MPRI 2.30: Proofs of Security Protocols

1. The CCSA Approach to Computational Security

Adrien Koutsos
2023/2024

Introduction

Context

Security Protocols

- Distributed programs which aim at providing some security properties.
- Uses cryptographic primitives: e.g. encryption.

$$
[\overline{\mathrm{j}} \stackrel{((0)}{\longrightarrow}
$$

Context: Security Properties

There is a large variety of security properties.

Context: Attacker Model

Against whom should these properties hold?

- concretely, in the real world: malicious individuals, corporations, state agencies, ...
- more abstractly, one (or many) computers sitting on the network.

Abstract attacker model

- Network capabilities: worst-case scenario: eavesdrop, block and forge messages.
- Computational capabilities: the adversary's computational power.
- Side-channels capabilities: observing the agents (e.g. time, power-consumption) \Rightarrow not in this lecture.

BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:

- uses an RFID tag.
- guard access to information stored.
- should guarantee data confidentiality and user privacy.

Some security mechanisms:

- integrity: obtaining key k requires physical access.
- no replay: random nonce n, old messages cannot be re-used.

喜

BAC Protocol (simplified)

Privacy: Unlinkability

No adversary can know whether it interacted with a particular user, in any context.

Example. For two user sessions:

French version of BAC:

- \neq error messages for replay and

5

 integrity checks.
\Rightarrow unlinkability attack.

BAC Protocol: Privacy Attack

BAC Protocol: Lessons

Take-away lessons:

- This is a protocol-level attack: no issue with cryptography: \Rightarrow cryptographic primitives are but an ingredient.
- Innocuous-looking changes can break security: \Rightarrow designing security protocols is hard.

How to get a strong confidence in a protocol's security guarantees?

High-Confidence Security Guarantees

Verification

Formal mathematical proof of security protocols:

- Must be sound: proof \Rightarrow property always holds.
- Usually undecidable: approaches either incomplete or interactive.
- Machine-checked proofs yield a high degree of confidence.
- general-purpose tools (e.g. Coq and Lean).
- in security protocol analysis, mostly dedicated tools. E.g. CryptoVerif, EasyCrypt, Squirrel.

Computer-aided Verification of Cryptographic Protocols

Goal

Design formal frameworks allowing for mechanized verification of cryptographic protocols.

- At the intersection of cryptography and verification.
- Particular verification challenges:
- small or medium-sized programs
- complex properties
- probabilistic programs + arbitrary adversary

The CCSA Approach to Cryptographic Protocol Verification

The Computationally Complete Symbolic Attacker (CCSA) [1] is a framework in the computational model for the verification of cryptographic protocols.

Key ingredients

- Protocol executions models as terms.
- A probabilistic logic.
\Rightarrow interpret terms as PTIME-computable bitstring distributions.
- Translate cryptographic hardness assumptions as logical rules.
- Reasoning rules capturing cryptographic arguments.
- Abstract approach: no probabilities, no security parameter.

Protocols as Sequences of Terms

Example of a Protocol

To illustrate what terms we need to consider, we consider a simple authentication protocol:

The Private Authentication (PA) Protocol, v1

$$
\begin{aligned}
& 1: A \rightarrow B: \nu n_{A} . \quad \operatorname{out}\left(c_{A},\left\{\left\langle p k_{A}, n_{A}\right\rangle\right\}_{p_{B}}\right) \\
& 2: B \rightarrow A: \nu n_{B} \cdot \operatorname{in}\left(c_{A}, x\right) . \operatorname{out}\left(c_{B},\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(x, s k_{A}\right)\right), n_{B}\right\rangle\right\}_{p_{p_{A}}}\right)
\end{aligned}
$$

where $\mathrm{pk}_{\mathrm{A}} \equiv \mathrm{pk}\left(\mathrm{k}_{\mathrm{A}}\right)$ and $\mathrm{p} \mathrm{k}_{\mathrm{B}} \equiv \mathrm{pk}\left(\mathrm{k}_{\mathrm{B}}\right)$.
Notation: we use \equiv to denote syntactic equality of terms.

Terms

We use terms to model protocol messages, built upon a set of symbols \mathcal{S} which includes:

- Names \mathcal{N}, e.g. $\mathrm{n}_{A}, \mathrm{n}_{B}$, for random samplings.
- Function symbols \mathcal{F}, e.g.:

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B},\left\langle_{-},{ }_{-}\right\rangle, \pi_{1}\left(__{-}\right), \pi_{2}\left(__{-}\right),\left\{_{-}\right\}_{-}, \operatorname{pk}\left(__{-}\right), \operatorname{sk}\left(__{-}\right) \text {, } \\
& \text { if_then_else_, } \dot{=}{ }_{-}, \dot{\wedge}_{-}, \dot{V}_{-}, \dot{\rightarrow}_{-}
\end{aligned}
$$

Examples

$$
\mathrm{pk}\left(\mathrm{k}_{\mathrm{A}}\right) \quad\left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}} \quad \pi_{1}\left(\mathrm{n}_{A}\right)
$$

Protocol Constructs

But this is not enough to translate a protocol execution into a sequence of terms. We also need to:

- model inputs of the protocol as terms.
- account for protocol branching (i.e. if ϕ then P_{1} else P_{2}).

Moreover, we forbid unbounded replication !, since we want to build finite sequences of terms.
We will discuss how to retrieve replication later.

Protocols as Sequences of Terms

Protocol Inputs

Inputs

The PA Protocol, v1

$$
\begin{array}{ll}
1: A \rightarrow B: \nu n_{A} . & \operatorname{out}\left(c_{A},\left\{\left\langle\mathrm{pk}_{A}, n_{A}\right\rangle\right\}_{\mathrm{pk}_{B}}\right) \\
2: B \rightarrow A: \nu n_{B} \cdot \operatorname{in}\left(c_{A}, x\right) . \operatorname{out}\left(c_{B},\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(x, s k_{A}\right)\right), n_{B}\right\rangle\right\}_{p_{A}}\right)
\end{array}
$$

How do we represent the adversary's inputs?

- We use adversarial functions symbols att $\in \mathcal{G}$, which takes as input the current knowledge of the adversary.
- Intuitively, att can be any probabilistic PTIME computation.

Example: Terms for PA, v1

$$
\begin{aligned}
t_{1} & \equiv\left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{B}}} \\
t_{2} & \equiv\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(\operatorname{att}\left(t_{1}\right), \mathrm{sk}_{\mathrm{A}}\right)\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{A}}}
\end{aligned}
$$

Inputs

More generally, if:

- there has already been n outputs, represented by the terms

$$
t_{1}, \ldots, t_{n}
$$

- and we are doing the j-th input since the protocol started;
then the input bitstring is represented by:

$$
\operatorname{att}_{j}\left(t_{1}, \ldots, t_{n}\right)
$$

where $\operatorname{att}_{j} \in \mathcal{G}$ is an adversarial function symbol of arity n.
$8 j$ allows to have different values for consecutive inputs.

Terms

Thus we extend our set of term symbols $\mathcal{S}=\mathcal{N} \uplus \mathcal{X} \uplus \mathcal{F} \uplus \mathcal{G}$:

- Names \mathcal{N}.
- Variables \mathcal{X}.
- Function symbols \mathcal{F}.
- Adversarial function symbols \mathcal{G}, of any arity.

We note $\mathcal{T}(\mathcal{S})$ the set of well-typed (see next slide) terms over symbols \mathcal{S}.
We will see the use of variables in \mathcal{X} later.

Terms: Types

Types
Each symbol $s \in \mathcal{S}$ comes with a type type(s) of the form:

$$
\left(\tau_{\mathrm{b}}^{1} \star \cdots \star \tau_{\mathrm{b}}^{n}\right) \rightarrow \tau_{\mathrm{b}} \quad \text { or } \quad \tau_{\mathrm{b}}
$$

where $\tau_{\mathrm{b}}^{1}, \ldots, \tau_{\mathrm{b}}^{n}, \tau_{\mathrm{b}}$ are all base types in \mathbb{B}.

- We ask that \mathbb{B} contains at least the message and bool types.
- We restrict names to type message:

$$
\forall \mathrm{n} \in \mathcal{N}, \operatorname{type}(\mathrm{n})=\text { message }
$$

- We restrict variables to base types, i.e.:

$$
\forall x \in \mathcal{X}, \operatorname{type}(x) \in \mathbb{B}
$$

- We require that terms are well-typed and of a base type:

$$
\vdash t: \tau_{\mathrm{b}} \quad \text { where } \tau_{\mathrm{b}} \in \mathbb{B} \text {. }
$$

Protocols as Sequences of Terms

Protocol Branching

Protocol Branching

In our first version of PA, B does not check that its comes from A. We propose a second version fixing this:

The PA Protocol, v2

$$
\begin{array}{ll}
1: A \rightarrow B: \nu n_{A} . & \operatorname{out}\left(c_{A},\left\{\left\langle\mathrm{pk}_{A}, n_{A}\right\rangle\right\}_{\mathrm{pk}_{B}}\right) \\
2: B \rightarrow \mathrm{~A}: \nu \mathrm{n}_{\mathrm{B}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{A}}, x\right) . & \text { if } \pi_{1}(d) \doteq \mathrm{pk}_{\mathrm{A}} \\
& \text { then out }\left(\mathrm{c}_{\mathrm{B}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{A}}\right) \\
& \text { else } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\{0\}_{\mathrm{pk}_{A}}\right)
\end{array}
$$

where $d \equiv \operatorname{dec}\left(\mathrm{x}, \mathrm{sk}_{\mathrm{A}}\right)$.
8 In the else branch, we return an encryption, to hide to the adversary which branch was taken.

