
MPRI 2.30: Proofs of Security Protocols

1. The CCSA Approach to Computational Security

Adrien Koutsos

2023/2024

Introduction

Context

Security Protocols

• Distributed programs which aim at providing some security
properties.

• Uses cryptographic primitives: e.g. encryption.

2

Context: Security Properties

There is a large variety of security properties.

Confidentiality
Authentication

Privacy

Privacy

3

Context: Attacker Model

Against whom should these properties hold?

• concretely, in the real world: malicious individuals, corporations,
state agencies, ...

• more abstractly, one (or many) computers sitting on the network.

Abstract attacker model
• Network capabilities: worst-case scenario:

eavesdrop, block and forge messages.

• Computational capabilities: the adversary’s
computational power.

• Side-channels capabilities: observing the
agents (e.g. time, power-consumption)
⇒ not in this lecture.

4

BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:

• uses an RFID tag.

• guard access to information stored.

• should guarantee data
confidentiality and user privacy.

Some security mechanisms:

• integrity: obtaining key k requires
physical access.

• no replay: random nonce n, old
messages cannot be re-used.

n

enck(n, . . .)

ok(· · ·)

(valid key + no replay)

5

BAC Protocol (simplified)

Privacy: Unlinkability
No adversary can know whether it inter-
acted with a particular user, in any con-
text.

Example. For two user sessions:

att
(

,

)
=


, ?

, ?

French version of BAC:

• ̸= error messages for replay and
integrity checks.

⇒ unlinkability attack.

n

enck(n, . . .)

ok(· · ·)

6

BAC Protocol: Privacy Attack

n0

enck(n0, . . .)

ok(· · ·)

n1

enck(n0, . . .)

replay error

n1

enck(n0, . . .)

integrity error

7

BAC Protocol: Lessons

Take-away lessons:

• This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.

• Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

8

High-Confidence Security Guarantees

Verification
Formal mathematical proof of security protocols:

S |= Φ

system satisfies property

• Must be sound: proof ⇒ property always holds.

• Usually undecidable: approaches either incomplete or interactive.

• Machine-checked proofs yield a high degree of confidence.
▶ general-purpose tools (e.g. Coq and Lean).
▶ in security protocol analysis, mostly dedicated tools.

E.g. CryptoVerif, EasyCrypt, Squirrel.

9

Computer-aided Verification of Cryptographic Protocols

Goal
Design formal frameworks allowing for mechanized verification of
cryptographic protocols.

• At the intersection of cryptography and verification.

• Particular verification challenges:
▶ small or medium-sized programs
▶ complex properties
▶ probabilistic programs + arbitrary adversary

10

The CCSA Approach to Cryptographic Protocol Verification

The Computationally Complete Symbolic Attacker (CCSA) [1] is a
framework in the computational model for the verification of
cryptographic protocols.

Key ingredients

• Protocol executions models as terms.

• A probabilistic logic.
⇒ interpret terms as PTIME-computable bitstring distributions.

• Translate cryptographic hardness assumptions as logical rules.

• Reasoning rules capturing cryptographic arguments.

• Abstract approach: no probabilities, no security parameter.

11

Protocols as Sequences of Terms

Example of a Protocol

To illustrate what terms we need to consider, we consider a simple
authentication protocol:

The Private Authentication (PA) Protocol, v1

1 : A → B : ν nA. out(cA, {⟨pkA , nA⟩}pkB
)

2 : B → A : ν nB. in(cA, x). out(cB, {⟨π2(dec(x, skA)) , nB⟩}pkA
)

where pkA ≡ pk(kA) and pkB ≡ pk(kB).

Notation: we use ≡ to denote syntactic equality of terms.

12

Terms

We use terms to model protocol messages, built upon a set of symbols
S which includes:

• Names N , e.g. nA, nB , for random samplings.

• Function symbols F , e.g.:

A, B, ⟨_ , _⟩, π1(_), π2(_), {_}_
, pk(), sk(_),

if_then_else_, _ .
= _, _

.
∧ _, _

.
∨ _, _ .→ _

Examples

pk(kA) {⟨pkA , nA⟩}pkB
π1(nA)

13

Protocol Constructs

But this is not enough to translate a protocol execution into a
sequence of terms. We also need to:

• model inputs of the protocol as terms.

• account for protocol branching (i.e. if ϕ then P1 else P2).

Moreover, we forbid unbounded replication !, since we want to build
finite sequences of terms.
We will discuss how to retrieve replication later.

14

Protocols as Sequences of Terms

Protocol Inputs

Inputs

The PA Protocol, v1

1 : A → B : ν nA. out(cA, {⟨pkA , nA⟩}pkB
)

2 : B → A : ν nB. in(cA, x). out(cB, {⟨π2(dec(x , skA)) , nB⟩}pkA
)

How do we represent the adversary’s inputs?
• We use adversarial functions symbols att ∈ G,

which takes as input the current knowledge of the adversary.
• Intuitively, att can be any probabilistic PTIME computation.

Example: Terms for PA, v1

t1 ≡ {⟨pkA , nA⟩}pkB

t2 ≡ {⟨π2(dec(att(t1) , skA)) , nB⟩}pkA

15

Inputs

More generally, if:

• there has already been n outputs, represented by the terms
t1, . . . , tn;

• and we are doing the j-th input since the protocol started;

then the input bitstring is represented by:

attj(t1, . . . , tn)

where attj ∈ G is an adversarial function symbol of arity n.

� j allows to have different values for consecutive inputs.

16

Terms

Thus we extend our set of term symbols S = N ⊎ X ⊎ F ⊎ G:

• Names N .

• Variables X .

