MPRI 2.30: Proofs of Security Protocols

1. The CCSA Approach to Computational Security

Adrien Koutsos
2022/2023

Introduction

Introduction

The Computationally Complete Symbolic Attacker (CCSA) [2] is a symbolic approach in the computational model to verify security protocols.

Its key ingredients are:

- Interpret a protocol execution as the sequence of terms seen by the adversary (the frame).
- Interpret terms as PTIME-computable bitstring distributions.
- Functions symbol (e.g. the pair $<_{\text {_ }}$, $>$) are functions over bitstrings.
- Names (e.g. n) are (uniform) distributions over bitstrings.
- Use cryptographic hardness assumptions (e.g. IND-CCA).
- Symbolic approach: no probabilities, no security parameter.

Protocols as Sequences of Terms

Example of a Protocol

To illustrate what terms we need to consider, we consider a simple authentication protocol:

The Private Authentication (PA) Protocol, v1

$$
\begin{aligned}
& 1: A \rightarrow B: \nu n_{A} \cdot \quad \operatorname{out}\left(c_{A},\left\{\left\langle\operatorname{pk}_{A}, \mathrm{n}_{A}\right\rangle\right\}_{\mathrm{pk}_{B}}\right) \\
& 2: B \rightarrow A: \nu \mathrm{n}_{B} \cdot \operatorname{in}\left(\mathrm{c}_{A}, x\right) \cdot \operatorname{out}\left(c_{B},\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(x, \mathrm{sk}_{A}\right)\right), \mathrm{n}_{B}\right\rangle\right\}_{\mathrm{pk}_{A}}\right) \\
& \text { where } \mathrm{pk}_{A} \equiv \mathrm{pk}\left(\mathrm{k}_{A}\right) \text { and } \mathrm{pk}_{B} \equiv \mathrm{pk}\left(\mathrm{k}_{B}\right) .
\end{aligned}
$$

Notation: we use \equiv to denote syntactic equality of terms.

Terms

We use terms to model protocol messages, built upon:

- Names \mathcal{N}, e.g. $\mathrm{n}_{A}, \mathrm{n}_{B}$, for random samplings.
- Function symbols \mathcal{F}, e.g.:

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B},\left\langle_{-},{ }_{-}\right\rangle, \pi_{1}\left(Z_{-}\right), \pi_{2}\left(__{-}\right),\left\{_{-}\right\}_{-}, \operatorname{pk}\left(Z_{-}\right), \operatorname{sk}\left(__{-}\right), \\
& \\
& \text {if_then_else}{ }_{-}, \dot{=}_{-}, \dot{\Lambda}_{-}, \dot{V}_{-}, \dot{\mathrm{V}}_{-}
\end{aligned}
$$

Examples

$$
\operatorname{pk}\left(\mathrm{k}_{\mathrm{A}}\right) \quad\left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}} \quad \pi_{1}\left(\mathrm{n}_{A}\right)
$$

Types. Also, each function symbol $f \in \mathcal{F}$ comes with a type:

$$
\operatorname{type}(f)=\left(\tau_{1} \star \cdots \star \tau_{n}\right) \rightarrow \tau
$$

For now, we use the message and bool types. We require that terms are well-typed.

Protocol Constructs

But this is not enough to translate a protocol execution into a sequence of terms. We also need to:

- model inputs of the protocol as terms.
- account for protocol branching (i.e. if ϕ then P_{1} else P_{2}).

Moreover, we forbid unbounded replication !, since we want to build finite sequences of terms.
We will discuss how to retrieve replication briefly later.

Protocols as Sequences of Terms

Protocol Inputs

Inputs

The PA Protocol, v1

$$
\begin{array}{ll}
1: A \rightarrow B: \nu n_{A} . & \operatorname{out}\left(c_{A},\left\{\left\langle\mathrm{pk}_{A}, \mathrm{n}_{A}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}}\right) \\
2: B \rightarrow \mathrm{~A}: \nu \mathrm{n}_{\mathrm{B}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{A}}, x\right) . \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(\mathrm{x}, \mathrm{sk}_{A}\right)\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{A}}\right)
\end{array}
$$

How do we represent the adversary's inputs?

- We use adversarial functions symbols att $\in \mathcal{G}$, which takes as input the current knowledge of the adversary.
- Intuitively, att can be any probabilistic PTIME computation.

Example: Terms for PA, v1

$$
\begin{aligned}
t_{1} & \equiv\left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}} \\
t_{2} & \equiv\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(\operatorname{att}\left(t_{1}\right), \mathrm{sk}_{\mathrm{A}}\right)\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{A}}}
\end{aligned}
$$

Inputs

More generally, if:

- there has already been n outputs, represented by the terms $t_{1}, \ldots, t_{n} ;$
- and we are doing the j-th input since the protocol started; then the input bitstring is represented by:

$$
\operatorname{att}_{j}\left(t_{1}, \ldots, t_{n}\right)
$$

where $\operatorname{att}_{j} \in \mathcal{G}$ is an adversarial function symbol of arity n.
$8 j$ allows to have different values for consecutive inputs.

Terms

We extend our set of terms accordingly:

- Names \mathcal{N}.
- Variables \mathcal{X}.
- Function symbols \mathcal{F}.
- Adversarial function symbols \mathcal{G}, of any arity.

We note this set of terms $\mathcal{T}(\mathcal{F}, \mathcal{G}, \mathcal{N}, \mathcal{X})$.
We will see the use of variables in \mathcal{X} later.

Protocols as Sequences of Terms

Protocol Branching

Protocol Branching

In our first version of PA, B does not check that its comes from A. We propose a second version fixing this:

The PA Protocol, v2

$$
\begin{array}{ll}
1: \mathrm{A} \rightarrow \mathrm{~B}: \nu \mathrm{n}_{\mathrm{A}} . & \operatorname{out}\left(\mathrm{c}_{\mathrm{A}},\left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{A}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}}\right) \\
2: \mathrm{B} \rightarrow \mathrm{~A}: \nu \mathrm{n}_{\mathrm{B}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{A}}, x\right) . & \text { if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{A}} \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{A}}}\right) \\
& \text { else } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\{0\}_{\mathrm{pk}_{\mathrm{A}}}\right)
\end{array}
$$

where $d \equiv \operatorname{dec}\left(\mathrm{x}, \mathrm{sk}_{\mathrm{A}}\right)$.
8 In the else branch, we return an encryption, to hide to the adversary which branch was taken.

Protocol Branching

The PA Protocol, v2

$$
\begin{array}{ll}
1: \mathrm{A} \rightarrow \mathrm{~B}: \nu \mathrm{n}_{\mathrm{A}} . & \operatorname{out}\left(\mathrm{c}_{\mathrm{A}},\left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}}\right) \\
2: \mathrm{B} \rightarrow \mathrm{~A}: \nu \mathrm{n}_{\mathrm{B}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{A}}, x\right) . & \text { if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{A}} \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{A}}\right) \\
& \text { else } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\{0\}_{\mathrm{pk}_{\mathrm{A}}}\right)
\end{array}
$$

The bitstring outputted in the second message of the protocol depends on which branch was taken.

Moreover, the adversary may not know which branch was taken.
\Rightarrow branching is pushed (or folded) in the outputted terms, using the if_then_else_ function symbol.

Protocol Branching

Example: Terms for PA, v2

$$
\begin{aligned}
t_{1} \equiv & \left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}}^{\mathrm{B}} \\
t_{2} \equiv & \text { if } \pi_{1}\left(d_{1}\right) \doteq \mathrm{pk}_{\mathrm{A}} \\
& \text { then }\left\{\left\langle\pi_{2}\left(d_{1}\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{A}}} \\
& \text { else }\{0\}_{\mathrm{pk}_{\mathrm{A}}}
\end{aligned}
$$

where $d_{1} \equiv \operatorname{dec}\left(\operatorname{att}\left(t_{1}\right), \operatorname{sk}_{\mathrm{A}}\right)$.

Folding

Folding

We describe a systematic method to compute, given a process P and a trace tr of observable actions, the terms representing the outputted messages during the execution of P over tr.

This is the folding of P over tr.
We deal with inputs and protocol branching using the two techniques we just saw.

Non-Determinism and Computational Semantics

First, we require that processes are deterministic.
Indeed, consider a simple process:

$$
P=\operatorname{out}\left(\mathrm{c}, t_{0}\right) \mid \operatorname{out}\left(\mathrm{c}, t_{1}\right)
$$

- in a symbolic setting, this is a non-deterministic choice between t_{0} and t_{1}.
- in a computational setting, the semantics of P is unclear: how do non-determinism and probabilities interacts?

Hence, we choose to forbid such process: we only consider action-deterministic processes.

Action-Deterministic Processes

A process P is action-deterministic if the observable executions, starting from P, is described by a deterministic transition system.

Action-deterministic Process

A configuration A is action-deterministic iff for any $A \rightarrow^{*} A^{\prime}$, for any observable action α, if $A^{\prime} \xrightarrow{\alpha} A_{1}$ and $A^{\prime} \xrightarrow{\alpha} A_{2}$ then $A_{1}=A_{1}$, for any term interpretation domain.
P is action-deterministic if the initial configuration $(P, \emptyset, \emptyset)$ is.

Action-Deterministic Processes: Exercise

Exercise

Determine if the following protocols are action-deterministic.

$$
\operatorname{out}\left(c, t_{1}\right) \mid \operatorname{in}(c, x) . \operatorname{out}\left(c, t_{2}\right)
$$

if b then out $\left(c, t_{1}\right)$ else $\operatorname{in}(c, x)$. out $\left(c, t_{2}\right)$

$$
\operatorname{out}\left(c, t_{1}\right) \mid \text { if } b \text { then } \operatorname{out}\left(c, t_{2}\right) \text { else } \operatorname{out}\left(c_{0}, t_{3}\right)
$$

Folding

Folding Algorithm

Folding Configuration

Folding configuration

A folding configuration is a tuple $\left(\Phi ; \sigma ; j ; \Pi_{1}, \ldots, \Pi_{l}\right)$ where:

- Φ is a sequence of terms (in $\mathcal{T}(\mathcal{F}, \mathcal{G}, \mathcal{N}, \mathcal{X})$).
- σ is a finite sequence of mappings $(\mathrm{x} \mapsto t)$ where t is a term.
- $j \in \mathbb{N}$.
- for every $i, \Pi_{i}=\left(P_{i}, b_{i}\right)$ where P_{i} is a protocol and b_{i} is a boolean term.

Folding Configuration: Intuition

In a folding configuration $\left(\Phi ; \sigma ; j ; \Pi_{1}, \ldots, \Pi_{I}\right)$:

- Φ is the frame, i.e. the sequence of terms outputted since the execution started.
- σ records inputs, it maps input variable to their corresponding term.
- j counts the number of inputs since the execution started.
- (P, b) represent the protocol P if b is true (and is null otherwise).
Using this interpretation, $\Pi_{1}, \ldots, \Pi_{/}$is the current process.

Initial configuration: $(\epsilon ; \emptyset ; 0 ;(P, \top))$

Folding: New and Branching Rules

Rule for protocol branching:

$$
\begin{aligned}
& \left(\Phi ; \sigma ; j ;\left(\text { if } b \text { then } P_{1} \text { else } P_{2}, b^{\prime}\right), \Pi_{1}, \ldots, \Pi_{l}\right) \\
\hookrightarrow & \left(\Phi ; \sigma ; j ;\left(P_{1}, b^{\prime} \wedge b\right),\left(P_{2}, b^{\prime} \wedge \neg b\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{aligned}
$$

Rule for new:

$$
\begin{array}{r}
\left(\Phi ; \sigma ; j ;(\nu \mathrm{n}, P, b), \Pi_{1}, \ldots, \Pi_{l}\right) \\
\hookrightarrow\left(\Phi ; \sigma ; j ;\left(P\left[\mathrm{n} \mapsto \mathrm{n}_{f}\right], b\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{array}
$$

if n_{f} does not appear in the lhs configuration
\hookrightarrow-irreducibility
A folding configuration K is \hookrightarrow-irreducible if for any K^{\prime}, we have $K \nrightarrow K^{\prime}$.

Folding: Input Rule

Rule for inputs:

$$
\begin{aligned}
& \stackrel{\left(\Phi ; \sigma ; j ;\left(\operatorname{in}(c, x) . P_{1}, b_{1}\right), \ldots,\left(\mathbf{i n}(c, x) . P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right)}{\stackrel{\text { incc) }}{\hookrightarrow}\left(\Phi ; \sigma\left[\mathrm{x} \mapsto \mathbf{a t t}_{j}(\Phi)\right] ; j+1 ;\left(P_{1}, b_{1}\right), \ldots,\left(P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right)}
\end{aligned}
$$

if $\mathrm{x} \notin \operatorname{dom}(\sigma)$, the lhs folding configuration is \hookrightarrow-irreducible and if for every i, Π_{1} does not start by an input on c.

Alternative

If the computational semantics of processes tell the adversary if an input succeeded or not, we replace Φ (in the rhs) by:

$$
\Phi, \dot{\bigvee}_{1 \leq i \leq n} b_{i}
$$

Folding: Output Rule

Rule for outputs:

$$
\begin{gathered}
\left(\Phi ; \sigma ; j ;\left(\text { out }\left(\mathrm{c}, t_{1}\right) \cdot P_{1}, b_{1}\right), \ldots,\left(\operatorname{out}\left(\mathrm{c}, t_{n}\right) . P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right) \\
\stackrel{\text { outt(c) }}{\longrightarrow}\left(\Phi, t \sigma ; \sigma ; j ;\left(P_{1}, b_{1}\right), \ldots,\left(P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{gathered}
$$

if the Ihs folding configuration is \hookrightarrow-irreducible and if for every i,
Π_{1} does not start by an output on c and:

$$
t \equiv \text { if } b_{1} \text { then } t_{1} \text { else } \ldots \text { if } b_{n} \text { then } t_{n} \text { else error }
$$

8 The input and output rules makes sense because we restrict ourselves to action-deterministic processes.

Remark: we omit the error message when $\left(\dot{\bigvee}_{1 \leq i \leq n} b_{i}\right) \Leftrightarrow$ true.

Folding

A folding observable action a is either in(c) or out(c).
Given an action-deterministic process P and a trace tr of folding observable, if:

$$
(\epsilon ; \emptyset ; 0 ;(P, \top)) \stackrel{\operatorname{tr}}{\hookrightarrow}(\Phi ; \quad ; \quad ; \quad)
$$

then Φ is the folding of P over tr, denoted fold (P, tr).