Protocol Branching

The PA Protocol, v2

$$
\begin{array}{ll}
1: A \rightarrow B: \nu n_{A} . & \operatorname{out}\left(c_{A},\left\{\left\langle\mathrm{pk}_{A}, \mathrm{n}_{A}\right\rangle\right\}_{\mathrm{pk}_{B}}\right) \\
2: B \rightarrow \mathrm{~A}: \nu \mathrm{n}_{\mathrm{B}} \cdot \operatorname{in}\left(\mathrm{c}_{\mathrm{A}}, x\right) . & \text { if } \pi_{1}(d) \doteq \mathrm{pk}_{A} \\
& \text { then } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\left\{\left\langle\pi_{2}(d), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{A}}\right) \\
& \text { else } \operatorname{out}\left(\mathrm{c}_{\mathrm{B}},\{0\}_{\mathrm{pk}_{\mathrm{A}}}\right)
\end{array}
$$

The bitstring outputted in the second message of the protocol depends on which branch was taken.

Moreover, the adversary may not know which branch was taken.
\Rightarrow branching is pushed (or folded) in the outputted terms, using the if_then_else_function symbol.

Protocol Branching

Example: Terms for PA, v2

$$
\begin{aligned}
t_{1} \equiv & \left\{\left\langle\mathrm{pk}_{\mathrm{A}}, \mathrm{n}_{\mathrm{A}}\right\rangle\right\}_{\mathrm{pk}}^{\mathrm{B}} \\
t_{2} \equiv & \text { if } \pi_{1}\left(d_{1}\right) \doteq \mathrm{pk}_{\mathrm{A}} \\
& \text { then }\left\{\left\langle\pi_{2}\left(d_{1}\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}_{\mathrm{A}}} \\
& \text { else }\{0\}_{\mathrm{pk}_{\mathrm{A}}}
\end{aligned}
$$

where $d_{1} \equiv \operatorname{dec}\left(\operatorname{att}\left(t_{1}\right), \operatorname{sk}_{\mathrm{A}}\right)$.

Folding

Folding

We describe a systematic method to compute, given a process P and a trace tr of observable actions, the terms representing the outputted messages during the execution of P over tr.

This is the folding of P over tr.
We deal with inputs and protocol branching using the two techniques we just saw.

Non-Determinism and Computational Semantics

First, we require that processes are deterministic.
Indeed, consider a simple process:

$$
P=\operatorname{out}\left(\mathrm{c}, t_{0}\right) \mid \operatorname{out}\left(\mathrm{c}, t_{1}\right)
$$

- in a symbolic setting, this is a non-deterministic choice between t_{0} and t_{1}.
- in a computational setting, the semantics of P is unclear: how do non-determinism and probabilities interacts?

Hence, we choose to forbid such process: we only consider action-deterministic processes.

Action-Deterministic Processes

A process P is action-deterministic if the observable executions, starting from P, is described by a deterministic transition system.

Action-deterministic Process

A configuration A is action-deterministic iff for any $A \rightarrow^{*} A^{\prime}$, for any observable action α, if $A^{\prime} \xrightarrow{\alpha} A_{1}$ and $A^{\prime} \xrightarrow{\alpha} A_{2}$ then $A_{1}=A_{1}$, for any term interpretation domain.
P is action-deterministic if the initial configuration $(P, \emptyset, \emptyset)$ is.

Action-Deterministic Processes: Exercise

Exercise

Determine if the following protocols are action-deterministic.

$$
\operatorname{out}\left(c, t_{1}\right) \mid \operatorname{in}(c, x) . \operatorname{out}\left(c, t_{2}\right)
$$

if b then out $\left(c, t_{1}\right)$ else $\operatorname{in}(c, x)$. out $\left(c, t_{2}\right)$

$$
\operatorname{out}\left(c, t_{1}\right) \mid \text { if } b \text { then } \operatorname{out}\left(c, t_{2}\right) \text { else } \operatorname{out}\left(c_{0}, t_{3}\right)
$$

Folding

Folding Algorithm

Folding Configuration

Folding configuration

A folding configuration is a tuple $\left(\Phi ; \sigma ; j ; \Pi_{1}, \ldots, \Pi_{l}\right)$ where:

- Φ is a sequence of terms (in $\mathcal{T}(\mathcal{S})$).
- σ is a finite sequence of mappings $(\mathrm{x} \mapsto t)$ where t is a term.
- $j \in \mathbb{N}$.
- for every $i, \Pi_{i}=\left(P_{i}, b_{i}\right)$ where P_{i} is a protocol and b_{i} is a boolean term.

Folding Configuration: Intuition

In a folding configuration $\left(\Phi ; \sigma ; j ; \Pi_{1}, \ldots, \Pi_{l}\right)$:

- Φ is the frame, i.e. the sequence of terms outputted since the execution started.
- σ records inputs, it maps input variable to their corresponding term.
- j counts the number of inputs since the execution started.
- (P, b) represent the protocol P if b is true (and is null otherwise). Using this interpretation, $\Pi_{1}, \ldots, \Pi_{/}$is the current process.

Initial configuration: $(\epsilon ; \emptyset ; 0 ;(P, \top))$

Folding: New and Branching Rules

Rule for protocol branching:

$$
\begin{aligned}
& \left(\Phi ; \sigma ; j ;\left(\text { if } b \text { then } P_{1} \text { else } P_{2}, b^{\prime}\right), \Pi_{1}, \ldots, \Pi_{l}\right) \\
\hookrightarrow & \left(\Phi ; \sigma ; j ;\left(P_{1}, b^{\prime} \wedge b\right),\left(P_{2}, b^{\prime} \wedge \neg b\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{aligned}
$$

Rule for new:

$$
\begin{array}{r}
\left(\Phi ; \sigma ; j ;(\nu \mathrm{n}, P, b), \Pi_{1}, \ldots, \Pi_{l}\right) \\
\hookrightarrow\left(\Phi ; \sigma ; j ;\left(P\left[\mathrm{n} \mapsto \mathrm{n}_{f}\right], b\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{array}
$$

if n_{f} does not appear in the Ihs configuration

\hookrightarrow-irreducibility

A folding configuration K is \hookrightarrow-irreducible if for any K^{\prime}, we have $K \nrightarrow K^{\prime}$.

Folding: Input Rule

Rule for inputs:

$$
\begin{aligned}
& \quad\left(\Phi ; \sigma ; j ;\left(\operatorname{in}(\mathrm{c}, \mathrm{x}) . P_{1}, b_{1}\right), \ldots,\left(\operatorname{in}(\mathrm{c}, \mathrm{x}) . P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right) \\
& \stackrel{\text { incc) }}{\longrightarrow}\left(\Phi ; \sigma\left[\mathrm{x} \mapsto \boldsymbol{a t t}_{j}(\Phi)\right] ; j+1 ;\left(P_{1}, b_{1}\right), \ldots,\left(P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{aligned}
$$

if $x \notin \operatorname{dom}(\sigma)$, the lhs folding configuration is \hookrightarrow-irreducible and if for every i, Π_{1} does not start by an input on c.

Alternative

If the computational semantics of processes tell the adversary if an input succeeded or not, we replace Φ (in the rhs) by:

$$
\Phi, \dot{\bigvee}_{1 \leq i \leq n} b_{i}
$$

Folding: Output Rule

Rule for outputs:

$$
\begin{gathered}
\left(\Phi ; \sigma ; j ;\left(\text { out }\left(\mathrm{c}, t_{1}\right) . P_{1}, b_{1}\right), \ldots,\left(\operatorname{out}\left(\mathrm{c}, t_{n}\right) . P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right) \\
\stackrel{\text { outt(c) }}{\longrightarrow}\left(\Phi, t \sigma ; \sigma ; j ;\left(P_{1}, b_{1}\right), \ldots,\left(P_{n}, b_{n}\right), \Pi_{1}, \ldots, \Pi_{l}\right)
\end{gathered}
$$

if the lhs folding configuration is \hookrightarrow-irreducible and if for every i, Π_{1} does not start by an output on c and:

$$
t \equiv \text { if } b_{1} \text { then } t_{1} \text { else } \ldots \text { if } b_{n} \text { then } t_{n} \text { else error }
$$

8 The input and output rules make sense because we restrict ourselves to action-deterministic processes.

Remark: we omit the error message when $\left(\dot{\bigvee}_{1 \leq i \leq n} b_{i}\right) \Leftrightarrow$ true.

