation: Function Symbols

Function symbols interpretations is just composition.

For function symbols in f ∈ F , we simply apply Jf KM:

Jf (t1, . . . , tn)Kσ(1η, ρ)
def
= Jf KM(Jt1Kσ(1η, ρ), . . . , JtnKσ(1η, ρ))

Adversarial function symbols g ∈ G also have access to ρa:

Jg(t1, . . . , tn)Kσ(1η, ρ)
def
= JgKM(Jt1Kσ(1η, ρ), . . . , JtnKσ(1η, ρ), ρa)

Remark: Jf KM and JgKM are deterministic (all randomness must
come explicitly, from ρ).

26

Term Interpretation: Variables and Names

For variables in x ∈ X , we use σ:

JxKσ(1η, ρ)
def
= σ(x)(1η, ρ),

Names n ∈ G are interpreted as uniform random samplings
among bitstrings of length η, extracted from ρp:

JnKσ(1η, ρ)
def
= Mn(η, ρp)

For every pair of different names n0, n1, we require that Mn0 and
Mn1 extracts disjoint parts of ρp.
 Hence different names are independent random samplings.

27

Term Interpretation: Builtins

We force the interpretation of some function symbols.

• if_then_else_ is interpreted as branching:

Jif b then t1 else t2Kσ(1η, ρ)
def
=

Jt1Kσ(1η, ρ) if Jt1Kσ(1η, ρ) = 1

Jt2Kσ(1η, ρ) otherwise

• _ .
= _ is interpreted as an equality test:

Jt1
.

= t2Kσ(1η, ρ)
def
=

1 if Jt1Kσ(1η, ρ) = Jt2Kσ(1η, ρ)

0 otherwise

Similarly, we force the interpretations of
.
∧,

.
∨, .→, true, false.

28

A First-Order Logic for
Indistinguishability

A First-Order Logic for Indistinguishability

We now present a logic, to state (and later prove) properties
about bitstring distributions.

This is a first-order logic with a single predicate ∼,1 representing
computational indistinguishability.

φ := > | ⊥
| φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ
| ∀x.φ | ∃x.φ (x ∈ X)

| t1, . . . , tn ∼n tn+1, . . . , t2n (t1, . . . , t2n ∈ T (F ,G,N ,X))

Remark: we use
.
∧,

.
∨, .→ in for the boolean function symbols in

terms, to avoid confusion with the boolean connectives in formulas.

1Actually, one predicate ∼n of arity 2n for every n ∈ N.
29

Semantics of the Logic

The logic has a standard FO semantics, using D as interpretation
domain and interpreting ∼ as computational indistinguishability.

JφKσM ∈ {True,False} is as expected for boolean connective and
FO quantifiers. E.g.:

J>KσM
def
= True Jφ ∧ ψKσM

def
= JφKσM and JψKσM

J¬φKσM
def
= not JφKσM

J∀x.φKσM
def
= True if ∀m ∈ D, JφKσ[x7→m]

M
def
= True

30

Semantics of the Logic

Finally, ∼n is interpreted as computational indistinguishability.

Jt1, . . . , tn ∼n s1, . . . , snKσM = True

if, for every PPTM A with a n + 1 input (and working) tapes, and
a single infinite random tape:∣∣∣∣∣ Prρ (A(1η, (JtiKσM(1η, ρ))1≤i≤n, ρa) = 1)

− Prρ (A(1η, (JsiKσM(1η, ρ))1≤i≤n, ρa) = 1)

∣∣∣∣∣ (?)

is a negligible function of η.

The quantity in (?) is called the advantage of A against the
left/right game t1, . . . , tn ∼n s1, . . . , sn

31

Negligible Functions

A function f (η) is negligible if it is asymptotically smaller than
the inverse of any polynomial, i.e.:

∀c ∈ N,∃N ∈ N s.t. ∀n ≥ N, f (n) ≤ 1
nc

Example
Let f be the function defined by:

f (η)
def
= Prρ

(
Jn0K(1η, ρ) = Jn1K(1η, ρ)

)
If n0 6≡ n1, then f (η) = 1

2η , and f is negligible.

32

Satisfiability and Validity

A formula φ is satisfied by a computational modelM, written
M |= φ, if JφKσM = True for every valuation σ.

φ is valid, denoted by |= φ, if it is satisfied by every
computational model.

φ is C-valid if it is satisfied by every computational modelM∈ C.

33

Validity: Exercise

Exercise
Which of the formulas below are valid? Which are not?

6|=

true ∼ false

|=

n0 ∼ n0

|=

n0 ∼ n1

|=

n0
.

=n1 ∼ false

6|=

n0, n0 ∼ n0, n1

|=

f (n0) ∼ f (n1) where f ∈ F ∪ G

6|=

π1(〈n0 , n1〉)
.

= n0 ∼ true

34

Validity: Exercise

Exercise
Which of the formulas below are valid? Which are not?

6|= true ∼ false |= n0 ∼ n0 |= n0 ∼ n1 |= n0
.

=n1 ∼ false

6|= n0, n0 ∼ n0, n1 |= f (n0) ∼ f (n1) where f ∈ F ∪ G

6|= π1(〈n0 , n1〉)
.

= n0 ∼ true

34

Protocol Indistinguishability

P and Q are indistinguishable, written P ≈ Q, if for any τ :

|= fold(P, τ) ∼ fold(Q, τ)

Remark
While there are countably many observable traces τ , the set of
foldings of a protocol P is always finite:2∣∣{fold(P, τ) | τ

}∣∣ < +∞

2If we remove trailing sequences of error terms.

35

Protocol Indistinguishability: Exercise

Exercise
Informally, determine which of the following protocols
indistinguishabilities hold, and under what assumptions:

out(c, t1) ≈ out(c, t2) out(c, t) ≈ null in(c, x) ≈ null

out(c, t) ≈ if b then out(c, t1) else out(c, t2)

out(c, t) ≈ if b then out(c, t) else out(c0, t0)

36

Structural Rules

Rules: Soundness

A rule:
φ1 ... φn

φ

is sound if φ is valid whenever φ1, . . . , φn are valid.

Example
y ∼ x
x ∼ y is sound

These are typically structural rules, which are valid in all
computational models.

37

Structural Rules

Computational indistinguishability is an equivalence relation:

~u ∼ ~u
Refl ~v ∼ ~u

~u ∼ ~v Sym ~u ∼ ~w ~w ∼ ~v
~u ∼ ~v Trans

Permutation. If π is a permutation of {1, . . . , n} then:

uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)
u1, . . . , un ∼ v1, . . . , vn Perm

38

Structural Rules

Alpha-renaming.

~u ∼ ~uα
α-equ

when α is an injective renaming of names in N .