Folding: Exercises

Exercise

What are all the possible foldings of the following protocols?

$$
\operatorname{in}(c, x) . \operatorname{out}(c, t) \quad \operatorname{out}\left(c, t_{1}\right) \mid \operatorname{in}\left(c_{0}, x\right) . \operatorname{out}\left(c_{0}, t_{2}\right)
$$

if b then out $\left(\mathrm{c}, t_{1}\right)$ else $\operatorname{out}\left(\mathrm{c}, t_{2}\right)$
if b then $\operatorname{out}\left(c_{1}, t_{1}\right)$ else $\operatorname{out}\left(c_{2}, t_{2}\right)$

Exercise

Extend the folding algorithm with a rule allowing to handle processes with let bindings.

Semantics of Terms

Semantics of Terms

We showed how to represent protocol execution, on some fixed trace of observables tr, as a sequence of terms.

Intuitively, the terms corresponds to PTIME-computable bitstring distributions.

Example

If $\left\langle _, \quad\right\rangle$ is the concatenation, and samplings are done uniformly at random among bitstrings of length $\eta \in \mathbb{N}$, then folding:

$$
\nu \mathrm{n}_{0}, \nu \mathrm{n}_{1}, \text { out }\left(\mathrm{c},\left\langle\mathrm{n}_{0},\left\langle 00, \mathrm{n}_{1}\right\rangle\right\rangle\right) \text { yields }\left\langle\mathrm{n}_{0},\left\langle 00, \mathrm{n}_{1}\right\rangle\right\rangle
$$

which represent a distribution over bitstrings of length $2 \cdot \eta+2$, where all bits are sampled uniformly and independently, except for the bits at positions η and $\eta+1$, which are always 0 .

Semantics of Terms

We interpret $t \in \mathcal{T}(\mathcal{F}, \mathcal{G}, \mathcal{N}, \mathcal{X})$ as a Probabilistic
Polynomial-time Turing machine (PPTM), with:

- a working tape (also used as input tape);
- two read-only infinite tapes $\rho=\left(\rho_{p}, \rho_{a}\right)$ for protocol and adversary randomness.

We let \mathcal{D} be the set of such machines.
8 The machine must be polynomial in the size of its input on the working tape only (obviously).

Term Interpretation

The interpretation $\llbracket t \rrbracket_{\mathcal{M}}^{\sigma}$ is parameterized by:

- a valuation $\sigma: \mathcal{X} \mapsto \mathcal{D}$ of variables as PPTMs;
- a computational model \mathcal{M}, which interprets function symbols.

We often omit \mathcal{M}, as it is fixed throughout the interpretation.
We now define the machine $\llbracket t \rrbracket^{\sigma} \in \mathcal{D}$, by defining its behavior for every $\eta \in \mathbb{N}$ and pairs of random tapes $\rho=\left(\rho_{p}, \rho_{a}\right)$.

Term Interpretation: Function Symbols

Function symbols interpretations is just composition.
For function symbols in $f \in \mathcal{F}$, we simply apply $\llbracket f \rrbracket_{\mathcal{M}}$:

$$
\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \stackrel{\text { def }}{=} \llbracket f \rrbracket_{\mathcal{M}}\left(\llbracket t_{1} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right), \ldots, \llbracket t_{n} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right)\right)
$$

Adversarial function symbols $g \in \mathcal{G}$ also have access to ρ_{a} :

$$
\llbracket g\left(t_{1}, \ldots, t_{n}\right) \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \stackrel{\text { def }}{=} \llbracket g \rrbracket_{\mathcal{M}}\left(\llbracket t_{1} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right), \ldots, \llbracket t_{n} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right)
$$

Remark: $\llbracket f \rrbracket_{\mathcal{M}}$ and $\llbracket g \rrbracket_{\mathcal{M}}$ are deterministic (all randomness must come explicitly, from ρ).

Term Interpretation: Variables and Names

For variables in $\mathrm{x} \in \mathcal{X}$, we use σ :

$$
\llbracket x \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \stackrel{\text { def }}{=} \sigma(x)\left(1^{\eta}, \rho\right),
$$

Names $\mathrm{n} \in \mathcal{G}$ are interpreted as uniform random samplings among bitstrings of length η, extracted from ρ_{p} :

$$
\llbracket \mathrm{n} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \stackrel{\text { def }}{=} \mathrm{M}_{\mathrm{n}}\left(\eta, \rho_{p}\right)
$$

For every pair of different names n_{0}, n_{1}, we require that $M_{n_{0}}$ and $\mathrm{M}_{\mathrm{n}_{1}}$ extracts disjoint parts of ρ_{p}.
8 Hence different names are independent random samplings.

Term Interpretation: Builtins

We force the interpretation of some function symbols.

- if_then_else _ is interpreted as branching:

【if b then t_{1} else $t_{2} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \stackrel{\text { def }}{=} \begin{cases}\llbracket t_{1} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) & \text { if } \llbracket t_{1} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right)=1 \\ \llbracket t_{2} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) & \text { otherwise }\end{cases}$

- $_{-} \doteq{ }_{-}$is interpreted as an equality test:

$$
\llbracket t_{1} \doteq t_{2} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } \llbracket t_{1} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right)=\llbracket t_{2} \rrbracket^{\sigma}\left(1^{\eta}, \rho\right) \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, we force the interpretations of $\dot{\wedge}, \dot{\vee}, \rightarrow$, true, false.

A First-Order Logic for
Indistinguishability

A First-Order Logic for Indistinguishability

We now present a logic, to state (and later prove) properties about bitstring distributions.

This is a first-order logic with a single predicate $\sim,^{1}$ representing computational indistinguishability.

$$
\begin{aligned}
\phi:= & \top \mid \perp \\
& |\phi \wedge \phi| \phi \vee \phi|\phi \rightarrow \phi| \neg \phi \\
& |\forall \mathrm{x} \cdot \phi| \exists \mathrm{x} . \phi \\
& \mid t_{1}, \ldots, t_{n} \sim_{n} t_{n+1}, \ldots, t_{2 n} \quad\left(t_{1}, \ldots, t_{2 n} \in \mathcal{T}(\mathcal{F}, \mathcal{G}, \mathcal{N}, \mathcal{X})\right)
\end{aligned}
$$

Remark: we use $\dot{\wedge}, \dot{\vee}, \rightarrow$ in for the boolean function symbols in terms, to avoid confusion with the boolean connectives in formulas.
${ }^{1}$ Actually, one predicate \sim_{n} of arity $2 n$ for every $n \in \mathbb{N}$.

Semantics of the Logic

The logic has a standard FO semantics, using \mathcal{D} as interpretation domain and interpreting \sim as computational indistinguishability.
$\llbracket \phi \rrbracket_{\mathcal{M}}^{\sigma} \in\{$ True, False $\}$ is as expected for boolean connective and FO quantifiers. E.g.:

$$
\begin{gathered}
\llbracket \top \rrbracket_{\mathcal{M}}^{\sigma} \stackrel{\text { def }}{=} \text { True } \quad \llbracket \phi \wedge \psi \rrbracket_{\mathcal{M}}^{\sigma} \stackrel{\text { def }}{=} \llbracket \phi \rrbracket_{\mathcal{M}}^{\sigma} \text { and } \llbracket \psi \rrbracket_{\mathcal{M}}^{\sigma} \\
\llbracket \neg \phi \rrbracket_{\mathcal{M}}^{\sigma} \stackrel{\text { def }}{=} \text { not } \llbracket \phi \rrbracket_{\mathcal{M}}^{\sigma} \\
\llbracket \forall x \cdot \phi \rrbracket_{\mathcal{M}}^{\sigma} \stackrel{\text { def }}{=} \text { True } \quad \text { if } \forall m \in \mathcal{D}, \llbracket \phi \rrbracket_{\mathcal{M}}^{\sigma[x \mapsto m]} \stackrel{\text { def }}{=} \text { True }
\end{gathered}
$$

Semantics of the Logic

Finally, \sim_{n} is interpreted as computational indistinguishability.

$$
\llbracket t_{1}, \ldots, t_{n} \sim_{n} s_{1}, \ldots, s_{n} \rrbracket_{\mathcal{M}}^{\sigma}=\text { True }
$$

if, for every PPTM \mathcal{A} with a $n+1$ input (and working) tapes, and a single infinite random tape:

$$
\left|\begin{array}{r}
\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta},\left(\llbracket t_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right)_{1 \leq i \leq n}, \rho_{a}\right)=1\right) \\
-\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta},\left(\llbracket s_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right)_{1 \leq i \leq n}, \rho_{a}\right)=1\right)
\end{array}\right|
$$

is a negligible function of η.
The quantity in (\star) is called the advantage of \mathcal{A} against the left/right game $t_{1}, \ldots, t_{n} \sim_{n} s_{1}, \ldots, s_{n}$

Negligible Functions

A function $f(\eta)$ is negligible if it is asymptotically smaller than the inverse of any polynomial, i.e.:

$$
\forall c \in \mathbb{N}, \exists N \in \mathbb{N} \text { s.t. } \forall n \geq N, f(n) \leq \frac{1}{n^{c}}
$$

Example

Let f be the function defined by:

$$
f(\eta) \stackrel{\text { def }}{=} \operatorname{Pr}_{\rho}\left(\llbracket \mathrm{n}_{0} \rrbracket\left(1^{\eta}, \rho\right)=\llbracket \mathrm{n}_{1} \rrbracket\left(1^{\eta}, \rho\right)\right)
$$

If $\mathrm{n}_{0} \not \equiv \mathrm{n}_{1}$, then $f(\eta)=\frac{1}{2^{\eta}}$, and f is negligible.

Satisfiability and Validity

A formula ϕ is satisfied by a computational model \mathcal{M}, written $\mathcal{M} \models \phi$, if $\llbracket \phi \rrbracket_{\mathcal{M}}^{\sigma}=$ True for every valuation σ.
ϕ is valid, denoted by $\models \phi$, if it is satisfied by every computational model.
ϕ is \mathcal{C}-valid if it is satisfied by every computational model $\mathcal{M} \in \mathcal{C}$.

Validity: Exercise

Exercise

Which of the formulas below are valid? Which are not?

$$
\begin{aligned}
& \text { true } \sim \text { false } \quad n_{0} \sim n_{0} \quad n_{0} \sim n_{1} \quad n_{0} \doteq n_{1} \sim \text { false } \\
& n_{0}, n_{0} \sim n_{0}, n_{1} \quad f\left(n_{0}\right) \sim f\left(n_{1}\right) \text { where } f \in \mathcal{F} \cup \mathcal{G} \\
& \pi_{1}\left(\left\langle n_{0}, n_{1}\right\rangle\right) \doteq n_{0} \sim \text { true }
\end{aligned}
$$

Validity: Exercise

Exercise

Which of the formulas below are valid? Which are not?
\nLeftarrow true \sim false $\quad \vDash n_{0} \sim n_{0} \quad \vDash n_{0} \sim n_{1} \quad \vDash n_{0} \doteq n_{1} \sim$ false

$$
\begin{gathered}
\not \vDash \mathrm{n}_{0}, \mathrm{n}_{0} \sim \mathrm{n}_{0}, \mathrm{n}_{1} \quad \models f\left(\mathrm{n}_{0}\right) \sim f\left(\mathrm{n}_{1}\right) \text { where } f \in \mathcal{F} \cup \mathcal{G} \\
\not \models \pi_{1}\left(\left\langle\mathrm{n}_{0}, \mathrm{n}_{1}\right\rangle\right) \doteq \mathrm{n}_{0} \sim \text { true }
\end{gathered}
$$

Protocol Indistinguishability

\mathcal{P} and \mathcal{Q} are indistinguishable, written $\mathcal{P} \approx \mathcal{Q}$, if for any τ :

$$
\vDash \operatorname{fold}(\mathcal{P}, \tau) \sim \operatorname{fold}(\mathcal{Q}, \tau)
$$

Remark

While there are countably many observable traces τ, the set of foldings of a protocol P is always finite: ${ }^{2}$

$$
|\{\operatorname{fold}(\mathcal{P}, \tau) \mid \tau\}|<+\infty
$$

[^0]
Protocol Indistinguishability: Exercise

Exercise

Informally, determine which of the following protocols indistinguishabilities hold, and under what assumptions:

$$
\begin{aligned}
& \operatorname{out}\left(\mathrm{c}, t_{1}\right) \approx \operatorname{out}\left(\mathrm{c}, t_{2}\right) \quad \operatorname{out}(\mathrm{c}, t) \approx \operatorname{null} \quad \operatorname{in}(\mathrm{c}, \mathrm{x}) \approx \operatorname{null} \\
& \operatorname{out}(\mathrm{c}, t) \approx \text { if } b \text { then } \operatorname{out}\left(\mathrm{c}, t_{1}\right) \text { else out }\left(\mathrm{c}, t_{2}\right) \\
& \operatorname{out}(\mathrm{c}, t) \approx \text { if } b \text { then } \operatorname{out}(\mathrm{c}, t) \text { else out }\left(\mathrm{c}_{0}, t_{0}\right)
\end{aligned}
$$

Structural Rules

Rules: Soundness

A rule:

$$
\begin{array}{lll}
\phi_{1} \quad \ldots & \phi_{n} \\
\hline
\end{array}
$$

is sound if ϕ is valid whenever $\phi_{1}, \ldots, \phi_{n}$ are valid.

Example

$$
\frac{y \sim x}{x \sim y} \quad \text { is sound }
$$

These are typically structural rules, which are valid in all computational models.

Structural Rules

Computational indistinguishability is an equivalence relation:

$$
\overrightarrow{\vec{u} \sim \vec{u}} \text { REFL } \quad \frac{\vec{v} \sim \vec{u}}{\vec{u} \sim \vec{v}} \text { SYM } \quad \frac{\vec{u} \sim \vec{w} \quad \vec{w} \sim \vec{v}}{\vec{u} \sim \vec{v}} \text { Trans }
$$

Permutation. If π is a permutation of $\{1, \ldots, n\}$ then:

$$
\frac{u_{\pi(1)}, \ldots, u_{\pi(n)} \sim v_{\pi(1)}, \ldots, v_{\pi(n)}}{u_{1}, \ldots, u_{n} \sim v_{1}, \ldots, v_{n}} \text { PERM }
$$

Structural Rules

Alpha-renaming.

$$
\overline{\vec{u} \sim \vec{u} \alpha} \alpha-\mathrm{EQU}
$$

when α is an injective renaming of names in \mathcal{N}.
Restriction. The adversary can throw away some values:

$$
\frac{\vec{u}, s \sim \vec{v}, t}{\vec{u} \sim \vec{v}} \operatorname{RESTR}
$$

Structural Rules

Duplication. Giving twice the same value to the adversary is useless:

$$
\frac{\vec{u}, s \sim \vec{v}, t}{\vec{u}, s, s \sim \vec{v}, t, t} \mathrm{DuP}
$$

Function application. If the arguments of a function are indistinguishable, so is the image:

$$
\frac{\overrightarrow{u_{1}}, \overrightarrow{v_{1}} \sim \vec{u}_{1}, \overrightarrow{v_{2}}}{f\left(\vec{u}_{1}\right), \overrightarrow{v_{1}} \sim f\left(\vec{u}_{2}\right), \overrightarrow{v_{2}}} \mathrm{FA}
$$

where $f \in \mathcal{F} \cup \mathcal{G}$.