Folding

A folding observable action a is either in(c) or out(c).
Given an action-deterministic process P and a trace tr of folding observable, if:

$$
(\epsilon ; \emptyset ; 0 ;(P, \top)) \stackrel{\operatorname{tr}}{\hookrightarrow}\left(\Phi ; _; \quad ; \quad\right)
$$

then Φ is the folding of P over tr, denoted fold (P, tr).

Folding: Exercises

Exercise

What are all the possible foldings of the following protocols?

$$
\operatorname{in}(c, x) . \operatorname{out}(c, t) \quad \operatorname{out}\left(c, t_{1}\right) \mid \operatorname{in}\left(c_{0}, x\right) . \operatorname{out}\left(c_{0}, t_{2}\right)
$$

if b then out $\left(c, t_{1}\right)$ else $\operatorname{out}\left(c, t_{2}\right)$
if b then $\operatorname{out}\left(c_{1}, t_{1}\right)$ else $\operatorname{out}\left(c_{2}, t_{2}\right)$

Exercise

Extend the folding algorithm with a rule allowing to handle processes with let bindings.

Semantics of Terms

Semantics of Terms

We showed how to represent protocol execution, on some fixed trace of observables tr, as a sequence of terms.

Intuitively, the terms corresponds to PTIME-computable bitstring distributions.

Example

If $\left\langle _, \quad\right\rangle$ is the concatenation, and samplings are done uniformly at random among bitstrings of length $\eta \in \mathbb{N}$, then folding:

$$
\nu \mathrm{n}_{0}, \nu \mathrm{n}_{1}, \text { out }\left(\mathrm{c},\left\langle\mathrm{n}_{0},\left\langle 00, \mathrm{n}_{1}\right\rangle\right\rangle\right) \text { yields }\left\langle\mathrm{n}_{0},\left\langle 00, \mathrm{n}_{1}\right\rangle\right\rangle
$$

which represent a distribution over bitstrings of length $2 \cdot \eta+2$, where all bits are sampled uniformly and independently, except for the bits at positions η and $\eta+1$, which are always 0 .

Semantics of Terms

We interpret $t \in \mathcal{T}(\mathcal{S})$ as a Probabilistic Polynomial-time Turing machine (PPTM), with:

- a working tape (also used as input tape);
- two read-only tapes $\rho=\left(\rho_{\mathrm{a}}, \rho_{\mathrm{h}}\right)$ for adversary and honest randomness.

We let \mathcal{D} be the set of such machines.
8 The machine must be polynomial in the size of its input on the working tape only.

Terms Interpretation

The interpretation $\llbracket t \rrbracket_{\mathbb{M}} \in \mathcal{D}$ of a term t is parameterized by a model \mathbb{M} which provides:

- the set of random tapes $\mathbb{T}_{\mathbb{M}, \eta}=\mathbb{T}_{\mathbb{M}, \eta}^{\mathrm{a}} \times \mathbb{T}_{\mathbb{M}, \eta}^{\mathrm{h}}$, where $\mathbb{T}_{\mathbb{M}, \eta}^{\mathrm{a}}$ and $\mathbb{T}_{\mathbb{M}, \eta}^{\mathrm{h}}$ are finite same-length set of bit-strings.
We equip it with the uniform probability measure. $\left(\mathbb{T}_{\mathbb{M}, \eta}^{a}\right.$ for the adversary, $\mathbb{T}_{\mathbb{M}, \eta}^{h}$ for honest functions)
- the semantics $(\cdot)_{M}$ of symbols in \mathcal{S} (details on next slides).

We may omit \mathbb{M} when it is clear from context.
We define the machine $\llbracket t \rrbracket_{\mathbb{M}} \in \mathcal{D}$, by defining its behavior $\llbracket t \rrbracket_{\mathbb{M}}^{\eta, \rho}$ for every $\eta \in \mathbb{N}$ and pairs of random tapes $\rho=\left(\rho_{\mathrm{a}}, \rho_{\mathrm{h}}\right) \in \mathbb{T}_{\mathbb{M}, \eta}$.

Terms Interpretation: Function Symbols

Function symbols interpretations is just composition.
For function symbols in $f \in \mathcal{F}$, we simply apply $(f)_{\mathrm{M}}$:

$$
\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mathcal{M}}^{\eta, \rho} \stackrel{\text { def }}{=}(f)_{\mathrm{M}}\left(1^{\eta}, \llbracket t_{1} \rrbracket_{\mathrm{M}}^{\eta, \rho}, \ldots, \llbracket t_{n} \rrbracket_{\mathrm{M}}^{\eta, \rho}\right)
$$

Adversarial function symbols $g \in \mathcal{G}$ also have access to ρ_{a} :

$$
\llbracket g\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mathbb{M}}^{\eta, \rho} \stackrel{\text { def }}{=}(g)_{\mathbb{M}}\left(1^{\eta}, \llbracket t_{1} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \ldots, \llbracket t_{n} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right)
$$

Restrictions. $(f)_{M}$ and $(g)_{M}$ are:

- PTIME-computable;
- deterministic (all randomness must come explicitly, from ρ).

Terms Interpretation: Variables and Names

The interpretation $(x)_{M}$ of a variable $x \in \mathcal{X}$ is an arbitrary machine in \mathcal{D}. Then:

$$
\llbracket x \rrbracket_{\mathbb{M}}^{\eta, \rho} \stackrel{\text { def }}{=}(x x)_{\mathbb{M}}\left(1^{\eta}, \rho\right)
$$

Names $n \in \mathcal{G}$ are interpreted as uniform random samplings among bitstrings of length η, extracted from ρ_{h} :

$$
\llbracket \mathrm{n} \rrbracket_{\mathcal{M}}^{\eta, \rho} \stackrel{\text { def }}{=}\left(\mathrm{n} \rrbracket_{\mathrm{M}}\left(1^{\eta}, \rho_{\mathrm{h}}\right)\right.
$$

For every pair of different names n_{0}, n_{1}, we require that $\left(n_{0}\right)_{M}$ and $\left(n_{1}\right)_{M}$ extracts disjoint parts of ρ_{h}.
8 Hence different names are independent random samplings.

Terms Interpretation: Builtins

We force the interpretation of some function symbols.

- if_then_else _ is interpreted as branching:

$$
\text { 【if } b \text { then } t_{1} \text { else } t_{2} \rrbracket_{\mathcal{M}}^{\eta, \rho} \stackrel{\text { def }}{=} \begin{cases}\llbracket t_{1} \rrbracket_{\mathcal{M}}^{\eta, \rho} & \text { if } \llbracket t_{1} \rrbracket_{\mathcal{M}}^{\eta, \rho}=1 \\ \llbracket t_{2} \rrbracket_{\mathcal{M}}^{\eta, \rho} & \text { otherwise }\end{cases}
$$

- $_{-} \doteq$ is interpreted as an equality test:

$$
\llbracket t_{1} \doteq t_{2} \rrbracket_{\mathbb{M}}^{\eta, \rho} \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } \llbracket t_{1} \rrbracket_{\mathbb{M}}^{\eta, \rho}=\llbracket t_{2} \rrbracket_{\mathbb{M}}^{\eta, \rho} \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, we force the interpretations of $\dot{\wedge}, \dot{\vee}, \rightarrow$, true, false.

Terms Interpretation: Modeling and Randomness

\neq in how randomness is sampled:

- In the "real-world", the adversary \mathcal{A} samples randomness on-the-fly, as needed.
\Rightarrow possibly $P(\eta)$ random bits, where P is the (polynomial) running-time of \mathcal{A}.
- In the logic, we restrict $\mathbb{T}_{\mathbb{M}, \eta}=\mathbb{T}_{\mathbb{M}, \eta}^{a} \times \mathbb{T}_{\mathbb{M}, \eta}^{h}$ to be finite and fixed by \mathbb{M}.
\Rightarrow all randomness sampled eagerly according to \mathbb{M}, independently of the adversary \mathcal{A}.

This \neq of behaviors is not an issue, i.e. the logic can soundly model real-world adversaries:

- Indeed, for any adversary \mathcal{A}, there exists a model \mathbb{M} with enough randomness.

A First-Order Logic for
Indistinguishability

A First-Order Logic for Indistinguishability

We now present a logic, to state (and later prove) properties about bitstring distributions.

This is a first-order logic with a predicate \sim^{1} representing computational indistinguishability.

$$
\begin{array}{rlr}
\Phi:= & \top \mid \perp \\
& |\Phi \wedge \Phi| \Phi \vee \Phi|\Phi \rightarrow \Phi| \neg \Phi \\
& |\forall x . \Phi| \exists x . \Phi & (x \in \mathcal{X}) \\
& \mid t_{1}, \ldots, t_{n} \sim_{n} t_{n+1}, \ldots, t_{2 n} r\left(t_{1}, \ldots, t_{2 n} \in \mathcal{T}(\mathcal{S})\right)
\end{array}
$$

Remark: we use $\dot{\wedge}, \dot{\vee}, \rightarrow$ in for the boolean function symbols in terms, to avoid confusion with the boolean connectives in formulas.
${ }^{1}$ Actually, one predicate \sim_{n} of arity $2 n$ for every $n \in \mathbb{N}$.