Restriction. The adversary can throw away some values:

~u , s ∼ ~v , t
~u ∼ ~v Restr

39

Structural Rules

Duplication. Giving twice the same value to the adversary is
useless:

~u , s ∼ ~v , t
~u , s, s ∼ ~v , t, t Dup

Function application. If the arguments of a function are
indistinguishable, so is the image:

~u1, ~v1 ∼ ~u1, ~v2

f (~u1), ~v1 ∼ f (~u2), ~v2
FA

where f ∈ F ∪ G.

40

Structural Rules: Proof of Function Application

~u1, ~v1 ∼ ~u1, ~v2

f (~u1), ~v1 ∼ f (~u2), ~v2
FA

Proof. The proof is by contrapositive. AssumeM, σ and A s.t. its
advantage against:

f (~u1), ~v1 ∼ f (~u2), ~v2 (†)
is not negligible. Let B be the distinguisher defined by, for any bitstrings
~wu, ~wv and tape ρa:

B(1η, ~wu, ~wv , ρa)
def
= A(1η, Jf KM(~wu), ~wv , ρa)

B is a PPTM since A is and Jf KM can be evaluated in pol. time. Then:

B(1η, J~uiKσM(1η, ρ), J~viKσM(1η, ρ), ρa)

= A(1η, Jf (~ui)KσM(1η, ρ), J~viKσM(1η, ρ), ρa)
(i ∈ {1, 2})

Hence the advantage of B in distinguishing ~u1, ~v1 ∼ ~u1, ~v2 is exactly the
advantage of A in distinguishing (†). �

41

Structural Rules

Case Study. We can do case disjunction over branching terms:

~w1, b0, u0 ∼ ~w1, b1, u1 ~w0, b0, v0 ∼ ~w1, b1, v1

~w0, if b0 then u0 else v0 ∼ ~w1, if b1 then u1 else v1
CS

42

Structural Rules: Proof of Case Study

b0, u0 ∼ b1, u1 b0, v0 ∼ b1, v1

t0 ≡ if b0 then u0 else v0 ∼ t1 ≡ if b1 then u1 else v1
CS

Proof. (by contrapositive) AssumeM, σ and A s.t. its advantage against:

if b0 then u0 else v0 ∼ if b1 then u1 else v1 (†)

is non-negligible. Let B> be the distinguisher:

B>(1η,wb,w , ρa)
def
=

{
A(1η,w , ρa) if wb = 1

0 otherwise

B> is trivially a PPTM. Moreover, for any i ∈ {1, 2}:

Prρ
(
B>(1η, JbiKσM(1η, ρ), JuiKσM(1η, ρ), ρa) = 1

)
= Prρ

(
A(1η, JtiKσM(1η, ρ), ρa) = 1 ∧ JbiKσM(1η, ρ) = 1

)}
p>,i

43

Structural Rules: Proof of Case Study (continued)

Hence the advantage of B> against b0, u0 ∼ b1, u1 is |p>,1 − p>,0|.

Similarly, let B⊥ be the distinguisher:

B⊥(1η,wb,w , ρa)
def
=

{
A(1η,w , ρa) if wb 6= 1

0 otherwise

By an identical reasoning, we get that the advantage of B⊥ against
b0, v0 ∼ b1, v1 is |p⊥,1 − p⊥,0|, where p⊥,i is:

Prρ
(
A(1η, JtiKσM(1η, ρ), ρa) = 1 ∧ JbiKσM(1η, ρ) 6= 1

)

44

Structural Rules: Proof of Case Study (continued)

The advantage of A against t0 ∼ t1 is, by partitioning and
triangular inequality:

|(p>,1 + p⊥,1)− (p>,0 + p⊥,1)| ≤ |p>,1 − p>,0|+ |p⊥,1 − p⊥,1|

Since A’s advantage is non-negligible, at least one of the two
quantity above is non-negligible. Hence either B> or B⊥ has a
non-negligible advantage against a premise of the CS rule. �.

45

Counter-Examples

Remark that b is necessary in CS

~w1, b0, u0 ∼ ~w1, b1, u1 ~w0, b0, v0 ∼ ~w1, b1, v1

~w0, if b0 then u0 else v0 ∼ ~w1, if b1 then u1 else v1
CS

We have:

|= 0 ∼ 0 |= n0 ∼ n1 |= even(n0) ∼ even(n0)

But:

6|= if even(n0) then n0 else 0 ∼ if even(n0) then n1 else 0

Why is the later formula not valid?

46

Structural Rules: FO + Equality Reasoning

If |= (s
.

= t) ∼ true, then s and t are equal with overwhelming
probability. Hence we can safely replace s by t in any context.

Let (s = t)
def
= (s

.
= t) ∼ true. Then the following rule is sound:

~u , t ∼ ~v s = t

~u , s ∼ ~v R

47

Structural Rules: FO + Equality Reasoning

To prove |= s = t, we use the following rule:

Ath `fo= s = t
s = t FO

where `fo= is any sound proof system for (classical) first-order
logic with equality:

FFO(
.→, false, .=,F ∪ G)

We allow additional FO axioms using Ath (e.g. for if_then_else_).

Example
Ath `fo=

(
v

.
= w

.→ if u .
= v then u else t

.
= s
)

=(
v

.
= w

.→ if u .
= v then w else t

.
= s
)

48

Structural Rules: Probabilistic Independence

Two rules exploiting the independence of bitstring distributions:

(t
.

= n) = false
=-ind when n 6∈ st(t)

~u ∼ ~v
~u , n0 ∼ ~v , n1

Fresh when n0 6∈ st(~u) and n1 6∈ st(~v)

Remark
To check that the rules side-conditions hold, we require that they
do not contain free variables. Hence we actually have a countable,
recursive, set of ground rules (i.e. rule schemata).

49

Structural Rules: Probability Independence

We give the proof of the first rule:

(t
.

= n) = false
=-ind when n 6∈ st(t)

Proof. For any computational modelM (we omit it below):

Prρ(Jt .
= nK(1η, ρ) = 1)

= Prρ(JtK(1η, ρ) = JnK(1η, ρ))

=
∑

w∈{0,1}∗ Prρ(JtK(1η, ρ) = w ∧ JnK(1η, ρ) = w)

=
∑

w∈{0,1}∗ Prρ(JtK(1η, ρ) = w) · Prρ(JnK(1η, ρ) = w)

= 1
2η ·

∑
w∈{0,1}∗ Prρ(JtK(1η, ρ) = w)

=
1
2η

�

50

Structural Rules: Exercise

Exercise
Give a derivation of the following formula:

n0 ∼ if b then n0 else n1 (when n0, n1 6∈ st(b))

51

Implementation Rules

Rules: Soundness

A rule is C-sound if φ is C-valid whenever φ1, . . . , φn are C-valid.

Example

(π1〈x , y〉
.

= x) ∼ true

is not sound, because we do not require anything on the
interpretation of π1 and the pair.

Obviously, it is Cπ-sound, where Cπ is the set of computational
model where π1 computes the first projection of the pair 〈_ , _〉.