Structural Rules: Proof of Function Application

$$
\frac{\overrightarrow{u_{1}}, \overrightarrow{v_{1}} \sim \vec{u}_{1}, \overrightarrow{v_{2}}}{f\left(\vec{u}_{1}\right), \overrightarrow{v_{1}} \sim f\left(\vec{u}_{2}\right), \overrightarrow{v_{2}}} \mathrm{FA}
$$

Proof. The proof is by contrapositive. Assume \mathcal{M}, σ and \mathcal{A} s.t. its advantage against:

$$
f\left(\vec{u}_{1}\right), \vec{v}_{1} \sim f\left(\vec{u}_{2}\right), \vec{v}_{2}
$$

is not negligible. Let \mathcal{B} be the distinguisher defined by, for any bitstrings \vec{w}_{u}, \vec{w}_{v} and tape ρ_{a} :

$$
\mathcal{B}\left(1^{\eta}, \vec{w}_{u}, \vec{w}_{v}, \rho_{a}\right) \stackrel{\text { def }}{=} \mathcal{A}\left(1^{\eta}, \llbracket f \rrbracket_{\mathcal{M}}\left(\vec{w}_{u}\right), \vec{w}_{v}, \rho_{a}\right)
$$

\mathcal{B} is a PPTM since \mathcal{A} is and $\llbracket f \rrbracket_{\mathcal{M}}$ can be evaluated in pol. time. Then:

$$
\begin{array}{r}
\mathcal{B}\left(1^{\eta}, \llbracket \vec{u}_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \llbracket \vec{v}_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right) \\
=\mathcal{A}\left(1^{\eta}, \llbracket f\left(\vec{u}_{i}\right) \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \llbracket \vec{v}_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right)
\end{array}
$$

Hence the advantage of \mathcal{B} in distinguishing $\vec{u}_{1}, \vec{v}_{1} \sim \vec{u}_{1}, \vec{v}_{2}$ is exactly the advantage of \mathcal{A} in distinguishing (\dagger).

Structural Rules

Case Study. We can do case disjunction over branching terms:

$$
\frac{\vec{w}_{1}, b_{0}, u_{0} \sim \vec{w}_{1}, b_{1}, u_{1} \quad \vec{w}_{0}, b_{0}, v_{0} \sim \vec{w}_{1}, b_{1}, v_{1}}{\vec{w}_{0} \text {, if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim \vec{w}_{1}, \text { if } b_{1} \text { then } u_{1} \text { else } v_{1}} \mathrm{CS}
$$

Structural Rules: Proof of Case Study

$$
\frac{b_{0}, u_{0} \sim b_{1}, u_{1} \quad b_{0}, v_{0} \sim b_{1}, v_{1}}{t_{0} \equiv \text { if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim t_{1} \equiv \text { if } b_{1} \text { then } u_{1} \text { else } v_{1}} \mathrm{CS}
$$

Proof. (by contrapositive) Assume \mathcal{M}, σ and \mathcal{A} s.t. its advantage against:

$$
\text { if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim \text { if } b_{1} \text { then } u_{1} \text { else } v_{1}
$$

is non-negligible. Let \mathcal{B}_{\top} be the distinguisher:

$$
\mathcal{B}_{\top}\left(1^{\eta}, w_{b}, w, \rho_{a}\right) \stackrel{\text { def }}{=} \begin{cases}\mathcal{A}\left(1^{\eta}, w, \rho_{a}\right) & \text { if } w_{b}=1 \\ 0 & \text { otherwise }\end{cases}
$$

\mathcal{B}_{\top} is trivially a PPTM. Moreover, for any $i \in\{1,2\}$:

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\mathcal{B}_{\top}\left(1^{\eta}, \llbracket b_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \llbracket u_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right)=1\right) \\
= & \left.\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket t_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right)=1 \wedge \llbracket b_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)=1\right)\right\} p_{\top, i}
\end{aligned}
$$

Structural Rules: Proof of Case Study (continued)

Hence the advantage of \mathcal{B}_{\top} against $b_{0}, u_{0} \sim b_{1}, u_{1}$ is $\left|p_{\top, 1}-p_{\top, 0}\right|$.
Similarly, let \mathcal{B}_{\perp} be the distinguisher:

$$
\mathcal{B}_{\perp}\left(1^{\eta}, w_{b}, w, \rho_{a}\right) \stackrel{\operatorname{def}}{=} \begin{cases}\mathcal{A}\left(1^{\eta}, w, \rho_{a}\right) & \text { if } w_{b} \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

By an identical reasoning, we get that the advantage of \mathcal{B}_{\perp} against $b_{0}, v_{0} \sim b_{1}, v_{1}$ is $\left|p_{\perp, 1}-p_{\perp, 0}\right|$, where $p_{\perp, i}$ is:

$$
\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket t_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right)=1 \wedge \llbracket b_{i} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right) \neq 1\right)
$$

Structural Rules: Proof of Case Study (continued)

The advantage of \mathcal{A} against $t_{0} \sim t_{1}$ is, by partitioning and triangular inequality:

$$
\left|\left(p_{\top, 1}+p_{\perp, 1}\right)-\left(p_{\top, 0}+p_{\perp, 1}\right)\right| \leq\left|p_{\top, 1}-p_{\top, 0}\right|+\left|p_{\perp, 1}-p_{\perp, 1}\right|
$$

Since \mathcal{A} 's advantage is non-negligible, at least one of the two quantity above is non-negligible. Hence either \mathcal{B}_{\top} or \mathcal{B}_{\perp} has a non-negligible advantage against a premise of the CS rule.

Counter-Examples

Remark that b is necessary in CS

$$
\frac{\vec{w}_{1}, b_{0}, u_{0} \sim \vec{w}_{1}, b_{1}, u_{1} \quad \vec{w}_{0}, b_{0}, v_{0} \sim \vec{w}_{1}, b_{1}, v_{1}}{\vec{w}_{0} \text {, if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim \vec{w}_{1} \text {, if } b_{1} \text { then } u_{1} \text { else } v_{1}} \mathrm{CS}
$$

We have:

$$
\models 0 \sim 0 \quad \models n_{0} \sim n_{1} \quad \models \operatorname{even}\left(n_{0}\right) \sim \operatorname{even}\left(n_{0}\right)
$$

But:
\neq if $\operatorname{even}\left(\mathrm{n}_{0}\right)$ then n_{0} else $0 \sim$ if $\operatorname{even}\left(\mathrm{n}_{0}\right)$ then n_{1} else 0
Why is the later formula not valid?

Structural Rules: FO + Equality Reasoning

If $\models(s \doteq t) \sim$ true, then s and t are equal with overwhelming probability. Hence we can safely replace s by t in any context.

Let $(s=t) \stackrel{\text { def }}{=}(s \doteq t) \sim$ true. Then the following rule is sound:

$$
\frac{\vec{u}, t \sim \vec{v} \quad s=t}{\vec{u}, s \sim \vec{v}} \mathrm{R}
$$

Structural Rules: FO + Equality Reasoning

To prove $\models s=t$, we use the following rule:

$$
\frac{\mathcal{A}_{\mathrm{th}} \vdash_{\mathrm{FO}=} s=t}{s=t} \mathrm{FO}
$$

where \vdash_{FO} is any sound proof system for (classical) first-order logic with equality:

$$
\mathcal{F}_{\mathrm{FO}}(\dot{\rightarrow}, \text { false }, \dot{=}, \mathcal{F} \cup \mathcal{G})
$$

We allow additional FO axioms using $\mathcal{A}_{\text {th }}$ (e.g. for if_then_else_).

Example

$$
\begin{aligned}
\mathcal{A}_{\mathrm{th}} \vdash_{\mathrm{FO}=} & (v \doteq w \rightarrow \text { if } u \doteq v \text { then } u \text { else } t \doteq s)= \\
& (v \doteq w \rightarrow \text { if } u \doteq v \text { then } w \text { else } t \doteq s)
\end{aligned}
$$

Structural Rules: Probabilistic Independence

Two rules exploiting the independence of bitstring distributions:

$$
\begin{gathered}
\overline{(t \doteq \mathrm{n})=\text { false }}=\text {-IND when } \mathrm{n} \notin \operatorname{st}(t) \\
\overline{\vec{u}, \mathrm{n}_{0} \sim \vec{v}, \mathrm{n}_{1}} \text { FRESH when } \mathrm{n}_{0} \notin \operatorname{st}(\vec{u}) \text { and } \mathrm{n}_{1} \notin \operatorname{st}(\vec{v})
\end{gathered}
$$

Remark

To check that the rules side-conditions hold, we require that they do not contain free variables. Hence we actually have a countable, recursive, set of ground rules (i.e. rule schemata).

Structural Rules: Probability Independence

We give the proof of the first rule:

$$
\overline{(t \doteq \mathrm{n})=\text { false }}=-\mathrm{IND} \quad \text { when } \mathrm{n} \notin \operatorname{st}(t)
$$

Proof. For any computational model \mathcal{M} (we omit it below):

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\llbracket t \doteq \mathrm{n} \rrbracket\left(1^{\eta}, \rho\right)=1\right) \\
= & \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket\left(1^{\eta}, \rho\right)=\llbracket \mathrm{n} \rrbracket\left(1^{\eta}, \rho\right)\right) \\
= & \sum_{w \in\{0,1\}^{*}} \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket\left(1^{\eta}, \rho\right)=w \wedge \llbracket \mathrm{n} \rrbracket\left(1^{\eta}, \rho\right)=w\right) \\
= & \sum_{w \in\{0,1\}^{*}} \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket\left(1^{\eta}, \rho\right)=w\right) \cdot \operatorname{Pr}_{\rho}\left(\llbracket \mathrm{n} \rrbracket\left(1^{\eta}, \rho\right)=w\right) \\
= & \frac{1}{2^{\eta}} \cdot \sum_{w \in\{0,1\}^{*}} \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket\left(1^{\eta}, \rho\right)=w\right) \\
= & \frac{1}{2^{\eta}}
\end{aligned}
$$

Structural Rules: Exercise

Exercise

Give a derivation of the following formula:

$$
\mathrm{n}_{0} \sim \text { if } b \text { then } \mathrm{n}_{0} \text { else } \mathrm{n}_{1} \quad\left(\text { when } \mathrm{n}_{0}, \mathrm{n}_{1} \notin \operatorname{st}(b)\right)
$$

Implementation Rules

Rules: Soundness

A rule is \mathcal{C}-sound if ϕ is \mathcal{C}-valid whenever $\phi_{1}, \ldots, \phi_{n}$ are \mathcal{C}-valid.

Example

$$
\overline{\left(\pi_{1}\langle x, y\rangle \doteq x\right) \sim \text { true }}
$$

is not sound, because we do not require anything on the interpretation of π_{1} and the pair.

Obviously, it is \mathcal{C}_{π}-sound, where \mathcal{C}_{π} is the set of computational model where π_{1} computes the first projection of the pair $\left\langle{ }_{-},{ }_{-}\right\rangle$.

Implementation Assumptions

The general philosophy of the CCSA approach is to make the minimum number of assumptions possible on the interpretations of function symbols in a computational model.

Any additional necessary assumption is added through rules, which restrict the set of computation model for which the formula holds (hence limit the scope of the final security result).

Typically, this is used for:

- functional properties, which must be satisfied by the protocol functions (e.g. the projection/pair rule).
- cryptographic hardness assumptions, which must be satisfied by the cryptographic primitives (e.g. IND-CCA).

Functional Properties

Example. Equational theories for protocol functions:

- $\pi_{i}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=x_{i}$ $i \in\{1,2\}$
- $\operatorname{dec}\left(\{x\}_{\operatorname{pk}(y)}^{z}, \operatorname{sk}(y)\right)=x$
- $(x \oplus y) \oplus z=x \oplus(y \oplus z)$

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of computational security.

> Cryptographic Reduction $\mathcal{S} \leq$ red \mathcal{H}
> If you can break the cryptographic design \mathcal{S}, then you can break the hardness assumption \mathcal{H} using roughly the same time.

- We assume that \mathcal{H} cannot be broken in a reasonable time:
- Low-level assumptions: D-Log, DDH, ...
- Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...
- Hence, \mathcal{S} cannot be broken in a reasonable time.

Cryptographic Reduction

Cryptographic Reduction $\mathcal{S} \leq$ red \mathcal{H}

\mathcal{S} reduces to a hardness hypothesis \mathcal{H} (e.g. IND-CCA, DDH) if:

$$
\forall \mathcal{A} . \exists \mathcal{B} . \operatorname{Adv}_{\mathcal{S}}^{\eta}(\mathcal{A}) \leq P\left(\operatorname{Adv}_{\mathcal{H}}^{\eta}(\mathcal{B}), \eta\right)
$$

where \mathcal{A} and \mathcal{B} are taken among PPTMs and P is a polynomial.

Cryptographic Rules

We are now going to give rules which capture some cryptographic hardness hypotheses.

The validity of these rules will be established through a cryptographic reduction.

- Asymmetric encryption: indistinguishability (IND-CCA ${ }_{1}$) and key-privacy (KP-CCA ${ }_{1}$);
- Hash function: collision-resistance (CR-HK);
- MAC: unforgeability (EUF-CMA);

Cryptographic Rules

Asymmetric Encryption

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

- public and private key generation functions pk(_), sk(_);
- randomized ${ }^{3}$ encryption function $\left\{{ }_{-}\right\}$-;
- a decryption function $\operatorname{dec}\left(_, \quad\right.$)

It must satisfies the functional equality:

$$
\operatorname{dec}\left(\{x\}_{\mathrm{pk}(y)}^{z}, \operatorname{sk}(y)\right)=x
$$

${ }^{3}$ The role of the randomization will become clear later.

IND-CCA A_{1} Security

An encryption scheme is indistinguishable against chosen cipher-text attacks (IND-CCA $)$ iff. for every PPTM \mathcal{A} with access to:

- a left-right oracle $\mathcal{O}_{\mathrm{LR}}^{b, n}(\cdot, \cdot)$:

$$
\mathcal{O}_{\mathrm{LR}}^{b, \mathrm{n}}\left(m_{0}, m_{1}\right) \stackrel{\text { def }}{=} \begin{cases}\left\{m_{b}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} & \text { if len }\left(m_{1}\right)=\operatorname{len}\left(m_{2}\right) \quad(r \text { fresh }) \\ 0 & \text { otherwise }\end{cases}
$$

- and a decryption oracle $\mathcal{O}_{\text {dec }}^{n}(\cdot)$,
where \mathcal{A} can call $\mathcal{O}_{\mathrm{LR}}$ once, and cannot call $\mathcal{O}_{\text {dec }}$ after $\mathcal{O}_{\mathrm{LR}}$, then:

$$
\operatorname{Pr}_{\mathrm{n}}\left(\mathcal{A}^{\mathcal{O}_{\mathrm{LR}}^{1, \mathrm{n}}, \mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}}\left(1^{\eta}, \operatorname{pk}(\mathrm{n})\right)=1\right)-\operatorname{Pr}_{\mathrm{n}}\left(\mathcal{A}^{\mathcal{O}_{\mathrm{LR}}^{0, \mathrm{n}}, \mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}}\left(1^{\eta}, \operatorname{pk}(\mathrm{n})\right)=1\right) \mid
$$

is negligible in η, where n is drawn uniformly in $\{0,1\}^{\eta}$.