Semantics of the Logic

The logic has a standard FO semantics, using \mathcal{D} as interpretation domain and interpreting \sim as computational indistinguishability.

The satisfaction $\mathbb{M} \models \Phi$ of Φ in \mathbb{M} is as expected for boolean connective and FO quantifiers. E.g.:

$$
\begin{gathered}
\mathbb{M} \models \top \quad \mathbb{M} \models \Phi \wedge \Psi \quad \text { if } \mathbb{M} \models \Phi \text { and } \mathbb{M} \models \psi \\
\mathbb{M} \models \neg \Phi \quad \text { if not } \mathbb{M} \models \Phi \quad \mathbb{M} \models \forall x . \Phi \quad \text { if } \forall m \in \mathcal{D}, \mathbb{M}[\mathrm{x} \mapsto m] \models \Phi
\end{gathered}
$$

Semantics of the Logic

Finally, \sim_{n} is interpreted as computational indistinguishability.

$$
\mathbb{M} \models t_{1}, \ldots, t_{n} \sim_{n} s_{1}, \ldots, s_{n}
$$

if, for every PPTM \mathcal{A} with a $n+1$ input (and working) tapes, and a single random tape:

$$
\left|\begin{array}{r}
\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta},\left(\llbracket t_{i} \rrbracket_{M}^{\eta, \rho}\right)_{1 \leq i \leq n}, \rho_{\mathrm{a}}\right)=1\right) \\
-\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta},\left(\llbracket s_{i} \rrbracket_{\mathrm{M}}^{\eta, \rho}\right)_{1 \leq i \leq n}, \rho_{\mathrm{a}}\right)=1\right)
\end{array}\right|
$$

is a negligible function of η.
The quantity in (\star) is called the advantage of \mathcal{A} against the left/right game $t_{1}, \ldots, t_{n} \sim_{n} s_{1}, \ldots, s_{n}$

Negligible Functions

A function $f(\eta)$ is negligible if it is asymptotically smaller than the inverse of any polynomial, i.e.:

$$
\forall c \in \mathbb{N}, \exists N \in \mathbb{N} \text { s.t. } \forall n \geq N, f(n) \leq \frac{1}{n^{c}}
$$

Example

Let f be the function defined by:

$$
f(\eta) \stackrel{\text { def }}{=} \operatorname{Pr}_{\rho}\left(\llbracket \mathrm{n}_{0} \rrbracket^{\eta, \rho}=\llbracket \mathrm{n}_{1} \rrbracket^{\eta, \rho}\right)
$$

If $\mathrm{n}_{0} \not \equiv \mathrm{n}_{1}$, then $f(\eta)=\frac{1}{2^{\eta}}$, and f is negligible.

Satisfiability and Validity

A formula Φ is satisfied by a model \mathbb{M} when $\mathbb{M} \models \Phi$.
Φ is valid, denoted by $\models \Phi$, if it is satisfied by every model.
Φ is \mathcal{C}-valid if it is satisfied by every model $\mathbb{M} \in \mathcal{C}$.

Validity: Exercise

Exercise

Which of the formulas below are valid? Which are not?

$$
\text { true } \sim \text { false } \quad n_{0} \sim n_{0} \quad n_{0} \sim n_{1} \quad n_{0} \doteq n_{1} \sim \text { false }
$$

$$
\mathrm{n}_{0}, \mathrm{n}_{0} \sim \mathrm{n}_{0}, \mathrm{n}_{1}
$$

$$
f\left(\mathrm{n}_{0}\right) \sim f\left(\mathrm{n}_{1}\right) \text { where } f \in \mathcal{F} \cup \mathcal{G}
$$

$$
\pi_{1}\left(\left\langle\mathrm{n}_{0}, \mathrm{n}_{1}\right\rangle\right) \doteq \mathrm{n}_{0} \sim \text { true }
$$

Validity: Exercise

Exercise

Which of the formulas below are valid? Which are not?

$$
\not \models \text { true } \sim \text { false } \quad \models n_{0} \sim n_{0} \quad \models n_{0} \sim n_{1} \quad \models n_{0} \doteq n_{1} \sim \text { false }
$$

$$
\begin{gathered}
\not \neq \mathrm{n}_{0}, \mathrm{n}_{0} \sim \mathrm{n}_{0}, \mathrm{n}_{1} \quad \models f\left(\mathrm{n}_{0}\right) \sim f\left(\mathrm{n}_{1}\right) \text { where } f \in \mathcal{F} \cup \mathcal{G} \\
\not \models \pi_{1}\left(\left\langle\mathrm{n}_{0}, \mathrm{n}_{1}\right\rangle\right) \doteq \mathrm{n}_{0} \sim \text { true }
\end{gathered}
$$

Protocol Indistinguishability

\mathcal{P} and \mathcal{Q} are indistinguishable, written $\mathcal{P} \approx \mathcal{Q}$, if for any τ :

$$
\equiv \operatorname{fold}(\mathcal{P}, \tau) \sim \operatorname{fold}(\mathcal{Q}, \tau)
$$

Remark

While there are countably many observable traces τ, the set of foldings of a protocol P is always finite: ${ }^{2}$

$$
|\{\operatorname{fold}(\mathcal{P}, \tau) \mid \tau\}|<+\infty
$$

${ }^{2}$ If we remove trailing sequences of error terms.

Protocol Indistinguishability: Exercise

Exercise

Informally, determine which of the following protocols indistinguishabilities hold, and under what assumptions:

$$
\begin{aligned}
& \operatorname{out}\left(\mathrm{c}, t_{1}\right) \approx \operatorname{out}\left(\mathrm{c}, t_{2}\right) \quad \operatorname{out}(\mathrm{c}, t) \approx \operatorname{null} \quad \operatorname{in}(\mathrm{c}, \mathrm{x}) \approx \operatorname{null} \\
& \operatorname{out}(\mathrm{c}, t) \approx \text { if } b \text { then } \operatorname{out}\left(\mathrm{c}, t_{1}\right) \text { else out }\left(\mathrm{c}, t_{2}\right) \\
& \operatorname{out}(\mathrm{c}, t) \approx \text { if } b \text { then } \operatorname{out}(\mathrm{c}, t) \text { else out }\left(\mathrm{c}_{0}, t_{0}\right)
\end{aligned}
$$

Structural Rules

Rules: Soundness

A rule:

$$
\begin{array}{lll}
\phi_{1} \quad \ldots & \phi_{n} \\
\hline
\end{array}
$$

is sound if ϕ is valid whenever $\phi_{1}, \ldots, \phi_{n}$ are valid.

Example

$$
\frac{y \sim x}{x \sim y} \quad \text { is sound }
$$

These are typically structural rules, which are valid in all models.

Structural Rules

Computational indistinguishability is an equivalence relation:

$$
\begin{array}{ll}
\vec{u} \sim \vec{u} & \text { REFL } \quad \frac{\vec{v} \sim \vec{u}}{\vec{u} \sim \vec{v}} \text { SYM } \quad \frac{\vec{u} \sim \vec{w}}{\vec{u} \sim \vec{v}} \sim \vec{v} \\
\text { Trans }
\end{array}
$$

Permutation. If π is a permutation of $\{1, \ldots, n\}$ then:

$$
\frac{u_{\pi(1)}, \ldots, u_{\pi(n)} \sim v_{\pi(1)}, \ldots, v_{\pi(n)}}{u_{1}, \ldots, u_{n} \sim v_{1}, \ldots, v_{n}} \text { PERM }
$$

Structural Rules

Alpha-renaming.

$$
\overline{\vec{u} \sim \vec{u} \alpha}_{\alpha-\mathrm{EQU}}
$$

when α is an injective renaming of names in \mathcal{N}.

Restriction. The adversary can throw away some values:

$$
\frac{\vec{u}, s \sim \vec{v}, t}{\vec{u} \sim \vec{v}} \operatorname{RESTR}
$$

Structural Rules

Duplication. Giving twice the same value to the adversary is useless:

$$
\frac{\vec{u}, s \sim \vec{v}, t}{\vec{u}, s, s \sim \vec{v}, t, t} \mathrm{DuP}
$$

Function application. If the arguments of a function are indistinguishable, so is the image:

$$
\frac{\vec{u}_{1}, \vec{v}_{1} \sim \vec{u}_{1}, \vec{v}_{2}}{f\left(\vec{u}_{1}\right), \vec{v}_{1} \sim f\left(\vec{u}_{2}\right), \vec{v}_{2}} \text { FA }
$$

where $f \in \mathcal{F} \cup \mathcal{G}$.