52

Implementation Assumptions

The general philosophy of the CCSA approach is to make the
minimum number of assumptions possible on the interpretations of
function symbols in a computational model.

Any additional necessary assumption is added through rules, which
restrict the set of computation model for which the formula holds
(hence limit the scope of the final security result).

Typically, this is used for:

• functional properties, which must be satisfied by the
protocol functions (e.g. the projection/pair rule).

• cryptographic hardness assumptions, which must be
satisfied by the cryptographic primitives (e.g. IND-CCA).

53

Functional Properties

Example. Equational theories for protocol functions:

• πi (〈x1, x2〉) = xi i ∈ {1, 2}
• dec({x}zpk(y), sk(y)) = x

• (x ⊕ y)⊕ z = x ⊕ (y ⊕ z)

• . . .

54

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of
computational security.

Cryptographic Reduction S ≤red H
If you can break the cryptographic design S, then you can
break the hardness assumption H using roughly the same time.

• We assume that H cannot be broken in a reasonable time:

I Low-level assumptions: D-Log, DDH, ...
I Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...

• Hence, S cannot be broken in a reasonable time.

55

Cryptographic Reduction

Cryptographic Reduction S ≤red H
S reduces to a hardness hypothesis H (e.g. IND-CCA, DDH) if:

∀A. ∃B. AdvηS(A) ≤ P(AdvηH(B), η)

where A and B are taken among PPTMs and P is a polynomial.

56

Cryptographic Rules

We are now going to give rules which capture some cryptographic
hardness hypotheses.

The validity of these rules will be established through a
cryptographic reduction.

• Asymmetric encryption: indistinguishability (IND-CCA1) and
key-privacy (KP-CCA1);

• Hash function: collision-resistance (CR-HK);

• MAC: unforgeability (EUF-CMA);

57

Cryptographic Rules

Asymmetric Encryption

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

• public and private key generation functions pk(_), sk(_);

• randomized3 encryption function {_}__;
• a decryption function dec(_,_)

It must satisfies the functional equality:

dec({x}zpk(y), sk(y)) = x

3The role of the randomization will become clear later.

58

IND-CCA1 Security

An encryption scheme is indistinguishable against chosen
cipher-text attacks (IND-CCA1) iff. for every PPTM A with
access to:

• a left-right oracle Ob,n
LR (·, ·):

Ob,n
LR (m0,m1)

def
=

{mb}rpk(n) if len(m1) = len(m2) (r fresh)

0 otherwise

• and a decryption oracle On
dec(·),

where A can call OLR once, and cannot call Odec after OLR, then:∣∣ Prn(AO1,n
LR ,O

n
dec (1η, pk(n)) = 1

)
− Prn

(
AO

0,n
LR ,O

n
dec (1η, pk(n)) = 1

) ∣∣
is negligible in η, where n is drawn uniformly in {0, 1}η.

59

IND-CCA1 Security: Exercise

Exercise
Show that if the encryption ignore its randomness, i.e. there
exists aenc(_,_) s.t. for all x , y , r :

{x}ry = aenc(x , y)

then the encryption does not satisfy IND-CCA1.

60

IND-CCA1 Rule

Indistinguishability Against Chosen Ciphertexts Attacks
If the encryption scheme is IND-CCA1, then the ground rule:

len(t0) = len(t1)

~u, {t0}rpk(n) ∼ ~u, {t1}rpk(n)
ind-cca1

is sound, when:

• r does not appear in ~u, t0, t1;

• n appears only in pk(·) or dec(_, sk(·)) positions in ~u, t0, t1.

61

IND-CCA1 Rule: Proof

Proof sketch
Proof by contrapositive. LetM be a comp. model, A an adversary and
~u, t0, t1 ground terms such that:∣∣∣ Prρ(A(1η, J~u KM(1η, ρ), J{t0}rpk(n)KM(1η, ρ), ρa)

− Prρ(A(1η, J~u KM(1η, ρ), J{t1}rpk(n)KM(1η, ρ), ρa)
∣∣∣

is not negligible, andM |= len(t0) = len(t1).

We must build a PPTM B s.t. B wins the IND-CCA1 security game.

62

IND-CCA1 Rule: Proof

Let BO
b,n
LR ,O

n
dec(1η, Jpk(n)KM(1η, ρ)) be the following program:

i) lazily samples the infinite random tapes (ρa, ρ
′
p) where:

ρ′p := ρp[n 7→ 0, r 7→ 0]

ii) compute4:
w~u,wt0 ,wt1 := J~u , t0, t1KM(1η, ρ)

using (ρa, ρ
′
p), Jpk(n)KM(1η, ρ) and calls to On

dec.

iii) compute:
wlr := Ob,n

LR (wt0 ,wt1) = J{tb}rpk(n)KM

(sinceM |= len(t0) = len(t1))

iv) return A(1η,w~u ,wlr , ρa).

4we describe how later

63

IND-CCA1 Rule: Proof

Then B advantage against IND-CCA1 is exactly A advantage against:

~u, {t0}rpk(n) ∼ ~u, {t1}rpk(n)

which we assumed non-negligible.

64

IND-CCA1 Rule: Proof

It only remains to explain how to do step ii) in polynomial time.

We prove by structural induction that for any subterm s of ~u , t0, t1:

• either s is a forbidden subterm n, sk(n) or r;

• or B can compute ws := JsKM(1η, ρ) in polynomial time.

Assuming this holds, we conclude by observing that ind-cca1 side
conditions guarantees that ~u , t0, t1 are not forbidden subterms.

65

IND-CCA1 Rule: Proof

Induction. We are in one of the following cases:

• s ∈ X is not possible, since ~u, t0, t1 are ground.

• s ∈ {r, n} are forbidden, hence the induction hypothesis holds.

• s ∈ N\{r, n}, then B computes s directly from
ρ′p = ρp[n 7→ 0, r 7→ 0].

• s ≡ f (t1, . . . , tn) and t1, . . . , tn are not forbidden. Then, by
induction hypothesis, B can compute wi := JtiKM(1η, ρ) for any
1 ≤ i ≤ n. Then B simply computes:

ws :=

{
Jf KM(w1, . . . ,wn) if f ∈ F
Jf KM(w1, . . . ,wn, ρa) if f ∈ G

66

IND-CCA1 Rule: Proof

case disjunction (continued):

• s ≡ f (t1, . . . , tn) and at least one of the ti is forbidden.

Using ind-cca1 side conditions, either s is either pk(n), sk(n) or
dec(m, sk(n)).

The first case is immediate since B receives Jpk(n)KM(1η, ρ) as
argument.

The second case is a forbidden subterm, hence the induction
hypothesis holds.