IND-CCA ${ }_{1}$ Security: Exercise

Exercise

Show that if the encryption ignore its randomness, i.e. there exists aenc(_, _) s.t. for all x, y, r :

$$
\{x\}_{y}^{r}=\operatorname{aenc}(x, y)
$$

then the encryption does not satisfy IND-CCA .

IND-CCA ${ }_{1}$ Rule

Indistinguishability Against Chosen Ciphertexts Attacks

 If the encryption scheme is IND-CCA , then the ground rule:$$
\begin{aligned}
& \operatorname{len}\left(t_{0}\right)=\operatorname{len}\left(t_{1}\right) \\
& \vec{u},\left\{t_{0}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \vec{u},\left\{t_{1}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \\
& \text { IND-CCA }
\end{aligned}
$$

is sound, when:

- r does not appear in \vec{u}, t_{0}, t_{1};
- n appears only in $\mathrm{pk}(\cdot)$ or $\operatorname{dec}\left(_, \operatorname{sk}(\cdot)\right)$ positions in \vec{u}, t_{0}, t_{1}.

IND-CCA A_{1} Rule: Proof

Proof sketch

Proof by contrapositive. Let \mathcal{M} be a comp. model, \mathcal{A} an adversary and \vec{u}, t_{0}, t_{1} ground terms such that:

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \vec{u} \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right), \llbracket\left\{t_{0}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right), \rho_{a}\right)\right. \\
- & \operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \vec{u} \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right), \llbracket\left\{t_{1}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right), \rho_{a}\right)\right.
\end{aligned}
$$

is not negligible, and $\mathcal{M} \models \operatorname{len}\left(t_{0}\right)=\operatorname{len}\left(t_{1}\right)$.
We must build a PPTM \mathcal{B} s.t. \mathcal{B} wins the IND-CCA A_{1} security game.

IND-CCA ${ }_{1}$ Rule: Proof

Let $\mathcal{B}^{\mathcal{O}_{\mathrm{LR}}^{b, \mathrm{n}}, \mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}}\left(1^{\eta}, \llbracket \operatorname{pk}(\mathrm{n}) \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)\right)$ be the following program:
i) lazily samples the infinite random tapes $\left(\rho_{a}, \rho_{p}^{\prime}\right)$ where:

$$
\rho_{p}^{\prime}:=\rho_{p}[\mathrm{n} \mapsto 0, \mathrm{r} \mapsto 0]
$$

ii) compute ${ }^{4}$:

$$
w_{\vec{u}}, w_{t_{0}}, w_{t_{1}}:=\llbracket \vec{u}, t_{0}, t_{1} \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)
$$

using $\left(\rho_{a}, \rho_{p}^{\prime}\right), \llbracket \operatorname{pk}(n) \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)$ and calls to $\mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}$.
iii) compute:

$$
w_{l r}:=\mathcal{O}_{\mathrm{LR}}^{b, \mathrm{n}}\left(w_{t_{0}}, w_{t_{1}}\right)=\llbracket\left\{t_{b}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \rrbracket_{\mathcal{M}}
$$

(since $\mathcal{M} \models \operatorname{len}\left(t_{0}\right)=\operatorname{len}\left(t_{1}\right)$)
iv) return $\mathcal{A}\left(1^{\eta}, w_{\vec{u}}, w_{l r}, \rho_{a}\right)$.
${ }^{4}$ we describe how later

IND-CCA ${ }_{1}$ Rule: Proof

Then \mathcal{B} advantage against IND-CCA ${ }_{1}$ is exactly \mathcal{A} advantage against:

$$
\vec{u},\left\{t_{0}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \vec{u},\left\{t_{1}\right\}_{\mathrm{pk}(\mathrm{n})}^{r}
$$

which we assumed non-negligible.

IND-CCA ${ }_{1}$ Rule: Proof

It only remains to explain how to do step ii) in polynomial time.
We prove by structural induction that for any subterm s of \vec{u}, t_{0}, t_{1} :

- either s is a forbidden subterm $n, \operatorname{sk}(\mathrm{n})$ or r;
- or \mathcal{B} can compute $w_{s}:=\llbracket s \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)$ in polynomial time.

Assuming this holds, we conclude by observing that IND-CCA side conditions guarantees that \vec{u}, t_{0}, t_{1} are not forbidden subterms.

IND-CCA ${ }_{1}$ Rule: Proof

Induction. We are in one of the following cases:

- $s \in \mathcal{X}$ is not possible, since \vec{u}, t_{0}, t_{1} are ground.
- $s \in\{r, n\}$ are forbidden, hence the induction hypothesis holds.
- $s \in \mathcal{N} \backslash\{r, n\}$, then \mathcal{B} computes s directly from $\rho_{p}^{\prime}=\rho_{p}[\mathrm{n} \mapsto 0, \mathrm{r} \mapsto 0]$.
- $s \equiv f\left(t_{1}, \ldots, t_{n}\right)$ and t_{1}, \ldots, t_{n} are not forbidden. Then, by induction hypothesis, \mathcal{B} can compute $w_{i}:=\llbracket t_{i} \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)$ for any $1 \leq i \leq n$. Then \mathcal{B} simply computes:

$$
w_{s}:= \begin{cases}\llbracket f \rrbracket_{\mathcal{M}}\left(w_{1}, \ldots, w_{n}\right) & \text { if } f \in \mathcal{F} \\ \llbracket f \rrbracket_{\mathcal{M}}\left(w_{1}, \ldots, w_{n}, \rho_{a}\right) & \text { if } f \in \mathcal{G}\end{cases}
$$

IND-CCA 1 Rule: Proof

case disjunction (continued):

- $s \equiv f\left(t_{1}, \ldots, t_{n}\right)$ and at least one of the t_{i} is forbidden.

Using IND-CCA ${ }_{1}$ side conditions, either s is either $\mathrm{pk}(\mathrm{n}), \operatorname{sk}(\mathrm{n})$ or $\operatorname{dec}(m, \operatorname{sk}(n))$.
The first case is immediate since \mathcal{B} receives $\llbracket \operatorname{pk}(n) \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)$ as argument.

The second case is a forbidden subterm, hence the induction hypothesis holds.

For the last case, from IND-CCA 1 side conditions, we know that $m \neq r$ and $m \neq n$. Hence, by induction hypothesis, \mathcal{B} can compute $w_{m}=\llbracket m \rrbracket_{\mathcal{M}}\left(1^{\eta}, \rho\right)$. We conclude using:

$$
w_{s}:=\mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}\left(w_{m}\right)
$$

IND-CCA ${ }_{1}$ Rule: Exercise

Exercise

Which of the following formulas can be proven using IND-CCA ?

$$
\begin{aligned}
& \operatorname{pk}(\mathrm{n}),\{0\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \operatorname{pk}(\mathrm{n}),\{1\}_{\mathrm{pk}(\mathrm{n})}^{r} \\
& \operatorname{pk}(n),\{0\}_{\mathrm{pk}(\mathrm{n})}^{r},\{0\}_{\mathrm{pk}(\mathrm{n})}^{r_{0}} \sim \operatorname{pk}(\mathrm{n}),\{1\}_{\mathrm{pk}(\mathrm{n})}^{r},\{0\}_{\mathrm{pk}(\mathrm{n})}^{\mathrm{r}_{\mathrm{o}}} \\
& \operatorname{pk}(n),\{0\}_{p k(n)}^{r},\{0\}_{p k(n)}^{r} \sim \operatorname{pk}(n),\{0\}_{p k(n)}^{r},\{1\}_{p k(n)}^{r} \\
& \operatorname{pk}(n),\{0\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \operatorname{pk}(\mathrm{n}),\{\operatorname{sk}(\mathrm{n})\}_{\mathrm{pk}(\mathrm{n})}^{r}
\end{aligned}
$$

IND-CCA ${ }_{1}$ Rule: Exercise

Exercise (Hybrid Argument)
Prove the following formula using IND-CCA ${ }_{1}$:

$$
\{0\}_{\mathrm{pk}(n)}^{r_{n}},\{1\}_{\mathrm{pk}(n)}^{r_{1}}, \ldots,\{n\}_{\mathrm{pk}(n)}^{r_{n}} \sim\{0\}_{\mathrm{pk}(n)}^{r_{0}},\{0\}_{\mathrm{pk}(n)}^{r_{1}}, \ldots,\{0\}_{\mathrm{pk}(n)}^{r_{n}}
$$

Note: we assume that all plain-texts above have the same length (e.g. they are all represented over L bits, for L large enough)

KP-CCA A_{1} Security

A scheme provides key privacy against chosen cipher-text attacks $\left(\mathrm{KPP}_{-C C A}\right)$ iff for every PPTM \mathcal{A} with access to:

- a left-right encryption oracle $\mathcal{O}_{\mathrm{LR}}^{b, n_{0}, n_{1}}(\cdot)$:

$$
\begin{equation*}
\mathcal{O}_{\mathrm{LR}}^{b, \mathrm{n}_{0}, \mathrm{n}_{1}}(m) \stackrel{\text { def }}{=}\{m\}_{\mathrm{pk}\left(\mathrm{n}_{b}\right)}^{r} \tag{rfresh}
\end{equation*}
$$

- and two decryption oracles $\mathcal{O}_{\text {dec }}^{\mathrm{n}_{0}}(\cdot)$ and $\mathcal{O}_{\text {dec }}^{\mathrm{n}_{1}}(\cdot)$,
where \mathcal{A} can call $\mathcal{O}_{\text {LR }}$ once, and cannot call the decryption oracles after $\mathcal{O}_{\mathrm{LR}}$, then:
is negligible in η, where n_{0}, n_{1} are drawn in $\{0,1\}^{\eta}$.

Security Notions: Exercise

Exercise

Show that $I N D-C C A_{1} \nRightarrow K P-C C A_{1}$ and $K P-C C A_{1} \nRightarrow I N D-C C A_{1}$.

KP-CCA 1 Rule

Key Privacy Against Chosen Ciphertexts Attacks

If the encryption scheme is $\mathrm{KP}-\mathrm{CCA}_{1}$, then the ground rule:

$$
\overline{\vec{u},\{t\}_{\mathrm{pk}\left(\mathrm{n}_{0}\right)}^{r} \sim \vec{u},\{t\}_{\mathrm{pk}\left(\mathrm{n}_{1}\right)}^{r}} \text { KP-CCA } 1
$$

is sound, when:

- r does not appear in \vec{u}, t;
- n_{0}, n_{1} appear only in $\mathrm{pk}(\cdot)$ or $\operatorname{dec}\left(_, \operatorname{sk}(\cdot)\right)$ positions in \vec{u}, t.

The proof is similar to the IND-CCA 1 soundness proof. We omit it.

Security Proof

Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

- I_{X} is the initiator with identity X;
- S_{X} is the server, accepting messages from X;

The adversary must not be able to distinguish $I_{A} \mid S_{A}$ from $I_{C} \mid S_{A}$.

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{X}}: \nu \mathrm{r} \cdot \nu \mathrm{n}_{\mathrm{l}} . & \operatorname{out}\left(\mathrm{c}_{\mathrm{I}},\left\{\left\langle\mathrm{pk}_{\mathrm{X}}, \mathrm{n}_{1}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{s}}}^{r}\right) \\
\mathrm{S}_{\mathrm{X}}: \nu \mathrm{r}_{0} \cdot \nu \mathrm{n}_{\mathrm{S}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{I}}, x\right) . & \text { if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{X}} \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{\mathrm{S}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{ro}_{0}}\right) \\
& \text { else } \operatorname{out}\left(\mathrm{c}_{\mathrm{S}},\{0\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{r}_{2}}\right)
\end{array}
$$

We assume the encryption is IND-CCA 1 and $\mathrm{KP}-\mathrm{CCA}_{1}$.

Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the plain-text. Hence, since len $\left(\left\langle n_{1}, n_{S}\right\rangle\right) \neq \operatorname{len}(0)$, there is an attack:

$$
\not \vDash\left\{\left\langle\mathrm{n}_{I}, \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{A}}}^{\mathrm{r}_{0}} \sim\{0\}_{\mathrm{pk}}^{\mathrm{c}} \mathrm{r}_{\mathrm{c}}
$$

even if the encryption is IND-CCA 1 and $K P-C C A_{1}$.

Private Authentication: Anonymity

We fix the protocol by:

- adding a length check;
- using a decoy message of the correct length.