Structural Rules: Proof of Function Application

$$
\frac{\overrightarrow{u_{1}}, \overrightarrow{v_{1}} \sim \vec{u}_{1}, \overrightarrow{v_{2}}}{f\left(\vec{u}_{1}\right), \vec{v}_{1} \sim f\left(\vec{u}_{2}\right), \overrightarrow{v_{2}}} \mathrm{FA}
$$

Proof. The proof is by contrapositive. Assume \mathbb{M} and \mathcal{A} s.t. its advantage against:

$$
f\left(\vec{u}_{1}\right), \vec{v}_{1} \sim f\left(\vec{u}_{2}\right), \vec{v}_{2}
$$

is not negligible. Let \mathcal{B} be the distinguisher defined by, for any bitstrings \vec{w}_{u}, \vec{w}_{v} and tape ρ_{a} :

$$
\mathcal{B}\left(1^{\eta}, \vec{w}_{u}, \vec{w}_{v}, \rho_{a}\right) \stackrel{\text { def }}{=} \mathcal{A}\left(1^{\eta},(f)_{\mathbb{M}}\left(1^{\eta}, \vec{w}_{u}\right), \vec{w}_{v}, \rho_{a}\right)
$$

\mathcal{B} is a PPTM since \mathcal{A} is and $(f)_{\mathbb{M}}$ can be evaluated in pol. time. Then:

$$
\begin{array}{r}
\mathcal{B}\left(1^{\eta}, \llbracket \vec{u}_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket \vec{v}_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{a}\right) \\
=\mathcal{A}\left(1^{\eta}, \llbracket f\left(\vec{u}_{i}\right) \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket \vec{v}_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{a}\right)
\end{array}
$$

Hence the advantage of \mathcal{B} in distinguishing $\vec{u}_{1}, \vec{v}_{1} \sim \vec{u}_{1}, \vec{v}_{2}$ is exactly the advantage of \mathcal{A} in distinguishing (\dagger).

Structural Rules

Case Study. We can do case disjunction over branching terms:

$$
\frac{\vec{w}_{1}, b_{0}, u_{0} \sim \vec{w}_{1}, b_{1}, u_{1} \quad \vec{w}_{0}, b_{0}, v_{0} \sim \vec{w}_{1}, b_{1}, v_{1}}{\vec{w}_{0}, \text { if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim \vec{w}_{1} \text {, if } b_{1} \text { then } u_{1} \text { else } v_{1}} \mathrm{CS}
$$

Structural Rules: Proof of Case Study

$$
\frac{b_{0}, u_{0} \sim b_{1}, u_{1} \quad b_{0}, v_{0} \sim b_{1}, v_{1}}{t_{0} \equiv \text { if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim t_{1} \equiv \text { if } b_{1} \text { then } u_{1} \text { else } v_{1}} \text { CS }
$$

Proof. (by contrapositive) Assume \mathbb{M} and \mathcal{A} s.t. its advantage against:

$$
\text { if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim \text { if } b_{1} \text { then } u_{1} \text { else } v_{1}
$$

is non-negligible. Let \mathcal{B}_{\top} be the distinguisher:

$$
\mathcal{B}_{\top}\left(1^{\eta}, w_{b}, w, \rho_{a}\right) \stackrel{\operatorname{def}}{=} \begin{cases}\mathcal{A}\left(1^{\eta}, w, \rho_{a}\right) & \text { if } w_{b}=1 \\ 0 & \text { otherwise }\end{cases}
$$

\mathcal{B}_{\top} is trivially a PPTM. Moreover, for any $i \in\{1,2\}$:

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\mathcal{B}_{T}\left(1^{\eta}, \llbracket b_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket u_{i} \rrbracket_{\mathrm{M}}^{\eta, \rho}, \rho_{a}\right)=1\right) \\
= & \left.\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket t_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{a}\right)=1 \wedge \llbracket b_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}=1\right)\right\} p_{T, i}
\end{aligned}
$$

Structural Rules: Proof of Case Study (continued)

Hence the advantage of \mathcal{B}_{T} against $b_{0}, u_{0} \sim b_{1}, u_{1}$ is $\left|p_{T, 1}-p_{T, 0}\right|$.
Similarly, let \mathcal{B}_{\perp} be the distinguisher:

$$
\mathcal{B}_{\perp}\left(1^{\eta}, w_{b}, w, \rho_{a}\right) \stackrel{\text { def }}{=} \begin{cases}\mathcal{A}\left(1^{\eta}, w, \rho_{a}\right) & \text { if } w_{b} \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

By an identical reasoning, we get that the advantage of \mathcal{B}_{\perp} against $b_{0}, v_{0} \sim b_{1}, v_{1}$ is $\left|p_{\perp, 1}-p_{\perp, 0}\right|$, where $p_{\perp, i}$ is:

$$
\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket t_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right)=1 \wedge \llbracket b_{i} \rrbracket_{\mathcal{M}}^{\eta, \rho} \neq 1\right)
$$

Structural Rules: Proof of Case Study (continued)

The advantage of \mathcal{A} against $t_{0} \sim t_{1}$ is, by partitioning and triangular inequality:

$$
\left|\left(p_{\top, 1}+p_{\perp, 1}\right)-\left(p_{\top, 0}+p_{\perp, 1}\right)\right| \leq\left|p_{\top, 1}-p_{\top, 0}\right|+\left|p_{\perp, 1}-p_{\perp, 1}\right|
$$

Since \mathcal{A} 's advantage is non-negligible, at least one of the two quantity above is non-negligible. Hence either \mathcal{B}_{\top} or \mathcal{B}_{\perp} has a non-negligible advantage against a premise of the CS rule.

Counter-Examples

Remark that b is necessary in CS

$$
\frac{\vec{w}_{1}, b_{0}, u_{0} \sim \vec{w}_{1}, b_{1}, u_{1} \quad \vec{w}_{0}, b_{0}, v_{0} \sim \vec{w}_{1}, b_{1}, v_{1}}{\vec{w}_{0} \text {, if } b_{0} \text { then } u_{0} \text { else } v_{0} \sim \vec{w}_{1} \text {, if } b_{1} \text { then } u_{1} \text { else } v_{1}} \text { CS }
$$

We have:
$\models\left\langle 0, \mathrm{n}_{0}\right\rangle \sim\left\langle 0, \mathrm{n}_{0}\right\rangle \quad \models\left\langle 1, \mathrm{n}_{0}\right\rangle \sim\left\langle 1, \mathrm{n}_{0}\right\rangle \quad \models \operatorname{even}\left(\mathrm{n}_{0}\right) \sim \operatorname{odd}\left(\mathrm{n}_{0}\right)$
But:

$$
\begin{array}{r}
\quad \text { if even }\left(n_{0}\right) \text { then }\left\langle 0, n_{0}\right\rangle \text { else }\left\langle 1, n_{0}\right\rangle \\
\sim \text { if odd }\left(n_{0}\right) \text { then }\left\langle 0, n_{0}\right\rangle \text { else }\left\langle 1, n_{0}\right\rangle
\end{array}
$$

Why is the later formula not valid?

Structural Rules: Equality Reasoning

If $\vDash(s \doteq t) \sim$ true, then s and t are equal with overwhelming probability. Hence we can safely replace s by t in any context.

If ϕ is a term of type bool, let $[\phi] \stackrel{\text { def }}{=} \phi \sim$ true.
\Rightarrow i.e. ϕ is overwhelmingly true (equivalently, $\neg \phi$ is negligible).
Then the following rule is sound:

$$
\frac{\vec{u}, t \sim \vec{v} \quad[s \doteq t]}{\vec{u}, s \sim \vec{v}} \mathrm{R}
$$

Structural Rules: Equality Reasoning

Proof

First, for any model \mathbb{M}, we have:

$$
\mathbb{M} \models[\phi] \text { iff. } \operatorname{Pr}_{\rho}\left(\llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho}\right) \text { is overwhelming. }
$$

- Left-to-right:

$$
\begin{aligned}
& \mathbb{M} \models[\phi] \\
\Rightarrow & \forall A \in \mathcal{D} \cdot\left|\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right)\right)-\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \operatorname{true} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right)\right)\right| \in \operatorname{neg} \mid(\eta) \\
\Rightarrow & \left.\mid \operatorname{Pr}_{\rho}\left(\llbracket \phi \rrbracket_{\mathrm{M}}^{\eta_{, \rho}}\right)-1\right)|\in \operatorname{neg}|(\eta) \quad \quad\left(\text { taking } \mathcal{A}\left(1^{\eta}, w, \rho_{\mathrm{a}}\right)=w\right) \\
\Rightarrow & \operatorname{Pr}_{\rho}\left(\llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho}\right) \in \text { o.w. }(\eta)
\end{aligned}
$$