For the last case, from ind-cca1 side conditions, we know that
m 6= r and m 6= n. Hence, by induction hypothesis, B can
compute wm = JmKM(1η, ρ). We conclude using:

ws := On
dec(wm) �

67

IND-CCA1 Rule: Exercise

Exercise
Which of the following formulas can be proven using ind-cca1?

pk(n), {0}rpk(n) ∼ pk(n), {1}rpk(n)

pk(n), {0}rpk(n), {0}
r0
pk(n) ∼ pk(n), {1}rpk(n), {0}

r0
pk(n)

pk(n), {0}rpk(n), {0}
r
pk(n) ∼ pk(n), {0}rpk(n), {1}

r
pk(n)

pk(n), {0}rpk(n) ∼ pk(n), {sk(n)}rpk(n)

68

IND-CCA1 Rule: Exercise

Exercise (Hybrid Argument)
Prove the following formula using ind-cca1:

{0}r0pk(n), {1}
r1
pk(n), . . . , {n}

rn
pk(n) ∼ {0}

r0
pk(n), {0}

r1
pk(n), . . . , {0}

rn
pk(n)

Note: we assume that all plain-texts above have the same length
(e.g. they are all represented over L bits, for L large enough)

69

KP-CCA1 Security

A scheme provides key privacy against chosen cipher-text
attacks (KP-CCA1) iff for every PPTM A with access to:

• a left-right encryption oracle Ob,n0,n1
LR (·):

Ob,n0,n1
LR (m)

def
= {m}rpk(nb)

(r fresh)

• and two decryption oracles On0
dec(·) and On1

dec(·),

where A can call OLR once, and cannot call the decryption oracles
after OLR, then:∣∣∣∣∣∣ Prn0,n1

(
AO

1,n0,n1
LR ,On0

dec,O
n1
dec (1η, pk(n0), pk(n1)) = 1

)
− Prn0,n1

(
AO

0,n0,n1
LR ,On0

dec,O
n1
dec (1η, pk(n0), pk(n1)) = 1

)
∣∣∣∣∣∣

is negligible in η, where n0, n1 are drawn in {0, 1}η.

70

Security Notions: Exercise

Exercise
Show that IND-CCA1 6⇒ KP-CCA1 and KP-CCA1 6⇒ IND-CCA1.

71

KP-CCA1 Rule

Key Privacy Against Chosen Ciphertexts Attacks
If the encryption scheme is KP-CCA1, then the ground rule:

~u , {t}rpk(n0)
∼ ~u , {t}rpk(n1)

kp-cca1

is sound, when:

• r does not appear in ~u , t;

• n0, n1 appear only in pk(·) or dec(_, sk(·)) positions in ~u , t.

The proof is similar to the ind-cca1 soundness proof. We omit it.

72

Security Proof

Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

• IX is the initiator with identity X;

• SX is the server, accepting messages from X;

The adversary must not be able to distinguish IA | SA from IC | SA.

IX : ν r. ν nI. out(cI, {〈pkX , nI〉}rpkS
)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.

= pkX
then out(cS, {〈π2(d) , nS〉}r0pkX

)

else out(cS, {0}r0pkX
)

We assume the encryption is IND-CCA1 and KP-CCA1.

73

Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the
plain-text. Hence, since len(〈nI , nS〉) 6= len(0), there is an attack:

6|= {〈nI , nS〉}r0pkA
∼ {0}r0pkC

even if the encryption is IND-CCA1 and KP-CCA1.

74

Private Authentication: Anonymity

We fix the protocol by:

• adding a length check;

• using a decoy message of the correct length.

The PA Protocol, v3

IX : ν r. ν nI. out(cI, {〈pkX , nI〉}rpkS
)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.

= pkX
.
∧ len(π2(d))

.
= len(nS)

then out(cS, {〈π2(d) , nS〉}r0pkX
)

else out(cS, {〈nS , nS〉}r0pkX
)

75

Private Authentication: Anonymity

IX : ν r. ν nI. out(cI, {〈pkX , nI〉}rpkS
)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.

= pkX
.
∧ len(π2(d))

.
= len(nS)

then out(cS, {〈π2(d) , nS〉}r0pkX
)

else out(cS, {〈nS , nS〉}r0pkX
)

To prove IA | SA ≈ IC | SA, we have several traces:
in(cI), out(cI), out(cS) in(cI), out(cS), out(cI)

out(cI), in(cI), out(cS) out(cI), out(cS), in(cI)

out(cS), in(cI), out(cI) out(cS), out(cS), in(cI)

But there is a more general trace: its security implies the security
of the other traces.
See partial order reduction (POR) techniques [1].

76

Private Authentication: Anonymity

IX : ν r. ν nI. out(cI, {〈pkX , nI〉}rpkS
)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.

= pkX
.
∧ len(π2(d))

.
= len(nS)

then out(cS, {〈π2(d) , nS〉}r0pkX
)

else out(cS, {〈nS , nS〉}r0pkX
)

To prove IA | SA ≈ IC | SA, we have several traces:
in(cI), out(cI), out(cS) in(cI), out(cS), out(cI)

out(cI), in(cI), out(cS) out(cI), out(cS), in(cI)

out(cS), in(cI), out(cI) out(cS), out(cS), in(cI)

But there is a more general trace: its security implies the security
of the other traces.
See partial order reduction (POR) techniques [1].

76

Private Authentication: Anonymity

We must prove that:

outA1 , out
A,A
2 [outA1] ∼ outC1 , out

A,A
2 [outC1]

where:

outX1 ≡ {〈pkX , nI〉}rpkS
)

outX,Y2 [M] ≡ if π1(d [M])
.

= pkX
.
∧ len(π2(d [M]))

.
= len(nS)

then {〈π2(d [M]) , nS〉}r0pkY
else {〈nS , nS〉}r0pkY

d [M] ≡ dec(att0([M]), skS)

77

Private Authentication: Anonymity

First, we push the branching under the encryption:

outA1 , out
A,A
2 [outA1] ∼ outC1 , out

A,A
2 [outC1] outA,A2 [outC1] = outA,A2 [outC1]

outA1 , out
A,A
2 [outA1] ∼ outC1 , out

A,A
2 [outC1]

R

where:

outX,Y2 [M] ≡

if π1(d [M])

.
= pkX

.
∧ len(π2(d [M]))

.
= len(nS)

then 〈π2(d [M]) , nS〉
else 〈nS , nS〉

r0

pkY

We let mX[M] be the content of the encryption above.

78

Private Authentication: Anonymity

Then, we use KP-CCA1 to change the encryption key:

outA1 , out
A,A
2 [outA1]

∼ outC1 , out
A,C
2 [outC1]

outC1 , out
A,C
2 [outC1]

∼ outC1 , out
A,A
2 [outC1]

kp-cca1

outA1 , out
A,A
2 [outA1] ∼ outC1 , out

A,A
2 [outC1]

Trans

since:

• the encryption randomness r0 is correctly used;

• the key randomness nA and nB appear only in pk(·) and
dec(_, sk(·)) positions.