The PA Protocol, v3

$$
\begin{aligned}
& I_{X}: \nu r . \nu n_{I} . \quad \operatorname{out}\left(c_{I},\left\{\left\langle\mathrm{pk}_{\mathrm{X}}, \mathrm{n}_{\mathrm{I}}\right\rangle\right\}_{\mathrm{pk}}^{\mathrm{r}}\right) \\
& \mathrm{S}_{\mathrm{X}}: \nu \mathrm{r}_{0} . \nu \mathrm{n}_{\mathrm{S}} . \operatorname{in}\left(\mathrm{c}_{\mathrm{I}}, x\right) \text {. if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{X}} \dot{\wedge} \operatorname{len}\left(\pi_{2}(d)\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
& \text { then out }\left(\mathrm{c}_{\mathrm{S}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{ro}_{\mathrm{o}}}\right) \\
& \text { else out }\left(\mathrm{c}_{\mathrm{S}},\left\{\left\langle\mathrm{n}_{\mathrm{S}}, \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{ro}_{0}}\right)
\end{aligned}
$$

Private Authentication: Anonymity

$$
\begin{aligned}
& l_{x}: \nu r . \nu n_{1} . \quad \operatorname{out}\left(c_{I},\left\{\left\langle\mathrm{pk}_{\mathrm{x}}, n_{1}\right\rangle\right\}_{\mathrm{pk}_{s}}^{r}\right) \\
& \mathrm{S}_{\mathrm{X}}: \nu \mathrm{r}_{0} . \nu \mathrm{n}_{\mathrm{S}} . \operatorname{in}\left(\mathrm{c}_{\mathrm{I}}, x\right) \text {. if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{X}} \wedge \operatorname{len}\left(\pi_{2}(d)\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{\mathrm{S}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{o}_{\mathrm{o}}}\right) \\
& \text { else out }\left(c_{s},\left\{\left\langle n_{s}, n_{s}\right\rangle\right\}_{\text {pk }_{x}}^{r_{0}}\right)
\end{aligned}
$$

To prove $I_{A}\left|S_{A} \approx I_{C}\right| S_{A}$, we have several traces:

$$
\begin{array}{ll}
\operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right) & \operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right), \operatorname{out}\left(c_{I}\right) \\
\operatorname{out}\left(c_{I}\right), \operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right) & \operatorname{out}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right), \operatorname{in}\left(c_{I}\right) \\
\operatorname{out}\left(c_{S}\right), \operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{I}\right) & \operatorname{out}\left(c_{S}\right), \operatorname{out}\left(c_{S}\right), \operatorname{in}\left(c_{I}\right)
\end{array}
$$

Private Authentication: Anonymity

$$
\begin{aligned}
& I_{X}: \nu r . \nu n_{1} . \quad \operatorname{out}\left(c_{I},\left\{\left\langle\mathrm{pk}_{\mathrm{X}}, \mathrm{n}_{1}\right\rangle\right\}_{\mathrm{pk}_{\mathbf{s}}}^{r}\right) \\
& \mathrm{S}_{\mathrm{X}}: \nu \mathrm{r}_{0} . \nu \mathrm{n}_{\mathrm{S}} . \text { in }\left(\mathrm{c}_{\mathrm{I}}, x\right) \text {. if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{X}} \dot{\wedge} \operatorname{len}\left(\pi_{2}(d)\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
& \text { then out }\left(\mathrm{c}_{\mathrm{S}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{r}_{0}}\right) \\
& \text { else out }\left(c_{S},\left\{\left\langle n_{S}, n_{S}\right\rangle\right\}_{p k_{x}}^{r_{0}}\right)
\end{aligned}
$$

To prove $I_{A}\left|S_{A} \approx I_{C}\right| S_{A}$, we have several traces:

$$
\begin{array}{ll}
\operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right) & \operatorname{cin}), \operatorname{out}\left(c_{S}\right), \operatorname{out}\left(c_{I}\right) \\
\operatorname{out}\left(c_{I}\right), \operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right) & \operatorname{out}\left(c_{I}\right), \operatorname{out}\left(c_{S}\right), \operatorname{in}\left(c_{I}\right) \\
\operatorname{out}\left(c_{S}\right), \operatorname{in}\left(c_{I}\right), \operatorname{out}\left(c_{I}\right) & \operatorname{out}\left(c_{S}\right), \operatorname{out}\left(c_{S}\right), \operatorname{in}\left(c_{I}\right)
\end{array}
$$

But there is a more general trace: its security implies the security of the other traces.
See partial order reduction (POR) techniques [1].

Private Authentication: Anonymity

We must prove that:

$$
\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}\left[\text { out }_{1}^{\mathrm{A}}\right] \sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}\left[\text { out }_{1}^{\mathrm{C}}\right]
$$

where:

$$
\begin{aligned}
\text { out }_{1}^{\mathrm{X}} \equiv & \left.\left\{\left\langle\mathrm{pk}_{\mathrm{X}}, \mathrm{n}_{1}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{s}}}^{\mathrm{r}}\right) \\
\text { out }_{2}^{\mathrm{X}, \mathrm{Y}}[\mathrm{M}] \equiv & \text { if } \pi_{1}(d[\mathrm{M}]) \doteq \mathrm{pk}_{\mathrm{X}} \dot{\wedge} \operatorname{len}\left(\pi_{2}(d[\mathrm{M}])\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
& \text { then }\left\{\left\langle\pi_{2}(d[\mathrm{M}]), \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{Y}}^{\mathrm{r}_{\mathrm{o}}} \\
& \quad \text { else }\left\{\left\langle\mathrm{n}_{\mathrm{S}}, \mathrm{n}_{\mathrm{S}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{Y}}}^{\mathrm{r}_{\mathrm{Y}}} \\
d[\mathrm{M}] \equiv & \operatorname{dec}\left(\operatorname{att}_{0}([\mathrm{M}]), \text { sks }\right)
\end{aligned}
$$

Private Authentication: Anonymity

First, we push the branching under the encryption:
$\frac{\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{A}}\left[\text { out }_{1}^{\mathrm{A}}\right] \sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{A}, \mathrm{A}}\left[\text { out }_{1}^{\mathrm{C}}\right] \overline{\text { out }_{2}^{\mathrm{A}, \mathrm{A}}\left[\mathrm{out}_{1}^{\mathrm{C}}\right]=\text { out }_{2}^{\mathrm{A}, \mathrm{A}}}\left[\text { out }_{1}^{\mathrm{C}}\right]}{\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{A}}\left[\text { out }_{1}^{\mathrm{A}}\right] \sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{A}, \mathrm{A}}\left[\text { out }_{1}^{\mathrm{C}}\right]} \mathrm{R}$
where:

$$
\text { out }_{2}^{X, Y}[\mathrm{M}] \equiv\left\{\begin{array}{l}
\text { if } \pi_{1}(d[\mathrm{M}]) \doteq \mathrm{pk}_{\mathrm{X}} \dot{\wedge} \operatorname{len}\left(\pi_{2}(d[\mathrm{M}])\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
\text { then }\left\langle\pi_{2}(d[\mathrm{M}]), \mathrm{n}_{\mathrm{S}}\right\rangle \\
\text { else }\left\langle\mathrm{n}_{\mathrm{S}}, \mathrm{n}_{\mathrm{S}}\right\rangle
\end{array}\right\}_{\mathrm{p} \mathrm{k}_{\mathrm{Y}}}^{\mathrm{ro}_{0}}
$$

We let $m_{\mathrm{X}}[\mathrm{M}]$ be the content of the encryption above.

Private Authentication: Anonymity

Then, we use KP-CCA ${ }_{1}$ to change the encryption key:

$$
\left.\begin{array}{cc}
\begin{array}{c}
\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}\left[\text { out }_{1}^{\mathrm{A}}\right] \\
\sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{A}, \mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right]
\end{array} & \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{A}, \mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right] \\
\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}\left[\text { out }_{1}^{\mathrm{A}}\right] \sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{1}^{\mathrm{A}, \mathrm{~A}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}}\left[\text { out }_{1}^{\mathrm{C}}{ }_{1}^{\mathrm{C}}\right]
\end{array}\right] \quad \text { TRANS }
$$

since:

- the encryption randomness r_{0} is correctly used;
- the key randomness n_{A} and n_{B} appear only in $\mathrm{pk}(\cdot)$ and dec (_, sk(•)) positions.

Private Authentication: Anonymity

Then, we use IND-CCA 1 to change the encryption content:

$$
\begin{array}{cc}
\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}\left[\text { out }_{1}^{\mathrm{A}}\right] & \frac{\operatorname{len}\left(m_{\mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right]\right)=\operatorname{len}\left(m_{\mathrm{A}}\left[\text { out }_{1}^{\mathrm{A}}\right]\right)}{\text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{C}, \mathrm{C}}\left[\text { out }_{1}^{\mathrm{A}}\right]} \\
\sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{C}, \mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right] & \sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{A}, \mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right]
\end{array} \text { TRANS }_{1}
$$

since:

- the encryption randomness r_{0} is correctly used;
- the key randomness n_{C} appear only in $\operatorname{pk}(\cdot)$ and $\operatorname{dec}\left(_, \operatorname{sk}(\cdot)\right)$ positions.

Private Authentication: Anonymity

Recall that:

$$
\begin{aligned}
m_{\times}[\mathrm{M}] \equiv & \text { if } \pi_{1}(d[\mathrm{M}]) \doteq \mathrm{pk}_{\mathrm{X}} \dot{\wedge} \operatorname{len}\left(\pi_{2}(d[\mathrm{M}])\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
& \text { then }\left\langle\pi_{2}(d[\mathrm{M}]), \mathrm{n}_{\mathrm{S}}\right\rangle \\
& \text { else }\left\langle\mathrm{n}_{\mathrm{S}}, \mathrm{n}_{\mathrm{S}}\right\rangle
\end{aligned}
$$

Then:

$$
\frac{\operatorname{len}\left(m_{\mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right]\right)=\operatorname{len}\left(m_{\mathrm{A}}\left[\mathrm{out}_{1}^{\mathrm{A}}\right]\right)}{\operatorname{len}\left(m_{\mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right]\right)=\operatorname{len}\left(m_{\mathrm{A}}\left[\text { out }_{1}^{\mathrm{A}}\right]\right)} \mathrm{FO}
$$

if $\mathcal{A}_{\text {th }}$ contains the axiom ${ }^{5}$:

$$
\forall x, y \cdot \operatorname{len}(\langle x, y\rangle)=c_{\left\langle_{-},{ }_{-}\right\rangle}(\operatorname{len}(x), \operatorname{len}(y))
$$

where $c_{\left\langle_{-},{ }_{-}\right\rangle}(\cdot, \cdot)$ is left unspecified.

[^1]
Private Authentication: Anonymity

Then, we α-rename the key randomness n_{C}, rewrite back the encryption, and conclude.

$$
\overline{\text { out }_{1}^{\mathrm{A}}, \text { out }_{2}^{\mathrm{A}, \mathrm{~A}}\left[\text { out }_{1}^{\mathrm{A}}\right] \sim \text { out }_{1}^{\mathrm{C}}, \text { out }_{2}^{\mathrm{C}, \mathrm{C}}\left[\text { out }_{1}^{\mathrm{C}}\right]} \alpha-\mathrm{EQU}+\mathrm{R}+\operatorname{REFL}
$$

Privacy

We proved anonymity of the Private Authentication protocol, which we defined as:

$$
\mathrm{I}_{\mathrm{A}}\left|\mathrm{~S}_{\mathrm{A}} \approx \mathrm{I}_{\mathrm{C}}\right| \mathrm{S}_{\mathrm{A}}
$$

But does this really guarantees that this protocol protects the privacy of its users?
\Rightarrow No, because of linkability attacks

Linkability Attacks

Consider the following authentication protocol, called KCL, between a reader R and a tag T_{X} with identity X :

$$
\begin{aligned}
& \mathrm{R}: \nu \mathrm{n}_{\mathrm{R}} . \quad \operatorname{out}\left(\mathrm{c}_{\mathrm{R}}, \mathrm{n}_{\mathrm{R}}\right) \\
& \mathrm{T}_{\mathrm{X}}: \nu \mathrm{n}_{\mathrm{T}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{R}}, \mathrm{x}\right) . \operatorname{out}\left(\mathrm{c}_{\mathrm{I}},\left\langle X \oplus \mathrm{n}_{\mathrm{T}}, \mathrm{n}_{\mathrm{T}} \oplus \mathrm{H}\left(\mathrm{x}, \mathrm{k}_{\mathrm{x}}\right)\right\rangle\right)
\end{aligned}
$$

Assuming H is a PRF (Pseudo-Random Function), and \oplus is the exclusive-or, we can prove that KCL provides anonymity.

$$
T_{A}\left|R \approx T_{B}\right| R
$$

Linkability Attacks

But there are privacy attacks against KCL , using two sessions:

$1: E \rightarrow T_{A}: n_{R}$	$E \rightarrow T_{A}: n_{R}$
$2: T_{A} \rightarrow E:\left\langle A \oplus n_{T}, n_{T} \oplus H\left(n_{R}, k_{A}\right)\right\rangle$	$T_{A} \rightarrow E:\left\langle A \oplus n_{T}, n_{T} \oplus H\left(n_{R}, k_{A}\right)\right\rangle$
$3: E \rightarrow T_{A}: n_{R}$	$E \rightarrow T_{B}: n_{R}$
$4: T_{A} \rightarrow E:\left\langle A \oplus n_{T}^{\prime}, n_{T}^{\prime} \oplus H\left(n_{R}, k_{A}\right)\right\rangle$	$T_{B} \rightarrow E:\left\langle B \oplus n_{T}^{\prime}, n_{T}^{\prime} \oplus H\left(n_{R}, k_{B}\right)\right\rangle$

Let t_{2} and t_{4} be the outputs of T . Then, on the left scenario:

$$
\begin{aligned}
\pi_{2}\left(t_{2}\right) \oplus \pi_{2}\left(t_{4}\right) & =\left(\mathrm{n}_{T} \oplus \mathrm{H}\left(\mathrm{n}_{R}, \mathrm{k}_{\mathrm{A}}\right)\right) \oplus\left(\mathrm{n}_{T}^{\prime} \oplus \mathrm{H}\left(\mathrm{n}_{\mathrm{R}}, \mathrm{k}_{\mathrm{A}}\right)\right) \\
& =\mathrm{n}_{T} \oplus \mathrm{n}_{T}^{\prime} \\
& =\pi_{1}\left(t_{2}\right) \oplus \pi_{1}\left(t_{4}\right)
\end{aligned}
$$

The same equality check will almost never hold on the right, under reasonable assumption on H .

Linkability Attacks

We just saw an attack against:

$$
\left(T_{A} \mid R\right)\left|\left(T_{A} \mid R\right) \approx\left(T_{A} \mid R\right)\right|\left(T_{B} \mid R\right)
$$

Unlinkability

To prevent such attacks, we need to prove a stronger property, called unlinkability. It requires to prove the equivalence between:

- a real-world, where each agent can run many sessions:

$$
\nu \overrightarrow{\mathrm{k}}_{0}, \ldots, \overrightarrow{\mathrm{k}}_{N} \cdot!_{\mathrm{id} \leq N}!_{\mathrm{sid} \leq M} P\left(\overrightarrow{\mathrm{k}}_{\mathrm{id}}\right)
$$

- and an ideal-world, where each agent run at most a single session:

$$
\nu \overrightarrow{\mathrm{k}}_{0,0}, \ldots, \overrightarrow{\mathrm{k}}_{N, M} .!_{\mathrm{id} \leq N}!_{\mathrm{sid} \leq M} P\left(\overrightarrow{\mathrm{k}}_{\mathrm{id}, \mathrm{sid}}\right)
$$

Remark

The processes above are parameterized by $N, M \in \mathbb{N}$. Unlinkability holds if the equivalence holds for any N, M.

[^2]
Unlinkability

Example An unlinkability scenario.

Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any information on identities.
\Rightarrow hence no link can be efficiently found in the real word.

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.
The processes $P\left(\vec{k}_{S}, \vec{k}_{U}\right)$ and $S\left(\vec{k}_{S}, \vec{k}_{U}\right)$ are parameterized by:

- some global key material \vec{k}_{s};
- and some user-specific key material \vec{k}_{U}.