- Right-to-left, assume $\operatorname{Pr}_{\rho}\left(\llbracket \|_{\mathbb{M}}^{\eta, \rho}\right) \in$ o.w. (η) and take $\mathcal{A} \in \mathcal{D}$:

$$
\begin{aligned}
& \left|\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \phi \rrbracket_{\mathrm{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right)\right)-\operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \operatorname{true} \rrbracket_{\mathrm{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right)\right)\right| \\
\leq & \operatorname{Pr}_{\rho}\left(\neg \llbracket \phi \rrbracket_{\mathrm{M}}^{\eta, \rho}\right) \quad \text { (up-to-bad) } \\
\in & \operatorname{negl}(\eta)
\end{aligned}
$$

Structural Rules: Equality Reasoning

This allows to conclude immediately since:

$$
\begin{aligned}
& |\operatorname{Pr}(\mathcal{A}(\llbracket \vec{u}, t \rrbracket))-\operatorname{Pr}(\mathcal{A}(\llbracket \vec{v} \rrbracket))| \\
\leq & |\operatorname{Pr}(\mathcal{A}(\llbracket \vec{u}, s \rrbracket))-\operatorname{Pr}(\mathcal{A}(\llbracket \vec{v} \rrbracket))|+\operatorname{Pr}(\llbracket s \rrbracket \neq \llbracket t \rrbracket) \quad \text { (up-to-bad) }
\end{aligned}
$$

Reminder: up-to-bad argument
If B, E, E^{\prime} are events such that:

$$
(E \wedge \neg B) \Leftrightarrow\left(E^{\prime} \wedge \neg B\right),
$$

then $\left|\operatorname{Pr}(E)-\operatorname{Pr}\left(E^{\prime}\right)\right| \leq \operatorname{Pr}(B)$.
Indeed, by triangular inequality and total probabilities:

$$
\left|\operatorname{Pr}(E)-\operatorname{Pr}\left(E^{\prime}\right)\right| \leq\left|\operatorname{Pr}(E \wedge B)-\operatorname{Pr}\left(E^{\prime} \wedge B\right)\right|+\left|\operatorname{Pr}(E \wedge \neg B)-\operatorname{Pr}\left(E^{\prime} \wedge \neg B\right)\right|
$$

We conclude by observing that:

- $\left|\operatorname{Pr}(E \wedge \neg B)-\operatorname{Pr}\left(E^{\prime} \wedge \neg B\right)\right|=0$ by $(\diamond) ;$
- $\left|\operatorname{Pr}(E \wedge B)-\operatorname{Pr}\left(E^{\prime} \wedge B\right)\right| \leq \max \left(\operatorname{Pr}(E \wedge B), \operatorname{Pr}\left(E^{\prime} \wedge B\right)\right) \leq \operatorname{Pr}(B)$.

Structural Rules: Generic Equality Reasoning

To prove $\models[s \doteq t]$ (or more generally $\models[\phi]$), we use the rule:

$$
\frac{\mathcal{A}_{\mathrm{th}} \vdash_{\mathrm{GEN}} \phi}{[\phi]} \mathrm{GEN}
$$

where $\vdash_{\text {Gen }}$ is any sound proof system for generic mathematical reasoning (e.g. higher-order logic).

This allows exact (i.e. non-probabilistic) mathematical reasoning.
We allow additional axioms using $\mathcal{A}_{\text {th }}$ (e.g. for if_then_else_).

Example

$\mathcal{A}_{\mathrm{th}} \vdash_{\mathrm{GEN}} v \doteq w \dot{\doteq}\binom{$ if $u \doteq v$ then u else $t \doteq}{$ if $u \doteq v$ then w else $t}$

Structural Rules: Probabilistic Independence

Two rules exploiting the independence of bitstring distributions:

$$
\begin{gathered}
\overline{[t \neq \mathrm{n}]}=\text {-IND when } \mathrm{n} \notin \operatorname{st}(t) \\
\frac{\vec{u} \sim \vec{v}}{\vec{u}, \mathrm{n}_{0} \sim \vec{v}, \mathrm{n}_{1}} \text { FRESH when } \mathrm{n}_{0} \notin \operatorname{st}(\vec{u}) \text { and } \mathrm{n}_{1} \notin \operatorname{st}(\vec{v})
\end{gathered}
$$

Remark

To check that the rules side-conditions hold, we require that they do not contain free variables. Hence we actually have a countable, recursive, set of ground rules (i.e. rule schemata).

Structural Rules: Probability Independence

We give the proof of the first rule:

$$
\overline{[t \neq \mathrm{n}]}=\text {-IND } \quad \text { when } \mathrm{n} \notin \operatorname{st}(t)
$$

Proof. For any model \mathbb{M} (we omit it below):

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\llbracket t \doteq \mathrm{n} \rrbracket^{\eta, \rho}\right) \\
= & \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket^{\eta, \rho}=\llbracket \mathrm{n} \rrbracket^{\eta, \rho}\right) \\
= & \sum_{w \in\{0,1\}^{*}} \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket^{\eta, \rho}=w \wedge \llbracket \mathrm{n} \rrbracket^{\eta, \rho}=w\right) \\
= & \sum_{w \in\{0,1\}^{*}} \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket^{\eta, \rho}=w\right) \cdot \operatorname{Pr}_{\rho}\left(\llbracket \mathrm{n} \rrbracket^{\eta, \rho}=w\right) \\
= & \frac{1}{2^{\eta}} \cdot \sum_{w \in\{0,1\}^{\eta}} \operatorname{Pr}_{\rho}\left(\llbracket t \rrbracket^{\eta, \rho}=w\right) \\
= & \frac{1}{2^{\eta}}
\end{aligned}
$$

Structural Rules: Exercise

Exercise

Give a derivation of the following formula:

$$
\mathrm{n}_{0} \sim \text { if } b \text { then } \mathrm{n}_{0} \text { else } \mathrm{n}_{1} \quad\left(\text { when } \mathrm{n}_{0}, \mathrm{n}_{1} \notin \operatorname{st}(b)\right)
$$

Implementation Rules

Rules: Soundness

A rule is \mathcal{C}-sound if ϕ is \mathcal{C}-valid whenever $\phi_{1}, \ldots, \phi_{n}$ are \mathcal{C}-valid.

Example

$$
\overline{\left[\pi_{1}\langle x, y\rangle \doteq x\right]}
$$

is not sound, because we do not require anything on the interpretation of π_{1} and the pair.

Obviously, it is \mathcal{C}_{π}-sound, where \mathcal{C}_{π} is the set of model where π_{1} computes the first projection of the pair $\left\langle_{-},{ }_{Z}\right\rangle$.

Implementation Assumptions

The general philosophy of the CCSA approach is to make the minimum number of assumptions possible on the interpretations of function symbols in a model.

Any additional necessary assumption is added through rules, which restrict the set of model for which the formula holds (hence limit the scope of the final security result).

Typically, this is used for:

- functional properties, which must be satisfied by the protocol functions (e.g. the projection/pair rule).
- cryptographic hardness assumptions, which must be satisfied by the cryptographic primitives (e.g. IND-CCA).

Functional Properties

Example. Equational theories for protocol functions:

- $\pi_{i}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=x_{i}$

$$
i \in\{1,2\}
$$

- $\operatorname{dec}\left(\{x\}_{\mathrm{pk}(y)}^{z}, \operatorname{sk}(y)\right)=x$
- $(x \oplus y) \oplus z=x \oplus(y \oplus z)$
- ...

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of computational security.

Cryptographic Reduction $\mathcal{S} \leq_{\text {red }} \mathcal{H}$
If you can break the cryptographic design \mathcal{S}, then you can break the hardness assumption \mathcal{H} using roughly the same time.

- We assume that \mathcal{H} cannot be broken in a reasonable time:
- Low-level assumptions: D-Log, DDH, ...
- Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...
- Hence, \mathcal{S} cannot be broken in a reasonable time.

Cryptographic Reduction

Cryptographic Reduction $\mathcal{S} \leq$ red \mathcal{H}

\mathcal{S} reduces to a hardness hypothesis \mathcal{H} (e.g. IND-CCA, DDH) if:

$$
\forall \mathcal{A} . \exists \mathcal{B} . \operatorname{Adv}_{\mathcal{S}}^{\eta}(\mathcal{A}) \leq P\left(\operatorname{Adv}_{\mathcal{H}}^{\eta}(\mathcal{B}), \eta\right)
$$

where \mathcal{A} and \mathcal{B} are taken among PPTMs and P is a polynomial.

Cryptographic Rules

We are now going to give rules which capture some cryptographic hardness hypotheses.

The validity of these rules will be established through a cryptographic reduction.

- Asymmetric encryption: indistinguishability (IND-CCA ${ }_{1}$) and key-privacy (KP-CCA ${ }_{1}$);
- Hash function: collision-resistance (CR-HK);
- MAC: unforgeability (EUF-CMA);

Cryptographic Rules

Asymmetric Encryption

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

- public and private key generation functions pk(_), sk(_);
- randomized ${ }^{3}$ encryption function $\left\{{ }_{-}\right\}_{-}$;
- a decryption function $\operatorname{dec}\left(_, \quad\right.$)

It must satisfies the functional equality:

$$
\operatorname{dec}\left(\{x\}_{\mathrm{pk}(y)}^{z}, \operatorname{sk}(y)\right)=x
$$

${ }^{3}$ The role of the randomization will become clear later.