79

Private Authentication: Anonymity

Then, we use IND-CCA1 to change the encryption content:

outA1 , out
A,A
2 [outA1]

∼ outC1 , out
C,C
2 [outC1]

len(mC[outC1]) = len(mA[outA1])

outC1 , out
C,C
2 [outA1]

∼ outC1 , out
A,C
2 [outC1]

ind-cca1

outA1 , out
A,A
2 [outA1] ∼ outC1 , out

A,C
2 [outC1]

Trans

since:

• the encryption randomness r0 is correctly used;

• the key randomness nC appear only in pk(·) and dec(_, sk(·))

positions.

80

Private Authentication: Anonymity

Recall that:
mX[M] ≡ if π1(d [M])

.
= pkX

.
∧ len(π2(d [M]))

.
= len(nS)

then 〈π2(d [M]) , nS〉
else 〈nS , nS〉

Then:
len(mC[outC1]) = len(mA[outA1])

len(mC[outC1]) = len(mA[outA1])
FO

if Ath contains the axiom5:

∀x , y .len(〈x , y〉) = c〈_ ,_〉(len(x), len(y))

where c〈_ ,_〉(·, ·) is left unspecified.

5This axiom must be satisfied by the protocol implementation for the security
proof to apply.

81

Private Authentication: Anonymity

Then, we α-rename the key randomness nC, rewrite back the encryption,
and conclude.

outA1 , out
A,A
2 [outA1] ∼ outC1 , out

C,C
2 [outC1]

α-equ + R + Refl

82

Privacy

Privacy

We proved anonymity of the Private Authentication protocol,
which we defined as:

IA | SA ≈ IC | SA

But does this really guarantees that this protocol protects the
privacy of its users?
⇒ No, because of linkability attacks

83

Linkability Attacks

Consider the following authentication protocol, called KCL,
between a reader R and a tag TX with identity X:

R : ν nR. out(cR, nR)

TX : ν nT. in(cR, x). out(cI, 〈X⊕ nT , nT ⊕ H(x, kX)〉)

Assuming H is a PRF (Pseudo-Random Function), and ⊕ is the
exclusive-or, we can prove that KCL provides anonymity.

TA | R ≈ TB | R

84

Linkability Attacks

But there are privacy attacks against KCL, using two sessions:

1 : E →TA : nR E →TA : nR

2 : TA→E : 〈A⊕ nT , nT ⊕ H(nR , kA)〉 TA→E : 〈A⊕ nT , nT ⊕ H(nR , kA)〉

3 : E →TA : nR E →TB : nR

4 : TA→E : 〈A⊕ n′T , n
′
T ⊕ H(nR, kA)〉 TB→E : 〈B⊕ n′T , n

′
T ⊕ H(nR, kB)〉

Let t2 and t4 be the outputs of T. Then, on the left scenario:

π2(t2)⊕ π2(t4) =
(
nT ⊕ H(nR , kA)

)
⊕
(
n′T ⊕ H(nR, kA)

)
= nT ⊕ n′T
= π1(t2)⊕ π1(t4)

The same equality check will almost never hold on the right, under
reasonable assumption on H.

85

Linkability Attacks

We just saw an attack against:(
TA | R

)
|
(
TA | R

)
≈
(
TA | R

)
|
(
TB | R

)

86

Unlinkability

To prevent such attacks, we need to prove a stronger property,
called unlinkability. It requires to prove the equivalence between:

• a real-world, where each agent can run many sessions:

ν~k0, . . . ,~kN . !id≤N !sid≤M P(~kid)

• and an ideal-world, where each agent run at most a single
session:

ν~k0,0, . . . ,~kN,M . !id≤N !sid≤M P(~kid,sid)

Remark
The processes above are parameterized by N,M ∈ N. Unlinkability
holds if the equivalence holds for any N,M.

For the sack of simplicity, we omit channel names.

87

Unlinkability

Example An unlinkability scenario.

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

88

Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any
information on identities.
⇒ hence no link can be efficiently found in the real word.

89

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.
The processes P(~kS,~kU) and S(~kS,~kU) are parameterized by:

• some global key material ~kS;

• and some user-specific key material ~kU.

Then, we require that:

ν~kS. ν ~k0, . . . ,~kN . !id≤N !sid≤M
(
P(~kS,~kid) | S(~kS,~kid)

)
≈ ν~kS. ν ~k0,0, . . . ,~kN,M . !id≤N !sid≤M

(
P(~kS,~kidsid) | S(~kS,~kidsid)

)

90

Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process P(~kS,~kU).
The server S(~kS,~kU1 , . . . ,

~kUM
) is parameterized by:

• some global key material ~kS;

• all users key material ~kU1 , . . . ,
~kUM

.

The we require that:

ν~kS. ν ~k0, . . . ,~kN .
(
!id≤N !sid≤M P(~kS,~kid)

)
|(

!≤L S(~kS,~k0, . . . ,~kN)
)

≈ ν~kS. ν ~k0,0, . . . ,~kN,M .
(
!id≤N !sid≤M P(~kS,~kid,sid)

)
|(

!≤L S(~kS,~k0,0, . . . ,~kN,M)
)

91

Private Authentication: Unlinkability

Private Authentication
We parameterize the initiator and server in PA by the key material:

I(kS, kX) : ν r. ν nI. out(cI, {〈pkX , nI〉}rpkS
)

S(kS, kX) : ν r0. ν nS. in(cI, x). if π1(d)
.

= pkX
.
∧ len(π2(d))

.
= len(nS)

then out(cS, {〈π2(d) , nS〉}r0pkX
)

else out(cS, {〈nS , nS〉}r0pkX
)

where skX ≡ sk(kX), pkX ≡ pk(kX) and d ≡ dec(x , skS).

92

Private Authentication: Unlinkability

Theorem
Private Authentication, v3 satisfies the unlinkability property (with
user-specific server). I.e., for all N,M ∈ N:

ν kS. ν k0, . . . , kN . !id≤N !sid≤M
(
I (kS, kid) | S(kS, kid)

)
≈ ν kS. ν k0,0, . . . , kN,M . !id≤N !sid≤M

(
I (kS, kidsid) | S(kS, kidsid)

)
Proof
For all N,M, for all trace of observables tr, we show that:

|= fold(PL, tr) ∼ fold(PR, tr)

by induction over tr, where PL and PR are, resp., the left and right
protocols in the theorem above.

For details, see the Squirrel file private-authentication-many.sp.

93

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property,
that do not often hold.

Example
Assume S leaks whether it succeeded or not. This models the
fact that the adversary can distinguish success from failure:

• e.g. because a door opens, which can be observed;

• or because success is followed by further communication, while
failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:

(P(~k) | S(~k)) | (P(~k) | S(~k)) ≈ (P(~k0) | S(~k0)) | (P(~k1) | S(~k1))

3 7
94

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: reachability
and correspondance properties (e.g. authentication)

These are properties on a single protocol, often expressed as a
temporal property on events of the protocol. E.g.