Then, we require that:

$$
\begin{aligned}
& \nu \overrightarrow{\mathrm{k}}_{\mathrm{s}} \cdot \nu \overrightarrow{\mathrm{k}}_{0}, \ldots, \overrightarrow{\mathrm{k}}_{N} \cdot \quad!_{\mathrm{id} \leq N}!_{\mathrm{sid} \leq M}\left(P\left(\overrightarrow{\mathrm{k}}_{\mathrm{s}}, \overrightarrow{\mathrm{k}}_{\mathrm{id}}\right) \quad \mid S\left(\overrightarrow{\mathrm{k}}_{\mathrm{s}}, \overrightarrow{\mathrm{k}}_{\mathrm{id}}\right)\right) \\
\approx & \nu \overrightarrow{\mathrm{k}}_{\mathrm{S}} \cdot \nu \overrightarrow{\mathrm{k}}_{0,0}, \ldots, \overrightarrow{\mathrm{k}}_{N, M} \cdot!_{\mathrm{id} \leq N} \leq!_{\mathrm{sid} \leq M}\left(P\left(\overrightarrow{\mathrm{k}}_{\mathrm{s}}, \overrightarrow{\mathrm{k}}_{\mathrm{id}} \mathrm{didid}\right) \mid S\left(\overrightarrow{\mathrm{k}}_{\mathrm{S}}, \overrightarrow{\mathrm{k}}_{\text {id }}\right)\right.
\end{aligned}
$$

Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process $P\left(\vec{k}_{s}, \vec{k}_{u}\right)$.
The server $S\left(\vec{k}_{S}, \vec{k}_{U_{1}}, \ldots, \vec{k}_{U_{M}}\right)$ is parameterized by:

- some global key material \vec{k}_{s};
- all users key material $\vec{k}_{U_{1}}, \ldots, \vec{k}_{U_{M}}$.

The we require that:

$$
\begin{aligned}
& \nu \overrightarrow{\mathrm{k}}_{S} \cdot \nu \overrightarrow{\mathrm{k}}_{0}, \ldots, \overrightarrow{\mathrm{k}}_{N} . \quad\left(!_{\mathrm{id} \leq N} \leq N!_{\text {sid }} \leq M P\left(\overrightarrow{\mathrm{k}}_{S}, \overrightarrow{\mathrm{k}}_{\mathrm{id}}\right)\right) \mid \\
&\left(!_{\leq L} S\left(\overrightarrow{\mathrm{k}}_{S}, \overrightarrow{\mathrm{k}}_{0}, \ldots, \overrightarrow{\mathrm{k}}_{N}\right)\right) \\
& \approx \nu \overrightarrow{\mathrm{k}}_{\mathrm{s}} \cdot \nu \overrightarrow{\mathrm{k}}_{0,0}, \ldots, \overrightarrow{\mathrm{k}}_{N, M} \cdot\left(\begin{array}{l}
\left.!_{\mathrm{id} \leq N} \leq N!_{\text {sid } \leq M} P\left(\overrightarrow{\mathrm{k}}_{S}, \overrightarrow{\mathrm{k}}_{\mathrm{id}, \text { sid }}\right)\right) \\
\\
\left(!_{\leq L} S\left(\overrightarrow{\mathrm{k}}_{S}, \overrightarrow{\mathrm{k}}_{0,0}, \ldots, \overrightarrow{\mathrm{k}}_{N, M}\right)\right)
\end{array}\right.
\end{aligned}
$$

Private Authentication: Unlinkability

Private Authentication

We parameterize the initiator and server in PA by the key material:

$$
\begin{aligned}
& l\left(k_{s}, k_{x}\right): \nu r . \nu n_{1} . \quad \operatorname{out}\left(c_{I},\left\{\left\langle\mathrm{pk}_{\mathrm{x}}, n_{1}\right\rangle\right\}_{\mathrm{p} k_{s}}^{r}\right) \\
& \mathrm{S}\left(\mathrm{k}_{\mathrm{S}}, \mathrm{k}_{\mathrm{X}}\right): \nu \mathrm{r}_{0} . \nu \mathrm{n}_{\mathrm{S}} . \operatorname{in}\left(\mathrm{c}_{\mathrm{I}}, x\right) \text {. if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{X}} \dot{\wedge} \operatorname{len}\left(\pi_{2}(d)\right) \doteq \operatorname{len}\left(\mathrm{n}_{\mathrm{S}}\right) \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{\mathrm{s}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{s}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{o}_{\mathrm{o}}}\right) \\
& \text { else out }\left(\mathrm{c}_{\mathrm{S}},\left\{\left\langle\mathrm{n}_{\mathrm{S}}, \mathrm{n}_{\mathrm{s}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{x}}}^{\mathrm{ro}_{\mathrm{o}}}\right)
\end{aligned}
$$

where $\mathrm{skx}_{\mathrm{x}} \equiv \mathrm{sk}\left(\mathrm{kx}_{\mathrm{x}}\right), \mathrm{p} \mathrm{k}_{\mathrm{x}} \equiv \mathrm{pk}\left(\mathrm{kx}_{\mathrm{x}}\right)$ and $d \equiv \operatorname{dec}(x, \mathrm{sks})$.

Private Authentication: Unlinkability

Theorem

Private Authentication, v3 satisfies the unlinkability property (with user-specific server). I.e., for all $N, M \in \mathbb{N}$:

$$
\begin{aligned}
& \nu \mathrm{k}_{\mathrm{s}} \cdot \nu \mathrm{k}_{0}, \ldots, \mathrm{k}_{N} . \quad!_{\mathrm{id} \leq N}!_{\mathrm{sid} \leq M}\left(I\left(\mathrm{k}_{\mathrm{s}}, \mathrm{k}_{\mathrm{id}}\right) \quad \mid S\left(\mathrm{k}_{\mathrm{s}}, \mathrm{k}_{\mathrm{id}}\right)\right) \\
\approx & \nu \mathrm{k}_{\mathrm{S}} \cdot \nu \mathrm{k}_{0,0}, \ldots, \mathrm{k}_{N, M},!_{\mathrm{id} \leq N} \leq!_{\mathrm{sid} \leq M}\left(I\left(\mathrm{k}_{\mathrm{s}}, \mathrm{k}_{\mathrm{id}_{\mathrm{sid}}}\right) \mid S\left(\mathrm{k}_{\mathrm{s}}, \mathrm{k}_{\mathrm{id}_{\mathrm{sid}}}\right)\right)
\end{aligned}
$$

Proof

For all N, M, for all trace of observables tr, we show that:

$$
\models \operatorname{fold}\left(\mathcal{P}_{\mathcal{L}}, \operatorname{tr}\right) \sim \operatorname{fold}\left(\mathcal{P}_{\mathcal{R}}, \operatorname{tr}\right)
$$

by induction over tr, where $\mathcal{P}_{\mathcal{L}}$ and $\mathcal{P}_{\mathcal{R}}$ are, resp., the left and right protocols in the theorem above.

For details, see the SQUIRREL file private-authentication-many.sp.

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property, that do not often hold.

Example

Assume S leaks whether it succeeded or not. This models the fact that the adversary can distinguish success from failure:

- e.g. because a door opens, which can be observed;
- or because success is followed by further communication, while failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: reachability and correspondance properties (e.g. authentication)

These are properties on a single protocol, often expressed as a temporal property on events of the protocol. E.g.

If Alice accepts Bob at time τ then Bob must have initiated a session with Alice at time $\tau^{\prime}<\tau$.

To formalize the cryptographic arguments proving such properties, we will design a specialized framework and proof system.

Hash-Lock

The Hash-Lock Protocol
Let \mathcal{I} be a finite set of identities.

$$
\begin{aligned}
& T(A, i): \nu n_{T, i} \cdot \operatorname{in}\left(c_{A, i}^{T}, x\right) . \boldsymbol{\operatorname { o u t }}\left(c_{A, i}^{T},\left\langle n_{T, i}, H\left(\left\langle x, n_{T, i}\right\rangle, k_{A}\right)\right\rangle\right) \\
& R(j) \quad: \nu n_{R, j} \cdot \mathbf{i n}\left(c_{j}^{R_{1}},{ }_{-}\right) \text {. out }\left(c_{j}^{R_{1}}, n_{R, j}\right) \text {.in(}\left(c_{j}^{R_{2}}, y\right) \text {. } \\
& \text { if } \dot{\mathrm{V}}_{\mathrm{A} \in \mathcal{I}} \pi_{2}(\mathrm{y}) \doteq \mathrm{H}\left(\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}(\mathrm{y})\right\rangle, \mathrm{k}_{\mathrm{A}}\right) \\
& \text { then } \boldsymbol{\operatorname { o u t }}\left(\mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{2}}, \mathrm{ok}\right) \\
& \text { else out(} \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{2}}, \mathrm{ko} \text {) }
\end{aligned}
$$

We consider the N session of each tag, and M session of the reader:

$$
\nu\left(\mathrm{k}_{\mathrm{A}}\right)_{\mathrm{A} \in \mathcal{I}} \cdot\left(!_{\mathrm{A} \in \mathcal{I}}!_{\mathrm{i}<N} T(\mathrm{~A}, \mathrm{i})\right) \mid\left(!_{\mathrm{j}<M} \mathrm{R}(\mathrm{j})\right)
$$

Remark: we let the adversary do the scheduling between parties.

Notations

- we let \leq be the prefix relation over observable traces:

$$
\operatorname{tr}_{0} \leq \operatorname{tr}_{1} \text { iff. } \exists \operatorname{tr}^{\prime} . \operatorname{tr}_{1}=\operatorname{tr}_{0} ; \operatorname{tr}^{\prime}
$$

- $\operatorname{tr} \diamond c$ states that tr ends with an output on $c:$

$$
\operatorname{tr} \diamond \mathrm{c} \text { iff. } \exists \mathrm{tr}^{\prime} . \mathrm{tr}=\mathrm{tr}^{\prime} ; \text { out }(\mathrm{c})
$$

Remark: $\operatorname{tr} \diamond \mathrm{c} \leq \mathrm{tr}^{\prime}$ denotes that $\operatorname{tr} \diamond \mathrm{c} \wedge \operatorname{tr} \leq \operatorname{tr}^{\prime}$.

POR Result (Assumed)

We let $\mathcal{T}_{\text {io }}$ be the set of observable traces where all outputs are always directly preceded by an input on the same channel, i.e.:

$$
\operatorname{tr} \in \mathcal{T}_{\text {io }} \quad \text { iff. } \quad \forall \operatorname{tr}^{\prime} \diamond \mathrm{c} \leq \mathrm{tr} . \exists \mathrm{tr}^{\prime \prime} . \operatorname{tr}^{\prime}=\operatorname{tr}^{\prime \prime} ; \mathbf{i n}(\mathrm{c}) ; \text { out }(\mathrm{c})
$$

Assumption: POR

We admit that to analyze the Hash-Lock protocol, it is sufficient to consider only observables traces in $\mathcal{T}_{\text {io }}$.

Authentication

Informal Definition

If the j-th session of R accepts believing it talked to $\operatorname{tag} \mathrm{A}$, then:

- there exists a session i of tag A properly interleaved with the j-th session of R;
- messages have been properly forwarded between the i-th session of tag A and the j-th session of R.

8 The second condition is often relaxed to require only a partial correspondence between messages.

Authentication of the Hash-Lock Protocol

For any $\operatorname{tr} \diamond c_{j}^{\mathrm{R}_{2}} \in \mathcal{T}_{\mathrm{io}}$, we let accept ${ }^{\mathrm{A}} @$ tr be a term stating that the reader accepts the tag A at the end of the trace tr (defined later).

Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all $\operatorname{tr} \in \mathcal{T}_{\text {io }}$, $\operatorname{tr}_{1} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{1}}$ and $\mathrm{tr}_{3} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{2}}$ such that:

$$
\operatorname{tr}_{1}<\operatorname{tr}_{3} \leq \operatorname{tr} \quad \text { and } \quad \operatorname{accept}^{\mathrm{A}} @ \operatorname{tr}_{3}
$$

there must exists $\operatorname{tr}_{2} \diamond \mathrm{c}_{\mathrm{A}, \mathrm{i}}^{\mathrm{T}}$ such that $\mathrm{tr}_{1} \leq \mathrm{tr}_{2} \leq \mathrm{tr}_{3}$ and:

$$
\text { out@tr } \operatorname{lr}_{1}=\mathrm{in} \operatorname{tr}_{2} \wedge \text { out } \mathrm{tr}_{2}=\mathrm{in} @ \mathrm{tr}_{3}
$$

Graphically:

Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the Hash-Lock protocol?

- define the (generic) terms representing the output, input and acceptance, which we need to state the property;
- have a set of sound one-sided rules, to do the proof.

Authentication Protocols

Macro Terms

Notations: Predecessor

For any observable trace tr and observable α, we let:

$$
\operatorname{pred}(\operatorname{tr} ; \alpha) \stackrel{\text { def }}{=} \operatorname{tr}
$$

Macro Terms

We now define some generic terms, called macros, by induction of the observable trace tr.

Let \mathcal{P} be a action-deterministic protocol and $\operatorname{tr} \in \mathcal{T}_{\text {io }}$ with j inputs. If fold $(\mathcal{P}, \operatorname{tr})=t_{1}, \ldots, t_{n}$ then we let:

$$
\begin{gathered}
\text { out }_{\mathcal{P}} @ t r \stackrel{\text { def }}{=} \begin{array}{ll}
t_{n} & \text { if } \exists c . t_{n} \diamond c \\
\text { empty } & \text { otherwise }
\end{array} \\
\text { frame }_{\mathcal{P}} @ t r \\
\stackrel{\text { def }}{=} \begin{cases}\left\langle\text { frame }_{\mathcal{P}} @ p r e d(t r), \text { out } \mathcal{P}_{\mathcal{P}} @ t r\right\rangle & \text { if } \operatorname{tr} \neq \epsilon \\
\text { empty } & \text { if } \operatorname{tr}=\epsilon\end{cases} \\
\operatorname{in}_{\mathcal{P}} @\left(\operatorname{tr} ; \mathbf{i n}(c) ; \boldsymbol{\operatorname { o u t } (c)) \stackrel { \text { def } } { = } \{ \begin{array} { l l }
{ \operatorname { a t t } _ { j } (\text { frame } _ { \mathcal { P } } @ t r) } & { \text { if } \operatorname { t r } \neq \epsilon } \\
{ \operatorname { a t t } _ { 0 } () } & { \text { if } \operatorname { t r } = \epsilon }
\end{array}}\right.
\end{gathered}
$$

Remark: we omit \mathcal{P} when it is clear from context.
\& The restriction to traces in $\mathcal{T}_{\text {io }}$ simplifies the definition of in $\boldsymbol{p}_{\mathcal{P}} @ t r$.

Macro Terms

frame ${ }_{\mathcal{P}}$ @tr contains all the information known to an adversary against \mathcal{P} after the execution of tr.