IND-CCA A_{1} Security

An encryption scheme is indistinguishable against chosen cipher-text attacks (IND-CCA $)_{1}$) iff. for every PPTM \mathcal{A} with access to:

- a left-right oracle $\mathcal{O}_{\mathrm{LR}}^{b, n}(\cdot, \cdot)$:

$$
\mathcal{O}_{\mathrm{LR}}^{b, \mathrm{n}}\left(m_{0}, m_{1}\right) \stackrel{\text { def }}{=} \begin{cases}\left\{m_{b}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} & \text { if len }\left(m_{1}\right)=\operatorname{len}\left(m_{2}\right) \quad(r \text { fresh }) \\ 0 & \text { otherwise }\end{cases}
$$

- and a decryption oracle $\mathcal{O}_{\text {dec }}^{\mathrm{n}}(\cdot)$,
where \mathcal{A} can call $\mathcal{O}_{\mathrm{LR}}$ once, and cannot call $\mathcal{O}_{\text {dec }}$ after $\mathcal{O}_{\mathrm{LR}}$, then:

$$
\left|\operatorname{Pr}_{\mathrm{n}}\left(\mathcal{A}^{\mathcal{O}_{\mathrm{LR}}^{1, \mathrm{n}}, \mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}}\left(1^{\eta}, \operatorname{pk}(\mathrm{n})\right)=1\right)-\operatorname{Pr}_{\mathrm{n}}\left(\mathcal{A}^{\mathcal{O}_{\mathrm{LR}}^{0, \mathrm{n}}, \mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}}\left(1^{\eta}, \operatorname{pk}(\mathrm{n})\right)=1\right)\right|
$$

is negligible in η, where n is drawn uniformly in $\{0,1\}^{\eta}$.

IND-CCA ${ }_{1}$ Security: Exercise

Exercise

Show that if the encryption ignore its randomness, i.e. there exists aenc (_, _) s.t. for all x, y, r :

$$
\{x\}_{y}^{r}=\operatorname{aenc}(x, y)
$$

then the encryption does not satisfy IND-CCA ${ }_{1}$.

IND-CCA ${ }_{1}$ Rule

Indistinguishability Against Chosen Ciphertexts Attacks

If the encryption scheme is IND-CCA , then the ground rule:

$$
\begin{aligned}
{\left[\operatorname{len}\left(t_{0}\right)\right.} & \left.\doteq \operatorname{len}\left(t_{1}\right)\right] \\
\vec{u},\left\{t_{0}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \vec{u},\left\{t_{1}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} & \text { IND-CCA } 1
\end{aligned}
$$

is sound, when:

- r does not appear in \vec{u}, t_{0}, t_{1}, i.e. $r \notin \operatorname{st}\left(\vec{u}, t_{0}, t_{1}\right)$;
- n appears only in $\mathrm{pk}(\cdot)$ or $\operatorname{dec}\left(_, \operatorname{sk}(\cdot)\right)$ positions in \vec{u}, t_{0}, t_{1}, which we write:

$$
\mathrm{n} \sqsubseteq_{\mathrm{pk}(\cdot), \operatorname{dec}\left(_, \mathrm{sk}(\cdot)\right)} \vec{u}, t_{0}, t_{1}
$$

IND-CCA ${ }_{1}$ Rule: Conditions

Definition: Positions

We write $\operatorname{pos}(t) \in\{\epsilon\} \cup \mathbb{N}(\cdot \mathbb{N})^{*}$ the set of positions of t and $t_{\mid p}$ the sub-term of t at position p.

Example

if $t \equiv f(g(a, b), h(c))$ then $\operatorname{pos}(t)=\{\epsilon, 0,1,0 \cdot 0,0 \cdot 1,1,1 \cdot 0\}$ and:
$t_{\mid \epsilon} \equiv t \quad t_{10} \equiv g(a, b) \quad t_{\mid 0 \cdot 0} \equiv a \quad t_{\mid 0.1} \equiv b \quad t_{11} \equiv h(c)$

$$
t_{11 \cdot 0} \equiv c
$$

IND-CCA A_{1} Rule: Conditions

Definition: CCA_{1} Side-Condition
($\left.\mathrm{n} \sqsubseteq_{\mathrm{pk}(\cdot), \operatorname{dec}\left(_, \mathrm{sk}(\cdot)\right)} u\right)$ iff. for any $p \in \operatorname{pos}(u)$, if $t_{\mid p} \equiv \mathrm{n}$, either:

- $p=p_{0} \cdot 0$ and $t_{p_{0}} \equiv \mathrm{pk}(\mathrm{n})$;
- or $p=p_{0} \cdot 1 \cdot 0$ and $t_{p_{0}} \equiv \operatorname{dec}(s, \operatorname{sk}(\mathrm{n}))$.

Examples (writing \sqsubseteq instead of $\sqsubseteq_{\left.\mathrm{pk}(\cdot) \text {, dec }\left(_, \text {sk(} \cdot\right) \text {) }\right) ~}$

$$
\begin{array}{rl}
\mathrm{n} \nsubseteq \mathrm{n} & \mathrm{n} \sqsubseteq \mathrm{pk}(\mathrm{pk}(\mathrm{n})) \\
\mathrm{n} \nsubseteq \operatorname{dec}(\mathrm{sk}(\mathrm{n}), \mathrm{sk}(\mathrm{n})) & \mathrm{n} \sqsubseteq \operatorname{dec}(\mathrm{pk}(\mathrm{n}), \mathrm{sk}(\mathrm{n})) \\
\mathrm{n} \sqsubseteq t \mathrm{if} \mathrm{n} \notin \mathrm{st}(t)
\end{array}
$$

IND-CCA ${ }_{1}$ Rule: Proof

Proof sketch

Proof by contrapositive. Let \mathbb{M} be a model, \mathcal{A} an adversary and \vec{u}, t_{0}, t_{1} ground terms such that:

$$
\begin{aligned}
& \operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \vec{u} \rrbracket_{\mathrm{M}}^{\eta, \rho}, \llbracket\left\{t_{0}\right\}_{\mathrm{pk}(n)}^{r}\right]_{\mathrm{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right) \\
- & \operatorname{Pr}_{\rho}\left(\mathcal{A}\left(1^{\eta}, \llbracket \vec{u} \rrbracket_{\mathrm{M}}^{\eta, \rho}, \llbracket\left\{t_{1}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \rrbracket_{\mathrm{M}}^{\eta, \rho}, \rho_{\mathrm{a}}\right) \mid\right.
\end{aligned}
$$

is not negligible, and $\mathbb{M} \models\left[\operatorname{len}\left(t_{0}\right) \doteq \operatorname{len}\left(t_{1}\right)\right]$.
We must build a PPTM \mathcal{B} s.t. \mathcal{B} wins the IND-CCA A_{1} security game.

IND-CCA ${ }_{1}$ Rule: Proof

Let $\mathcal{B}^{\mathcal{O}_{\mathrm{LR}}^{b, n}, \mathcal{O}_{\operatorname{dec}}^{n}}\left(1^{\eta}, \llbracket \operatorname{pk}(\mathrm{n}) \rrbracket_{\mathrm{M}}^{\eta, \rho}\right)$ be the following program:
i) lazily ${ }^{4}$ samples the random tapes $\left(\rho_{\mathrm{a}}, \rho_{\mathrm{h}}^{\prime}\right)$ where:

$$
\rho_{\mathrm{h}}^{\prime}:=\rho_{\mathrm{h}}[\mathrm{n} \mapsto 0, \mathrm{r} \mapsto 0]
$$

ii) compute ${ }^{5}$:

$$
w_{\vec{u}}, w_{t_{0}}, w_{t_{1}}:=\llbracket \vec{u}, t_{0}, t_{1} \rrbracket_{\mathbb{M}}^{\eta, \rho}
$$

using $\left(\rho_{\mathrm{a}}, \rho_{\mathrm{h}}^{\prime}\right), \llbracket \mathrm{pk}(\mathrm{n}) \rrbracket_{\mathbb{M}}^{\eta, \rho}$ and calls to $\mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}$.
iii) return 0 if $\operatorname{len}\left(t_{0}\right) \neq \operatorname{len}\left(t_{1}\right)$.
iii) otherwise, compute:

$$
w_{l r}:=\mathcal{O}_{\mathrm{LR}}^{b, \mathrm{n}}\left(w_{t_{0}}, w_{t_{1}}\right)=\llbracket\left\{t_{b}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \rrbracket_{\mathbb{M}}^{\eta, \rho}
$$

iv) return $\mathcal{A}\left(1^{\eta}, w_{\vec{u}}, w_{l r}, \rho_{\mathrm{a}}\right)$.
${ }^{4}$ Why do we need this?
${ }^{5}$ We describe how later.