If Alice accepts Bob at time τ then Bob must have initi-
ated a session with Alice at time τ ′ < τ .

To formalize the cryptographic arguments proving such
properties, we will design a specialized framework and proof
system.

95

Hash-Lock

The Hash-Lock Protocol
Let I be a finite set of identities.

T(A, i) : ν nT,i. in(cTA,i, x). out(cTA,i, 〈nT,i , H(〈x , nT,i〉, kA)〉)
R(j) : ν nR,j. in(cR1

j ,_). out(cR1
j , nR,j). in(cR2

j , y).

if
∨̇

A∈I π2(y)
.

= H(〈nR,j , π1(y)〉, kA)

then out(cR2
j , ok)

else out(cR2
j , ko)

We consider the N session of each tag, and M session of the reader:

ν (kA)A∈I .
(
!A∈I !i<N T(A, i)

)
|
(
!j<M R(j)

)
Remark: we let the adversary do the scheduling between parties.

96

Notations

• we let ≤ be the prefix relation over observable traces:

tr0 ≤ tr1 iff. ∃tr′. tr1 = tr0; tr′

• tr � c states that tr ends with an output on c:

tr � c iff. ∃tr′. tr = tr′; out(c)

Remark: tr � c ≤ tr ′ denotes that tr � c ∧ tr ≤ tr ′.

97

POR Result (Assumed)

We let Tio be the set of observable traces where all outputs are
always directly preceded by an input on the same channel, i.e.:

tr ∈ Tio iff. ∀tr′ � c ≤ tr. ∃tr′′. tr′ = tr′′; in(c); out(c)

Assumption: POR
We admit that to analyze the Hash-Lock protocol, it is sufficient to
consider only observables traces in Tio.

98

Authentication

Informal Definition
If the j-th session of R accepts believing it talked to tag A, then:

• there exists a session i of tag A properly interleaved with the
j-th session of R ;

• messages have been properly forwarded between the i-th
session of tag A and the j-th session of R .

 The second condition is often relaxed to require only a partial

correspondence between messages.

99

Authentication of the Hash-Lock Protocol

For any tr � cR2
j ∈ Tio, we let acceptA@tr be a term stating that

the reader accepts the tag A at the end of the trace tr (defined
later).

100

Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all tr ∈ Tio,
tr1 � cR1

j and tr3 � cR2
j such that:

tr1 < tr3 ≤ tr and acceptA@tr3

there must exists tr2 � cTA,i such that tr1 ≤ tr2 ≤ tr3 and:

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

Graphically:

•
tr1 � cR1

j

•
tr2 � cTA,i

•
tr3 � cR2

j

acceptA@tr3

out@tr1 = in@tr2 out@tr2 = in@tr3

101

Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the
Hash-Lock protocol?

• define the (generic) terms representing the output, input and
acceptance, which we need to state the property;

• have a set of sound one-sided rules, to do the proof.

102

Authentication Protocols

Macro Terms

Notations: Predecessor

For any observable trace tr and observable α, we let:

pred(tr;α)
def
= tr

103

Macro Terms

We now define some generic terms, called macros, by induction
of the observable trace tr.

Let P be a action-deterministic protocol and tr ∈ Tio with j inputs.
If fold(P, tr) = t1, . . . , tn then we let:

outP@tr def
=

{
tn if ∃c. tn � c
empty otherwise

frameP@tr def
=

{
〈frameP@pred(tr) , outP@tr〉 if tr 6= ε

empty if tr = ε

inP@(tr; in(c); out(c))
def
=

{
attj(frameP@tr) if tr 6= ε

att0() if tr = ε

Remark: we omit P when it is clear from context.

 The restriction to traces in Tio simplifies the definition of inP@tr. 104

Macro Terms

frameP@tr contains all the information known to an adversary
against P after the execution of tr.

More precisely, we can show that for all action-deterministic
processes P and Q, for all tr ∈ Tio:

M |= fold(P, tr) ∼ fold(Q, tr) iff. M |= frameP@tr ∼ frameQ@tr

for anyM satisfying:

π1〈x , y〉
.

= x ∼ true π2〈x , y〉
.

= y ∼ true

Proof
⇒ apply FA to build frameR@tr from fold(R, tr) for R ∈ {P,Q}
⇐ apply FA + Dup + the pair injectivity rules to compute all terms in
fold(R, tr) from frameR@tr for R ∈ {P,Q}

105

Hash-Lock: Accept

T(A, i) : ν nT,i. in(cTA,i, x). out(cTA,i, 〈nT,i , H(〈x , nT,i〉, kA)〉)

R(j) : ν nR,j. in(cR1j ,_). out(cR1j , nR,j). in(cR2j , y).

if
∨̇

A∈I π2(y)
.
= H(〈nR,j , π1(y)〉, kA)

then out(cR2j , ok)

else out(cR2j , ko)

To be able to state some authentication property of Hash-Lock,
we need an additional macro. For all tr � cR2

j ∈ Tio, we let:

acceptA@tr def
= π2(in@tr)

.
= H(〈nR,j , π1(in@tr)〉, kA)

 We made sure that all names in the protocol are unique, so that
they don’t have to be renamed during the folding.

106

Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock
protocol provides authentication:

∀A ∈ I. ∀tr ∈ Tio. ∀tr1 � cR1
j , tr3 � cR2

j s.t. tr1 < tr3 ≤ tr,

acceptA@tr3
.→

∨̇
tr2�cTA,i

tr1≤tr2≤tr3

out@tr1
.

= in@tr2
.
∧

out@tr2
.

= in@tr3
∼ true

This kind of one-sided formulas are called reachability formulas.
Proving the validity of such formulas requires additional rules, to
allow for propositional reasoning.

107

Authentication Protocols

Reachability Proof System

Reachability Judgements

We define a judgments dedicated to reachability
correspondance properties.

Definition
A reachability judgement Γ ` t comprises a sequence of terms
Γ = t1

.→ · · · .→ tn and a (boolean) term t.

Γ ` t is valid if and only if the following formula is valid:

(t1
.→ · · · .→ tn

.→ t) ∼ true

108

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability
and equivalence levels!

Exercise
Determine which directions are correct.

tφ
.
∧ tψ ∼ true ?⇔ tφ ∼ true ∧ tψ ∼ true

tφ
.
∨ tψ ∼ true ?⇔ tφ ∼ true ∨ tψ ∼ true

tφ
.→ tψ ∼ true ?⇔ tφ ∼ true→ tψ ∼ true

The second relation works both ways when tφ or tψ is a constant
formula.

109

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability
and equivalence levels!

Exercise
Determine which directions are correct.

tφ
.
∧ tψ ∼ true ⇔ tφ ∼ true ∧ tψ ∼ true

tφ
.
∨ tψ ∼ true ⇐ tφ ∼ true ∨ tψ ∼ true

tφ
.→ tψ ∼ true ⇒ tφ ∼ true→ tψ ∼ true

The second relation works both ways when tφ or tψ is a constant
formula.