More precisely, we can show that for all action-deterministic processes \mathcal{P} and \mathcal{Q}, for all $\operatorname{tr} \in \mathcal{T}_{\mathrm{io}_{0}}$:
$\mathcal{M} \equiv \operatorname{fold}(\mathcal{P}, \operatorname{tr}) \sim \operatorname{fold}(\mathcal{Q}, \operatorname{tr})$ iff. $\mathcal{M} \vDash$ frame $\mathcal{P}^{\left(@_{t r} \sim\right.} \sim$ frame $_{\mathcal{Q}} @_{\mathrm{tr}}$ for any \mathcal{M} satisfying:

$$
\pi_{1}\langle x, y\rangle \doteq x \sim \text { true } \quad \pi_{2}\langle x, y\rangle \doteq y \sim \text { true }
$$

Proof

\Rightarrow apply FA to build frame $\mathcal{R}_{\mathcal{R}}$ @tr from fold $(\mathcal{R}, \operatorname{tr})$ for $\mathcal{R} \in\{\mathcal{P}, \mathcal{Q}\}$
\Leftarrow apply FA + DUP + the pair injectivity rules to compute all terms in fold $(\mathcal{R}, \operatorname{tr})$ from frame ${ }_{\mathcal{R}} \bigotimes_{\operatorname{tr}}$ for $\mathcal{R} \in\{\mathcal{P}, \mathcal{Q}\}$

Hash-Lock: Accept

$$
\begin{aligned}
& T(A, i): \nu n_{T, i} \cdot \operatorname{in}\left(c_{A, i}^{T}, x\right) . \operatorname{out}\left(c_{A, i}^{T},\left\langle n_{T, i}, H\left(\left\langle x, n_{T, i}\right\rangle, k_{A}\right)\right\rangle\right) \\
& R(j): \nu n_{R, j} \cdot \boldsymbol{i n}\left(c_{j}^{R_{1}}, \quad, \quad\right) \cdot \boldsymbol{\operatorname { o u t }}\left(\mathrm{c}_{j}^{\mathrm{R}_{1}}, n_{R, j}\right) \cdot \boldsymbol{i n}\left(\mathrm{c}_{j}^{\mathrm{R}_{2}}, y\right) \text {. } \\
& \text { if } \dot{\mathrm{V}}_{\mathrm{A} \in \mathcal{I}} \pi_{2}(\mathrm{y}) \doteq \mathrm{H}\left(\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}(\mathrm{y})\right\rangle, \mathrm{k}_{\mathrm{A}}\right) \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{j}^{\mathrm{R}_{2}}, \text { ok }\right) \\
& \text { else } \operatorname{out}\left(c_{j}^{\mathrm{R}_{2}}, \mathrm{ko}\right)
\end{aligned}
$$

To be able to state some authentication property of Hash-Lock, we need an additional macro. For all $\operatorname{tr} \diamond \mathrm{c}_{\mathrm{j}}^{\mathrm{R}_{2}} \in \mathcal{T}_{\text {io }}$, we let:

$$
\operatorname{accept}^{\mathrm{A}} @ \mathrm{tr} \stackrel{\text { def }}{=} \pi_{2}(\mathrm{in} @ t r) \doteq \mathrm{H}\left(\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}(\mathrm{in} @ \mathrm{tr})\right\rangle, \mathrm{k}_{\mathrm{A}}\right)
$$

8 We made sure that all names in the protocol are unique, so that they don't have to be renamed during the folding.

Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol provides authentication:

$$
\forall \mathrm{A} \in \mathcal{I} . \forall \operatorname{tr} \in \mathcal{T}_{\text {io }} . \forall \operatorname{tr}_{1} \diamond \mathrm{c}_{j}^{\mathrm{R}_{1}}, \operatorname{tr}_{3} \diamond \mathrm{c}_{\mathrm{j}}^{\mathrm{R}_{2}} \text { s.t. } \operatorname{tr}_{1}<\operatorname{tr}_{3} \leq \mathrm{tr},
$$

This kind of one-sided formulas are called reachability formulas. Proving the validity of such formulas requires additional rules, to allow for propositional reasoning.

Authentication Protocols

Reachability Proof System

Reachability Judgements

We define a judgments dedicated to reachability correspondance properties.

Definition

A reachability judgement $\Gamma \vdash t$ comprises a sequence of terms
$\Gamma=t_{1} \rightarrow \cdots \dot{\rightarrow} t_{n}$ and a (boolean) term t.
$\Gamma \vdash t$ is valid if and only if the following formula is valid:

$$
\left(t_{1} \rightarrow \cdots \rightarrow t_{n} \rightarrow t\right) \sim \text { true }
$$

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability and equivalence levels!

Exercise

Determine which directions are correct.

$$
\begin{aligned}
& t_{\phi} \dot{\wedge} t_{\psi} \sim \operatorname{true} \stackrel{?}{\Leftrightarrow} t_{\phi} \sim \operatorname{true} \wedge t_{\psi} \sim \text { true } \\
& t_{\phi} \dot{\vee} t_{\psi} \sim \operatorname{true} \stackrel{?}{\Leftrightarrow} t_{\phi} \sim \text { true } \vee t_{\psi} \sim \text { true } \\
& t_{\phi} \rightarrow t_{\psi} \sim \text { true } \stackrel{?}{\Leftrightarrow} t_{\phi} \sim \text { true } \rightarrow t_{\psi} \sim \text { true }
\end{aligned}
$$

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability and equivalence levels!

Exercise

Determine which directions are correct.

$$
\begin{aligned}
t_{\phi} \dot{\wedge} t_{\psi} \sim \text { true } & \Leftrightarrow t_{\phi} \sim \operatorname{true} \wedge t_{\psi} \sim \text { true } \\
t_{\phi} \dot{\vee} t_{\psi} \sim \text { true } & \Leftarrow t_{\phi} \sim \text { true } \vee t_{\psi} \sim \text { true } \\
t_{\phi} \rightarrow t_{\psi} \sim \text { true } & \Rightarrow t_{\phi} \sim \text { true } \rightarrow t_{\psi} \sim \text { true }
\end{aligned}
$$

The second relation works both ways when t_{ϕ} or t_{ψ} is a constant formula.

Reachability Proof System

Our reachability judgements can be trivially equipped with a sequent calculus.

$$
\begin{gathered}
\frac{\Gamma, t_{\phi} \vdash t_{\phi}}{} \frac{\Gamma \vdash t_{\psi}}{\Gamma \vdash t_{\phi}} \\
\frac{\Gamma \vdash t_{\psi} \vdash t_{\phi}}{\Gamma \vdash t_{\psi} \dot{\wedge} t_{\phi}} \\
\frac{\Gamma \vdash t_{\phi}}{\Gamma \vdash t_{\psi} \dot{\vee} t_{\phi}} \quad \frac{\Gamma, t_{\psi}, t_{\phi} \vdash t_{\theta}}{\Gamma, t_{\psi} \dot{\wedge} t_{\phi} \vdash t_{\theta}} \\
\frac{\Gamma \vdash t_{\psi}}{\Gamma \vdash t_{\psi} \dot{\vee} t_{\phi}} \\
\frac{\Gamma \vdash t_{\psi} \vdash t_{\theta}}{\Gamma, t_{\psi} \dot{\vee} t_{\phi} \vdash t_{\theta}} \\
\Gamma, t_{\psi} \rightarrow t_{\phi} \vdash t_{\theta} \vdash t_{\theta} \\
\Gamma, t_{\phi} \vdash t_{\theta} \\
\Gamma \vdash, t_{\psi} \vdash t_{\phi} \\
\Gamma \vdash t_{\psi} \rightarrow t_{\phi}
\end{gathered}
$$

Reachability Proof System (cont.)

$$
\begin{array}{lc}
\frac{\Gamma, t_{\phi} \vdash \perp}{\Gamma \vdash \neg t_{\phi}} & \overline{\Gamma, \perp \vdash t_{\phi}} \\
\frac{\Gamma_{1}, t_{\phi}, t_{\psi}, \Gamma_{2} \vdash t_{\theta}}{\Gamma_{1}, t_{\psi}, t_{\phi}, \Gamma_{2} \vdash t_{\theta}} & \frac{\Gamma, t_{\psi}, t_{\psi} \vdash t_{\phi}}{\Gamma, t_{\psi} \vdash t_{\phi}}
\end{array}
$$

Reachability Proof System: Soundness

The reachability proof system is sound.

Proof

First, remark that any Γ and t_{θ},

$$
\Gamma \vdash t_{\theta} \text { is valid iff. } \operatorname{Pr}_{\rho}\left(\llbracket(\dot{\wedge}) \dot{\succ} t_{\phi} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right) \text { is negligible. }
$$

- Left-to-right:

$$
\begin{aligned}
& \Gamma \vdash t_{\theta} \text { valid } \\
& \Rightarrow \forall A \in \mathcal{D} . \operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket(\dot{\wedge}) \dot{\wedge} \dot{\iota} t_{\phi} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right), \rho_{a}\right) \in \operatorname{neg}(\eta)\right. \\
& \Rightarrow \operatorname{Pr}_{\rho}\left(\llbracket(\dot{\wedge}) \dot{\wedge} \dot{\succ} t_{\phi} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right) \in \operatorname{negl}(\eta) \\
& \left(\text { taking } \mathcal{A}\left(1^{\eta}, w, \rho_{a}\right)=w\right)
\end{aligned}
$$

- Right-to-left is straightforward.

Reachability Proof System: Soundness

We only prove only rule, say

$$
\frac{\Gamma, t_{\psi} \vdash t_{\theta} \quad \Gamma, t_{\phi} \vdash t_{\theta}}{\Gamma, t_{\psi} \dot{\vee} t_{\phi} \vdash t_{\theta}}
$$

By the previous remark (\dagger), since $\left(\Gamma, t_{\psi} \vdash t_{\theta}\right)$ and $\left(\Gamma, t_{\phi} \vdash t_{\theta}\right)$ are valid

- $\operatorname{Pr}_{\rho}\left(\llbracket(\dot{\wedge} \Gamma) \dot{\wedge} t_{\psi} \dot{\wedge} \dot{\neg} t_{\theta} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right)$ is negligible.
- $\operatorname{Pr}_{\rho}\left(\llbracket(\dot{\wedge} \Gamma) \dot{\wedge} t_{\phi} \dot{\wedge} \dot{\neg} t_{\theta} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right)$ is negligible.

Since the union of two negligible (η-indexed families of) events is a negligible (η-indexed families of) events,

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\llbracket\left((\dot{\wedge} \Gamma) \dot{\wedge} t_{\psi} \dot{\wedge} \dot{\neg} t_{\theta}\right) \dot{\vee}\left((\dot{\wedge} \Gamma) \dot{\wedge} t_{\phi} \dot{\wedge} \dot{\neg} t_{\theta}\right) \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right) \text { is negligible } \\
\Leftrightarrow & \operatorname{Pr}_{\rho}\left(\llbracket(\dot{\wedge} \Gamma) \dot{\wedge}\left(t_{\psi} \dot{\vee} t_{\phi}\right) \dot{\wedge} \dot{\neg} t_{\theta} \rrbracket_{\mathcal{M}}^{\sigma}\left(1^{\eta}, \rho\right)\right) \text { is negligible }
\end{aligned}
$$

Hence using (\dagger) again, $\Gamma, t_{\psi} \dot{\vee} t_{\phi} \vdash t_{\theta}$ is valid.

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash $\mathrm{H}\left(__{-}, \quad\right)$ is computationally collision resistant if no PPTM adversary can built collisions, even when it has access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks (CR-HK) iff for every PPTM \mathcal{A}, the following quantity:
$\operatorname{Pr}_{\mathrm{k}}\left(\mathcal{A}^{\mathcal{O}_{\mathrm{H}(\cdot, \mathrm{k})}}\left(1^{\eta}\right)=\left\langle m_{1}, m_{2}\right\rangle, m_{1} \neq m_{2}\right.$ and $\left.\mathrm{H}\left(m_{1}, \mathrm{k}\right)=\mathrm{H}\left(m_{2}, \mathrm{k}\right)\right)$
is negligible, where k is drawn uniformly in $\{0,1\}^{\eta}$.

CR Rule

Collision Resistance

If H is a CR-HK function, then the ground rule:

$$
\overline{\mathrm{H}\left(m_{1}, \mathrm{k}\right) \doteq \mathrm{H}\left(m_{2}, \mathrm{k}\right) \rightarrow m_{1} \doteq m_{2} \sim \text { true }} \mathrm{CR}
$$

is sound, when k appears only in H key positions in m_{1}, m_{2}.

CR Rule: Exercise

Exercise

Let H be CR-HK. Show that the following rule is not sound:

$$
\bar{\dashv}\left(\mathrm{H}\left(m_{1}, \mathrm{k}\right) \doteq \mathrm{H}\left(m_{2}, \mathrm{k}\right)\right) \sim \text { true } \mathrm{CR}
$$

when k appears only in H key positions in m_{1}, m_{2} and $m_{1} \not \equiv m_{2}$.

Authentication Protocols

Cryptographic Rule: Message
Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic schema which:

- create message authentication codes using mac_(_)
- verifies mac using verify _(_, _)

It must satisfies the functional equality:

$$
\operatorname{verify}_{\mathrm{k}}\left(\operatorname{mac}_{\mathrm{k}}(m), m\right)=\text { true }
$$

MAC Security

A MAC must be computationally unforgeable, even when the adversary has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for every PPTM \mathcal{A}, the following quantity:
$\operatorname{Pr}_{\mathrm{k}}\left(\begin{array}{c}\mathcal{A}^{\mathcal{O}_{\text {mac }_{\mathrm{k}}(\cdot)}, \mathcal{O}_{\text {verify }_{\mathrm{k}}(\cdot, \cdot)}\left(1^{\eta}\right)=\langle m, \sigma\rangle, m \text { not queried to } \mathcal{O}_{\text {mac }_{\mathrm{k}}(\cdot)}} \begin{array}{c}\text { and verify } \\ \mathrm{k}\end{array}(\sigma, m)=1\end{array}\right)$
is negligible, where k is drawn uniformly in $\{0,1\}^{\eta}$.

EUF-MAC Rule

Take two messages s, m and a key $k \in \mathcal{N}$ such that

- s and m are ground.
- $k \in \mathcal{N}$ appears only in mac or verify key positions in s, m.

Key Idea

To build a rule for EUF-CMA, we proceed as follow:

- Compute $\llbracket s, m \rrbracket$ bottum-up, calling $\mathcal{O}_{\text {mac }_{k}(\cdot)}$ and $\mathcal{O}_{\text {verify }}(\cdot, \cdot)$ if necessary.
- Log all sub-terms $\mathbb{S}_{\max }(s, m)$ sent to $\mathcal{O}_{\text {max }_{k}(\cdot)}$.
\Rightarrow If verify $y_{k}(s, m)$ then $m=u$ for some $u \in \mathbb{S}_{\text {mac }}(s, m)$.
\& $\mathbb{S}_{\operatorname{mac}}(s, m)$ are the calls to $\mathcal{O}_{\text {mac }_{k}(\cdot)}$ needed to compute s, m.