IND-CCA ${ }_{1}$ Rule: Proof

Then:

$$
\begin{aligned}
\operatorname{Adv}(\mathcal{A}) & \leq \operatorname{Adv}\left(\mathcal{A} \wedge \operatorname{len}\left(t_{0}\right) \doteq \operatorname{len}\left(t_{1}\right)\right)+\operatorname{Pr}\left(\operatorname{len}\left(t_{0}\right) \neq \operatorname{len}\left(t_{1}\right)\right) \quad \text { (up-to-bad) } \\
& =\operatorname{Adv}\left(\mathcal{B} \wedge \operatorname{len}\left(t_{0}\right) \doteq \operatorname{len}\left(t_{1}\right)\right)+\operatorname{Pr}\left(\operatorname{len}\left(t_{0}\right) \neq \operatorname{len}\left(t_{1}\right)\right) \\
& =\operatorname{Adv}(\mathcal{B})+\operatorname{Pr}\left(\operatorname{len}\left(t_{0}\right) \neq \operatorname{len}\left(t_{1}\right)\right)
\end{aligned}
$$

Hence \mathcal{B} 's advantage against IND-CCA ${ }_{1}$ is at least \mathcal{A} 's advantage against:

$$
\vec{u},\left\{t_{0}\right\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \vec{u},\left\{t_{1}\right\}_{\mathrm{pk}(\mathrm{n})}^{r}
$$

up-to a negligible quantity (the probability that $\operatorname{len}\left(t_{0}\right) \neq \operatorname{len}\left(t_{1}\right)$).
Since (\dagger) is assumed non-negligible, so is \mathcal{B} 's advantage.

IND-CCA ${ }_{1}$ Rule: Proof

It only remains to explain how to do step ii) in polynomial time.
We prove by structural induction that for any subterm s of \vec{u}, t_{0}, t_{1} :

- either s is a forbidden subterm n or $\operatorname{sk}(\mathrm{n})$;
- or \mathcal{B} can compute $w_{s}:=\llbracket s \rrbracket_{\mathcal{M}}^{\eta, \rho}$ in polynomial time.

Assuming this holds, we conclude by observing that IND-CCA ${ }_{1}$ side conditions guarantees that \vec{u}, t_{0}, t_{1} are not forbidden subterms.

IND-CCA 1 Rule: Proof

Induction. We are in one of the following cases:

- $s \in \mathcal{X}$ is not possible, since \vec{u}, t_{0}, t_{1} are ground.
- $s \in\{r, n\}$ are forbidden, hence the induction hypothesis holds.
- $s \in \mathcal{N} \backslash\{r, n\}$, then \mathcal{B} computes s directly from $\rho_{\mathrm{h}}^{\prime}=\rho_{\mathrm{h}}[\mathrm{n} \mapsto 0, r \mapsto 0]$.
- $s \equiv f\left(t_{1}, \ldots, t_{n}\right)$ and t_{1}, \ldots, t_{n} are not forbidden. Then, by induction hypothesis, \mathcal{B} can compute $w_{i}:=\llbracket t_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}$ for any $1 \leq i \leq n$. Then \mathcal{B} simply computes:

$$
w_{s}:= \begin{cases}(f\rangle_{\mathrm{M}}\left(1^{\eta}, w_{1}, \ldots, w_{n}\right) & \text { if } f \in \mathcal{F} \\ (f\rangle_{\mathrm{M}}\left(1^{\eta}, w_{1}, \ldots, w_{n}, \rho_{\mathrm{a}}\right) & \text { if } f \in \mathcal{G}\end{cases}
$$

IND-CCA 1 Rule: Proof

case disjunction (continued):

- $s \equiv f\left(t_{1}, \ldots, t_{n}\right)$ and at least one of the t_{i} is forbidden.

Using IND-CCA A_{1} side conditions, either s is either $\operatorname{pk}(n)$ or $\operatorname{dec}(m, \operatorname{sk}(n))$.
The first case is immediate since \mathcal{B} receives $\llbracket \operatorname{pk}(\mathrm{n}) \rrbracket_{\mathrm{M}}^{\eta, \rho}$ as argument.
For the second case, from IND-CCA ${ }_{1}$ side conditions, we know that $m \neq n$ and $m \neq \operatorname{sk}(n)$. Hence, by induction hypothesis, \mathcal{B} can compute $w_{m}=\llbracket m \rrbracket_{\mathbb{M}}^{\eta, \rho}$. We conclude using:

$$
w_{s}:=\mathcal{O}_{\mathrm{dec}}^{\mathrm{n}}\left(w_{m}\right)
$$

IND-CCA ${ }_{1}$ Rule: Exercise

Exercise

Which of the following formulas can be proven using IND-CCA1 ?

$$
\begin{aligned}
& \mathrm{pk}(\mathrm{n}),\{0\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \operatorname{pk}(\mathrm{n}),\{1\}_{\mathrm{pk}(\mathrm{n})}^{r} \\
& \operatorname{pk}(n),\{0\}_{p k(n)}^{r},\{0\}_{p k(n)}^{r_{0}} \sim \operatorname{pk}(n),\{1\}_{p k(n)}^{r},\{0\}_{p k(n)}^{r_{0}} \\
& \operatorname{pk}(n),\{0\}_{p k(n)}^{r},\{0\}_{p k(n)}^{r} \sim \operatorname{pk}(n),\{0\}_{p k(n)}^{r},\{1\}_{p k(n)}^{r} \\
& \operatorname{pk}(n),\{0\}_{\mathrm{pk}(\mathrm{n})}^{r} \sim \operatorname{pk}(\mathrm{n}),\{\operatorname{sk}(\mathrm{n})\}_{\mathrm{pk}(\mathrm{n})}^{r}
\end{aligned}
$$

IND-CCA ${ }_{1}$ Rule: Exercise

Exercise (Hybrid Argument)
Prove the following formula using IND-CCA ${ }_{1}$:

$$
\{0\}_{\mathrm{pk}(\mathrm{n})}^{\mathrm{r}_{0}},\{1\}_{\mathrm{pk}(\mathrm{n})}^{r_{1}}, \ldots,\{n\}_{\mathrm{pk}(\mathrm{n})}^{r_{n}} \sim\{0\}_{\mathrm{pk}(\mathrm{n})}^{r_{0}},\{0\}_{\mathrm{pk}(\mathrm{n})}^{r_{1}}, \ldots,\{0\}_{\mathrm{pk}(\mathrm{n})}^{r_{n}}
$$

Note: we assume that all plain-texts above have the same length (e.g. they are all represented over L bits, for L large enough)

KP-CCA ${ }_{1}$ Security

A scheme provides key privacy against chosen cipher-text attacks (KP-CCA $)_{1}$) iff for every PPTM \mathcal{A} with access to:

- a left-right encryption oracle $\mathcal{O}_{\mathrm{LR}}^{b, n_{0}, n_{1}}(\cdot)$:

$$
\begin{equation*}
\mathcal{O}_{\mathrm{LR}}^{b, n_{0}, \mathrm{n}_{1}}(m) \stackrel{\text { def }}{=}\{m\}_{\mathrm{pk}\left(\mathrm{n}_{b}\right)}^{r} \tag{rfresh}
\end{equation*}
$$

- and two decryption oracles $\mathcal{O}_{\text {dec }}^{\mathrm{n}_{0}}(\cdot)$ and $\mathcal{O}_{\text {dec }}^{\mathrm{n}_{1}}(\cdot)$, where \mathcal{A} can call $\mathcal{O}_{\mathrm{LR}}$ once, and cannot call the decryption oracles after $\mathcal{O}_{\text {LR }}$, then:
is negligible in η, where n_{0}, n_{1} are drawn in $\{0,1\}^{\eta}$.

Security Notions: Exercise

Exercise
 Show that IND-CCA $\neq \mathrm{KP}-\mathrm{CCA}_{1}$ and $\mathrm{KP}-\mathrm{CCA}_{1} \nRightarrow I N D-\mathrm{CA}_{1}$.

KP-CCA 1 Rule

Key Privacy Against Chosen Ciphertexts Attacks

If the encryption scheme is $\mathrm{KP}-\mathrm{CCA}_{1}$, then the ground rule:

$$
\overline{\vec{u},\{t\}_{\mathrm{pk}\left(\mathrm{n}_{0}\right)}^{r} \sim \vec{u},\{t\}_{\mathrm{pk}\left(\mathrm{n}_{1}\right)}^{r}} \mathrm{KP}-\mathrm{CCA}_{1}
$$

is sound, when:

- r does not appear in \vec{u}, t;
- $\mathrm{n}_{0}, \mathrm{n}_{1}$ appear only in $\mathrm{pk}(\cdot)$ or $\operatorname{dec}\left(_, \operatorname{sk}(\cdot)\right)$ positions in \vec{u}, t.

The proof is similar to the IND-CCA 1 soundness proof. We omit it.
[1] G. Bana and H. Comon-Lundh.
A computationally complete symbolic attacker for equivalence properties.
In CCS, pages 609-620. ACM, 2014.