109

Reachability Proof System

Our reachability judgements can be trivially equipped with a
sequent calculus.

Γ, tφ ` tφ

Γ ` tψ Γ, tψ ` tφ

Γ ` tφ

Γ ` tψ Γ ` tφ

Γ ` tψ
.
∧ tφ

Γ, tψ, tφ ` tθ

Γ, tψ
.
∧ tφ ` tθ

Γ ` tφ

Γ ` tψ
.
∨ tφ

Γ ` tψ

Γ ` tψ
.
∨ tφ

Γ, tψ ` tθ Γ, tφ ` tθ

Γ, tψ
.
∨ tφ ` tθ

Γ ` tψ Γ, tφ ` tθ

Γ, tψ
.→ tφ ` tθ

Γ, tψ ` tφ

Γ ` tψ
.→ tφ

110

Reachability Proof System (cont.)

Γ, tφ ` ⊥
Γ ` ¬tφ Γ,⊥ ` tφ

Γ1, tφ, tψ, Γ2 ` tθ

Γ1, tψ, tφ, Γ2 ` tθ

Γ, tψ, tψ ` tφ

Γ, tψ ` tφ

111

Reachability Proof System: Soundness

The reachability proof system is sound.

Proof
First, remark that any Γ and tθ,

Γ ` tθ is valid iff. Prρ
(
J(
.
∧Γ)

.
∧ .¬tφKσM(1η, ρ)

)
is negligible. (†)

• Left-to-right:

Γ ` tθ valid

⇒ ∀A ∈ D. Prρ
(
A(1η, J(

.
∧Γ)

.
∧ .¬tφKσM(1η, ρ), ρa

)
∈ negl(η)

⇒ Prρ
(
J(
.
∧Γ)

.
∧ .¬tφKσM(1η, ρ)

)
∈ negl(η)

(taking A(1η,w , ρa) = w)

• Right-to-left is straightforward.

112

Reachability Proof System: Soundness

We only prove only rule, say

Γ, tψ ` tθ Γ, tφ ` tθ

Γ, tψ
.
∨ tφ ` tθ

By the previous remark (†), since (Γ, tψ ` tθ) and (Γ, tφ ` tθ) are valid

• Prρ
(
J(
.
∧Γ)

.
∧ tψ

.
∧ .¬tθKσM(1η, ρ)

)
is negligible.

• Prρ
(
J(
.
∧Γ)

.
∧ tφ

.
∧ .¬tθKσM(1η, ρ)

)
is negligible.

Since the union of two negligible (η-indexed families of) events is a
negligible (η-indexed families of) events,

Prρ
(
J
(
(
.
∧Γ)

.
∧ tψ

.
∧ .¬tθ

) .
∨
(
(
.
∧Γ)

.
∧ tφ

.
∧ .¬tθ

)
KσM(1η, ρ)

)
is negligible

⇔ Prρ
(
J(
.
∧Γ)

.
∧ (tψ

.
∨ tφ)

.
∧ .¬tθKσM(1η, ρ)

)
is negligible

Hence using (†) again, Γ, tψ
.
∨ tφ ` tθ is valid.

113

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash H(_,_) is computationally
collision resistant if no PPTM adversary can built collisions, even
when it has access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks
(CR-HK) iff for every PPTM A, the following quantity:

Prk
(
AOH(·,k)(1η) = 〈m1 , m2〉,m1 6= m2 and H(m1, k) = H(m2, k)

)
is negligible, where k is drawn uniformly in {0, 1}η.

114

CR Rule

Collision Resistance
If H is a CR-HK function, then the ground rule:

H(m1, k)
.

= H(m2, k)
.→m1

.
= m2 ∼ true

cr

is sound, when k appears only in H key positions in m1,m2.

115

CR Rule: Exercise

Exercise
Let H be CR-HK. Show that the following rule is not sound:

.¬(H(m1, k)
.

= H(m2, k)) ∼ true
cr

when k appears only in H key positions in m1,m2 and m1 6≡ m2.

116

Authentication Protocols

Cryptographic Rule: Message
Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic
schema which:

• create message authentication codes using mac_(_)

• verifies mac using verify_(_,_)

It must satisfies the functional equality:

verifyk(mack(m),m) = true

117

MAC Security

A MAC must be computationally unforgeable, even when the
adversary has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA)
iff for every PPTM A, the following quantity:

Prk

(
AOmack (·),Overifyk (·,·)(1η) = 〈m , σ〉, m not queried to Omack (·)

and verifyk(σ,m) = 1

)

is negligible, where k is drawn uniformly in {0, 1}η.

118

EUF-MAC Rule

Take two messages s,m and a key k ∈ N such that

• s and m are ground.

• k ∈ N appears only in mac or verify key positions in s,m.

Key Idea
To build a rule for EUF-CMA, we proceed as follow:

• Compute Js,mK bottum-up, calling Omack (·) and Overifyk (·,·) if
necessary.

• Log all sub-terms Smac(s,m) sent to Omack (·).

⇒ If verifyk(s,m) then m = u for some u ∈ Smac(s,m).

 Smac(s,m) are the calls to Omack (·) needed to compute s,m.

119

EUF-MAC Rule

Smac(·) defined by induction on ground terms:

Smac(n)
def
= ∅

Smac(verifyk(u1, u2))
def
= Smac(u1) ∪ Smac(u2)

Smac(mack(u))
def
= {u} ∪ Smac(u)

Smac(f (u1, . . . , un))
def
=

⋃
1≤i≤n

Smac(ui) (for other cases)

120

EUF-MAC Rule

Message Authentication Code Unforgeability
If mac is an EUF-CMA function, then the ground rule:

verifyk(s,m)
.→
∨̇

u∈S m
.

= u ∼ true
euf-mac

is sound, when:

• S = {u | mack(u) ∈ Smac(s,m)};
• k ∈ N appears only in mac or verify key positions in s,m.

Example
If t1 t2 and t3 are terms which do not contain k, then:

Φ ≡ mack(t1),mack(t2),mack0(t3)

|= verifyk(g(Φ), n)
.→
(
n .

= t1
.
∨ n .

= t2
)
∼ true

121

EUF-MAC Rule: Exercise

Exercise
Assume mac is EUF-CMA. Show that the following rule is sound:

verifyk(if b then s0 else s1,m)
.→
∨̇

u∈S1∪S2
m

.
= u ∼ true

when b, s0, s1,m are ground terms, and:

• Si = {u | mack(u) ∈ Smac(si ,m)}, for i ∈ {0, 1};
• k appears only in mac or verify key positions in s0, s1,m.

Remark: we do not make any assumption on b, except that it is
ground. E.g., we can have b ≡ (att(k)

.
= mack(0)).