EUF-MAC Rule

$\mathbb{S}_{\text {mac }}(\cdot)$ defined by induction on ground terms:

$$
\begin{gathered}
\mathbb{S}_{\mathrm{mac}}(\mathrm{n}) \stackrel{\text { def }}{=} \emptyset \\
\mathbb{S}_{\mathrm{mac}}\left(\operatorname{verify} \mathrm{v}_{\mathrm{k}}\left(u_{1}, u_{2}\right)\right) \stackrel{\text { def }}{=} \mathbb{S}_{\operatorname{mac}}\left(u_{1}\right) \cup \mathbb{S}_{\mathrm{mac}}\left(u_{2}\right) \\
\mathbb{S}_{\mathrm{mac}}\left(\operatorname{mac}_{\mathrm{k}}(u)\right) \stackrel{\text { def }}{=}\{u\} \cup \mathbb{S}_{\operatorname{mac}}(u) \\
\mathbb{S}_{\mathrm{mac}}\left(f\left(u_{1}, \ldots, u_{n}\right)\right) \stackrel{\text { def }}{=} \bigcup_{1} \mathbb{S}_{\text {mac }}\left(u_{i}\right) \quad \text { (for other cases) }
\end{gathered}
$$

EUF-MAC Rule

Message Authentication Code Unforgeability

If mac is an EUF-CMA function, then the ground rule:

$$
\overline{\text { verify }}_{\mathrm{k}}(s, m) \rightarrow \dot{\bigvee}_{u \in \mathcal{S}} m \doteq u \sim \text { true } \text { EUF-MAC }
$$

is sound, when:

- $\mathcal{S}=\left\{u \mid \operatorname{mac}_{\mathrm{k}}(u) \in \mathbb{S}_{\text {mac }}(s, m)\right\} ;$
- $k \in \mathcal{N}$ appears only in mac or verify key positions in s, m.

Example

If $t_{1} t_{2}$ and t_{3} are terms which do not contain k, then:

$$
\begin{gathered}
\Phi \equiv \operatorname{mac}_{\mathrm{k}}\left(t_{1}\right), \operatorname{mac}_{\mathrm{k}}\left(t_{2}\right), \operatorname{mac}_{\mathrm{k}_{0}}\left(t_{3}\right) \\
\models \operatorname{verify}_{\mathrm{k}}(g(\Phi), \mathrm{n}) \rightarrow\left(\mathrm{n} \doteq t_{1} \dot{\vee} \mathrm{n} \doteq t_{2}\right) \sim \text { true }
\end{gathered}
$$

EUF-MAC Rule: Exercise

Exercise

Assume mac is EUF-CMA. Show that the following rule is sound:
verify $_{k}$ (if b then s_{0} else $\left.s_{1}, m\right) \dot{\rightarrow} \dot{\bigvee}_{u \in \mathcal{S}_{1} \cup \mathcal{S}_{2}} m \doteq u \sim$ true
when b, s_{0}, s_{1}, m are ground terms, and:

- $\mathcal{S}_{i}=\left\{u \mid \operatorname{mac}_{\mathrm{k}}(u) \in \mathbb{S}_{\text {mac }}\left(s_{i}, m\right)\right\}$, for $i \in\{0,1\}$;
- k appears only in mac or verify key positions in s_{0}, s_{1}, m.

Remark: we do not make any assumption on b, except that it is ground. E.g., we can have $b \equiv\left(\operatorname{att}(\mathrm{k}) \doteq \operatorname{mac}_{\mathrm{k}}(0)\right)$.

Authentication Protocols

Authentication of the Hash-Lock Protocol

Authentication: Hash-Lock

Theorem

Assuming that the hash function is EUF-CMA ${ }^{6}$, the Hash-Lock protocol provides authentication, i.e. for any identity $a \in \mathcal{I}$, for any $\operatorname{tr} \in \mathcal{T}_{\text {io }}, \operatorname{tr}_{1} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{1}}$ and $\operatorname{tr}_{3} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{2}}$ s.t.:

$$
\mathrm{tr}_{1}<\mathrm{tr}_{3} \leq \mathrm{tr}
$$

the following formula is valid:
${ }^{6}$ Taking verify ${ }_{\mathrm{k}}(s, m) \stackrel{\text { def }}{=} s \doteq \mathrm{H}(m, \mathrm{k})$.

Authentication: Hash-Lock

Proof. Let $\mathrm{a} \in \mathcal{I}$, and let $\operatorname{tr} \in \mathcal{T}_{\mathrm{io}}, \operatorname{tr}_{1} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{1}}$ and $\operatorname{tr}_{3} \diamond \mathrm{c}_{\mathrm{j}}^{\mathrm{R}_{2}}$ be s.t.:

$$
\operatorname{tr}_{1}<\operatorname{tr}_{3} \leq \operatorname{tr}
$$

We let:

$$
\begin{aligned}
& \underset{\operatorname{tr}_{1} \leq \operatorname{tr}_{2} \leq \operatorname{tr}_{3}}{\operatorname{tr}_{2}^{T}}
\end{aligned}
$$

We must prove that the following reachability judgement is valid:

$$
\operatorname{accept}^{\mathrm{A}} \mathrm{Ctr}_{3} \vdash t_{\text {conc }}
$$

i.e. that:

$$
\pi_{2}\left(\text { in @tr }_{3}\right) \doteq \mathrm{H}\left(\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}\left(\text { in }_{\text {in }} \mathrm{tr}_{3}\right)\right\rangle, \mathrm{k}_{\mathrm{A}}\right) \vdash t_{\text {conc }}
$$

Authentication: Hash-Lock

We use the EUF-MAC rule on the equality:

$$
\pi_{2}\left(\mathrm{in@tr}_{3}\right) \doteq \mathrm{H}\left(\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}\left(\mathrm{in} @ \mathrm{tr}_{3}\right)\right\rangle, \mathrm{k}_{\mathrm{A}}\right)
$$

The terms above are ground, and the key k_{A} is correctly used in them. Moreover, the set of honest hashes using key k_{A} appearing in (\dagger), excluding the top-level hash, is:

$$
\begin{aligned}
& \mathbb{S}_{\text {mac }}\left(\pi_{2}\left(\text { in@tr }_{3}\right),\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}\left(\text { in@tr }_{3}\right)\right\rangle\right) \\
& =\mathbb{S}_{\text {mac }}\left(\text { in@tr }_{3}\right) \\
& =\left\{\mathrm{H}\left(\left\langle\mathrm{in@tr}_{2}, \mathrm{n}_{\mathrm{T}, \mathrm{i}}\right\rangle, \mathrm{k}_{\mathrm{A}}\right) \mid \operatorname{tr}_{2} \diamond \mathrm{C}_{\mathrm{A}, \mathrm{i}}^{\mathrm{T}}<\operatorname{tr}_{3}\right\}
\end{aligned}
$$

8 The hashes in the reader's outputs can be seen as verify checks, and can therefore be ignored.

Authentication: Hash-Lock

Hence using EUF-MAC plus some basic reasoning, we have:

$$
\begin{aligned}
& \left.\left.\operatorname{accept}^{\mathrm{A}} \mathrm{Qtr}_{3}, \dot{\mathrm{~V}}_{\operatorname{tr}_{2} \diamond \mathrm{c}_{\mathrm{A}, \mathrm{i}}^{\mathrm{T}}<\operatorname{tr}_{3}}\left\langle\operatorname{in@tr}_{2}, \mathrm{n}_{\mathrm{T}, \mathrm{i}}\right\rangle \doteq \mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}\left(\text { in@tr }_{3}\right)\right\rangle\right\rangle t_{\text {conc }} \\
& \text { accept }^{\mathrm{A}} \mathrm{@tr}_{3} \vdash t_{\text {conc }}
\end{aligned}
$$

Authentication: Hash-Lock

Assuming that the pair and projections satisfy:

$$
\overline{\left(\pi_{1}\langle x, y\rangle \doteq x\right) \sim \text { true }} \quad \overline{\left(\pi_{2}\langle x, y\rangle \doteq y\right) \sim \text { true }}
$$

We only have to show that for every $\operatorname{tr}_{2} \diamond \mathrm{C}_{\mathrm{A}, \mathrm{i}}^{\mathrm{T}}<\operatorname{tr}_{3}$:

$$
\Gamma \vdash t_{\text {conc }}
$$

is valid, where:

$$
\Gamma \stackrel{\text { def }}{=} \operatorname{accept}^{\mathrm{A}} @ t r_{3}, \text { in@tr} r_{2} \doteq \mathrm{n}_{\mathrm{R}, \mathrm{j}}, \mathrm{n}_{\mathrm{T}, \mathrm{i}} \doteq \pi_{1}\left(\text { in@tr }_{3}\right)
$$

Authentication: Hash-Lock

Since $\operatorname{tr}_{1} \diamond \mathrm{C}_{j}^{R_{1}}<\operatorname{tr}_{3}$ we know that:

$$
\text { out@tr } \mathrm{tr}_{1} \stackrel{\text { def }}{=} n_{R, j}
$$

Moreover:

$$
\text { out } \mathrm{tr}_{2} \stackrel{\text { def }}{=}\left\langle\mathrm{n}_{\mathrm{T}, \mathrm{i}}, \mathrm{H}\left(\left\langle\mathrm{in}^{\mathrm{n}} \mathrm{tr}_{2}, \mathrm{n}_{\mathrm{T}, \mathrm{i}}\right\rangle, \mathrm{k}_{\mathrm{A}}\right)\right\rangle
$$

Hence:

$$
\Gamma \vdash \pi_{1}\left(\text { out }^{2} \operatorname{tr}_{2}\right) \doteq \pi_{1}\left(\text { in }^{2} \operatorname{tr}_{3}\right)
$$

Similarly:

$$
\left.\left.\begin{array}{rl}
\Gamma \vdash \pi_{2}\left(\text { out }_{t \mathrm{tr}_{2}}\right) & \doteq \mathrm{H}\left(\left\langle\mathrm{in@tr}_{2}, \mathrm{n}_{\mathrm{T}, \mathrm{i}}\right\rangle, \mathrm{k}_{\mathrm{A}}\right) \\
& \doteq \mathrm{H}\left(\left\langle\mathrm{n}_{\mathrm{R}, \mathrm{j}}, \pi_{1}\left(\mathrm{in}_{\mathrm{tr}}^{3}\right)\right.\right. \\
)
\end{array}, \mathrm{k}_{\mathrm{A}}\right)\right)
$$

Consequently:

$$
\begin{equation*}
\Gamma \vdash \pi_{2}\left(\text { out }^{2} \mathrm{tr}_{2}\right) \doteq \pi_{2}\left(\mathrm{in@tr}_{3}\right) \tag{*}
\end{equation*}
$$

Authentication: Hash-Lock

Assuming that the pair and projections satisfy the property:

$$
\pi_{1} x \doteq \pi_{1} y \dot{\rightarrow} \pi_{2} x \doteq \pi_{2} y \rightarrow x \doteq y
$$

We deduce from (\star) and (\diamond) that:

$$
\Gamma \vdash \text { out } @ t r_{2} \doteq \text { in }_{2} \operatorname{tr}_{3}
$$

Putting everything together, we get:

Authentication: Hash-Lock

Recall that:
and we must show that $\Gamma \vdash t_{\text {conc }}$. Hence, using (\ddagger), it only remains to prove that whenever $\operatorname{tr}_{2}<\operatorname{tr}_{1}$, we have:

$$
\Gamma, \text { out } @ t r_{1} \doteq \text { in@tr }_{2}, \text { out } \text { tr }_{2} \doteq \text { in@tr }_{3} \vdash \perp
$$

This follows from the independence rule:

$$
\overline{(t \doteq \mathrm{n})=\text { false }}=-\mathrm{IND} \quad \text { when } t \text { is ground and } \mathrm{n} \notin \operatorname{st}(t)
$$

using the fact that:

$$
\text { out@tr } r_{1} \stackrel{\text { def }}{=} \mathrm{n}_{\mathrm{R}, \mathrm{j}}
$$

and that if $\operatorname{tr}_{2}<\operatorname{tr}_{1}$ then $\mathrm{n}_{\mathrm{R}, \mathrm{j}} \notin \mathrm{st}\left(\mathrm{in@tr} \mathrm{I}_{2}\right)$.

Authentication Protocols

Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:
$\forall t r_{R} \diamond C_{R} . \exists t r_{T} \diamond C_{T}$.

does not exclude the scenario:

Replay Attack

This is a replay attack: the same message (or partial transcript), when replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a door at will once it eavesdropped one honest interaction.

Example

The following protocol, called Basic Hash, suffer from such attacks:

$$
\begin{aligned}
& T(A, i): \nu n_{T, i} \cdot \text { out }\left(c_{A, i}^{T},\left\langle n_{T, i}, H\left(n_{T, i}, k_{A}\right)\right\rangle\right) \\
& R(j): \operatorname{in}\left(c_{j}^{R_{2}}, y\right) . \text { if } \dot{V}_{A \in \mathcal{I}} \pi_{2}(y) \doteq H\left(\pi_{1}(y), k_{A}\right) \\
& \text { then out }\left(c_{j}^{R_{2}}, o k\right) \\
& \text { else out }\left(c_{j}^{\mathrm{R}_{2}}, k o\right)
\end{aligned}
$$

Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a stronger property, injective authentication.

Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol provides injective authentication:
$\forall A \in \mathcal{I} . \forall \operatorname{tr} \in \mathcal{T}_{\text {io }} . \forall \operatorname{tr}_{1} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{1}}, \operatorname{tr}_{3} \diamond \mathrm{C}_{\mathrm{j}}^{\mathrm{R}_{2}}$ s.t. $\operatorname{tr}_{1}<\operatorname{tr}_{3} \leq \operatorname{tr}$

$$
\begin{aligned}
& \operatorname{tr}_{2} \diamond \subset_{A, i}^{T} \\
& \operatorname{tr}_{1} \leq \operatorname{tr}_{2} \leq \operatorname{tr}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}_{1}^{\prime}<\operatorname{tr}_{3}^{\prime} \leq \operatorname{tr}
\end{aligned}
$$

[1] D. Baelde, S. Delaune, and L. Hirschi.
Partial order reduction for security protocols.
In CONCUR, volume 42 of LIPICs, pages 497-510. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
[2] G. Bana and H. Comon-Lundh.
A computationally complete symbolic attacker for equivalence properties.
In CCS, pages 609-620. ACM, 2014.

[^0]: ${ }^{2}$ If we remove trailing sequences of error terms.

[^1]: ${ }^{5}$ This axiom must be satisfied by the protocol implementation for the security proof to apply.

[^2]: For the sack of simplicity, we omit channel names.