122

Authentication Protocols

Authentication of the Hash-Lock Protocol

Authentication: Hash-Lock

Theorem
Assuming that the hash function is EUF-CMA6, the Hash-Lock
protocol provides authentication, i.e. for any identity a ∈ I, for
any tr ∈ Tio, tr1 � cR1

j and tr3 � cR2
j s.t.:

tr1 < tr3 ≤ tr

the following formula is valid:

acceptA@tr3
.→

∨̇
tr2�cTA,i

tr1≤tr2≤tr3

out@tr1
.

= in@tr2
.
∧

out@tr2
.

= in@tr3
∼ true

6Taking verifyk(s,m)
def
= s

.
= H(m, k).

123

Authentication: Hash-Lock

Proof. Let a ∈ I, and let tr ∈ Tio, tr1 � cR1
j and tr3 � cR2

j be s.t.:

tr1 < tr3 ≤ tr

We let:

tconc
def
=

∨̇
tr2�cTA,i

tr1≤tr2≤tr3

out@tr1
.

= in@tr2
.
∧ out@tr2

.
= in@tr3

We must prove that the following reachability judgement is valid:

acceptA@tr3 ` tconc

i.e. that:

π2(in@tr3)
.

= H(〈nR,j , π1(in@tr3)〉, kA) ` tconc

124

Authentication: Hash-Lock

We use the euf-mac rule on the equality:

π2(in@tr3)
.

= H(〈nR,j , π1(in@tr3)〉, kA) (†)

The terms above are ground, and the key kA is correctly used in them.
Moreover, the set of honest hashes using key kA appearing in (†),
excluding the top-level hash, is:

Smac(π2(in@tr3), 〈nR,j , π1(in@tr3)〉)
= Smac(in@tr3)

=
{
H(〈in@tr2 , nT,i〉, kA) | tr2 � cTA,i < tr3

}
 The hashes in the reader’s outputs can be seen as verify checks, and
can therefore be ignored.

125

Authentication: Hash-Lock

Hence using euf-mac plus some basic reasoning, we have:

acceptA@tr3,
〈in@tr2 , nT,i〉

.
=

〈nR,j , π1(in@tr3)〉 ` tconc for every tr2 � cTA,i < tr3

acceptA@tr3,
∨̇

tr2�cTA,i<tr3

〈in@tr2 , nT,i〉
.

=

〈nR,j , π1(in@tr3)〉 ` tconc

acceptA@tr3 ` tconc

126

Authentication: Hash-Lock

Assuming that the pair and projections satisfy:

(π1〈x , y〉
.

= x) ∼ true (π2〈x , y〉
.

= y) ∼ true

We only have to show that for every tr2 � cTA,i < tr3:

Γ ` tconc

is valid, where:

Γ
def
= acceptA@tr3, in@tr2

.
= nR,j, nT,i

.
= π1(in@tr3)

127

Authentication: Hash-Lock

Since tr1 � cR1
j < tr3 we know that:

out@tr1
def
= nR,j

Moreover:
out@tr2

def
= 〈nT,i , H(〈in@tr2 , nT,i〉, kA)〉

Hence:
Γ ` π1(out@tr2)

.
= π1(in@tr3) (�)

Similarly:

Γ ` π2(out@tr2)
.

= H(〈in@tr2 , nT,i〉, kA)
.

= H(〈nR,j , π1(in@tr3)〉, kA)
.

= π2(in@tr3)

Consequently:
Γ ` π2(out@tr2)

.
= π2(in@tr3) (?)

128

Authentication: Hash-Lock

Assuming that the pair and projections satisfy the property:

π1 x
.

= π1 y
.→ π2 x

.
= π2 y

.→ x
.

= y

We deduce from (?) and (�) that:

Γ ` out@tr2
.

= in@tr3

Putting everything together, we get:

Γ ` out@tr1
.

= in@tr2
.
∧ out@tr2

.
= in@tr3 (‡)

129

Authentication: Hash-Lock

Recall that:

tconc
def
=

∨̇
tr2�cTA,i

tr1≤tr2≤tr3

out@tr1
.

= in@tr2
.
∧ out@tr2

.
= in@tr3

and we must show that Γ ` tconc. Hence, using (‡), it only remains to
prove that whenever tr2 < tr1, we have:

Γ, out@tr1
.

= in@tr2, out@tr2
.

= in@tr3 ` ⊥

This follows from the independence rule:

(t
.

= n) = false
=-ind when t is ground and n 6∈ st(t)

using the fact that:
out@tr1

def
= nR,j

and that if tr2 < tr1 then nR,j 6∈ st(in@tr2).

130

Authentication Protocols

Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:
∀trR � cR. ∃trT � cT.

•
trT � cT

•
trR � cR

accept@trR

does not exclude the scenario:

•
trT � cT

•
trR � cR1

accept@trR

•
tr′R � cR2

accept@tr′R

131

Replay Attack

This is a replay attack: the same message (or partial transcript),
when replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a
door at will once it eavesdropped one honest interaction.

Example
The following protocol, called Basic Hash, suffer from such attacks:

T(A, i) : ν nT,i. out(cTA,i, 〈nT,i , H(nT,i, kA)〉)

R(j) : in(cR2
j , y). if

∨̇
A∈I π2(y)

.
= H(π1(y), kA)

then out(cR2
j , ok)

else out(cR2
j , ko)

132

Injective Authentication

The authentication property is too weak for many real-world
application.

To prevent replay attacks, we require that the protocol provides a
stronger property, injective authentication.

133

Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock
protocol provides injective authentication:
∀A ∈ I. ∀tr ∈ Tio. ∀tr1 � cR1

j , tr3 � cR2
j s.t. tr1 < tr3 ≤ tr

acceptA@tr3
.→

∨̇
tr2�cTA,i

tr1≤tr2≤tr3

out@tr1
.

= in@tr2
.
∧

out@tr2
.

= in@tr3

.
∧

∧̇
tr′1�c

R1
k , tr

′
3�c

R2
k

tr′1<tr
′
3≤tr

(
acceptA@tr′3

.
∧

out@tr2
.

= in@tr′3
.→ j = k

)

134

References i

[1] D. Baelde, S. Delaune, and L. Hirschi.
Partial order reduction for security protocols.
In CONCUR, volume 42 of LIPIcs, pages 497–510. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[2] G. Bana and H. Comon-Lundh.
A computationally complete symbolic attacker for
equivalence properties.
In CCS, pages 609–620. ACM, 2014.

	Introduction
	Protocols as Sequences of Terms
	Protocol Inputs
	Protocol Branching

	Folding
	Folding Algorithm

	Semantics of Terms
	A First-Order Logic for Indistinguishability
	Structural Rules
	Implementation Rules
	Cryptographic Rules
	Asymmetric Encryption

	Security Proof
	Privacy
	Authentication Protocols
	Macro Terms
	Reachability Proof System
	Cryptographic Rule: Collision Resistance
	Cryptographic Rule: Message Authentication Code
	Authentication of the Hash-Lock Protocol
	Beyond Authentication

	Appendix