• Function symbols F .

• Adversarial function symbols G, of any arity.

We note T (S) the set of well-typed (see next slide) terms over symbols S.

We will see the use of variables in X later.

17

Terms: Types

Types
Each symbol s ∈ S comes with a type type(s) of the form:

(τ1
b ⋆ · · · ⋆ τnb) → τb or τb

where τ1
b , . . . , τ

n
b , τb are all base types in B.

• We ask that B contains at least the message and bool types.
• We restrict names to type message:

∀n ∈ N , type(n) = message

• We restrict variables to base types, i.e.:
∀x ∈ X , type(x) ∈ B.

• We require that terms are well-typed and of a base type:

⊢ t : τb where τb ∈ B.

18

Protocols as Sequences of Terms

Protocol Branching

Protocol Branching

In our first version of PA, B does not check that its comes from A. We
propose a second version fixing this:

The PA Protocol, v2

1 : A → B : ν nA. out(cA, {⟨pkA , nA⟩}pkB
)

2 : B → A : ν nB. in(cA, x). if π1(d)
.
= pkA

then out(cB, {⟨π2(d) , nB⟩}pkA
)

else out(cB, {0}pkA
)

where d ≡ dec(x, skA).

� In the else branch, we return an encryption, to hide to the adversary
which branch was taken.

19

Protocol Branching

The PA Protocol, v2

1 : A → B : ν nA. out(cA, {⟨pkA , nA⟩}pkB
)

2 : B → A : ν nB. in(cA, x). if π1(d)
.
= pkA

then out(cB, {⟨π2(d) , nB⟩}pkA
)

else out(cB, {0}pkA
)

The bitstring outputted in the second message of the protocol depends
on which branch was taken.

Moreover, the adversary may not know which branch was taken.

⇒ branching is pushed (or folded) in the outputted terms, using the
if_then_else_ function symbol.

20

Protocol Branching

Example: Terms for PA, v2

t1 ≡ {⟨pkA , nA⟩}pkB

t2 ≡ if π1(d1)
.
= pkA

then {⟨π2(d1) , nB⟩}pkA

else {0}pkA

where d1 ≡ dec(att(t1), skA).

21

Folding

Folding

We describe a systematic method to compute, given a process P and a
trace tr of observable actions, the terms representing the outputted
messages during the execution of P over tr.

This is the folding of P over tr.

We deal with inputs and protocol branching using the two techniques
we just saw.

22

Non-Determinism and Computational Semantics

First, we require that processes are deterministic.

Indeed, consider a simple process:

P = out(c, t0) | out(c, t1)

• in a symbolic setting, this is a non-deterministic choice between t0

and t1.

• in a computational setting, the semantics of P is unclear: how do
non-determinism and probabilities interacts?

Hence, we choose to forbid such process: we only consider
action-deterministic processes.

23

Action-Deterministic Processes

A process P is action-deterministic if the observable executions, starting
from P , is described by a deterministic transition system.

Action-deterministic Process

A configuration A is action-deterministic iff for any A →∗ A′, for any
observable action α, if A′ α→ A1 and A′ α→ A2 then A1 = A1, for any
term interpretation domain.

P is action-deterministic if the initial configuration (P, ∅, ∅) is.

24

Action-Deterministic Processes: Exercise

Exercise
Determine if the following protocols are action-deterministic.

out(c, t1) | in(c, x). out(c, t2)

if b then out(c, t1) else in(c, x). out(c, t2)

out(c, t1) | if b then out(c, t2) else out(c0, t3)

25

Folding

Folding Algorithm

Folding Configuration

Folding configuration

A folding configuration is a tuple (Φ;σ; j ; Π1, . . . ,Πl) where:

• Φ is a sequence of terms (in T (S)).
• σ is a finite sequence of mappings (x 7→ t) where t is a term.

• j ∈ N.

• for every i , Πi = (Pi , bi) where Pi is a protocol and bi is a boolean
term.

26

Folding Configuration: Intuition

In a folding configuration (Φ;σ; j ; Π1, . . . ,Πl):

• Φ is the frame, i.e. the sequence of terms outputted since the
execution started.

• σ records inputs, it maps input variable to their corresponding term.

• j counts the number of inputs since the execution started.

• (P, b) represent the protocol P if b is true (and is null otherwise).
Using this interpretation, Π1, . . . ,Πl is the current process.

Initial configuration: (ϵ; ∅; 0; (P,⊤))

27

Folding: New and Branching Rules

Rule for protocol branching:

(Φ;σ; j ; (if b then P1 else P2, b
′),Π1, . . . ,Πl)

↪→ (Φ;σ; j ; (P1, b
′ ∧ b), (P2, b

′ ∧ ¬b),Π1, . . . ,Πl)

Rule for new:

(Φ;σ; j ; (ν n,P, b),Π1, . . . ,Πl)

↪→ (Φ;σ; j ; (P[n 7→ nf], b),Π1, . . . ,Πl)

if nf does not appear in the lhs configuration

↪→-irreducibility

A folding configuration K is ↪→-irreducible if for any K ′, we have
K ̸↪→ K ′.

28

Folding: Input Rule

Rule for inputs:

(Φ;σ; j ; (in(c, x).P1, b1), . . . , (in(c, x).Pn, bn),Π1, . . . ,Πl)

in(c)
↪→ (Φ;σ[x 7→ attj(Φ)]; j + 1; (P1, b1), . . . , (Pn, bn),Π1, . . . ,Πl)

if x ̸∈ dom(σ), the lhs folding configuration is ↪→-irreducible and if for
every i , Π1 does not start by an input on c.

Alternative
If the computational semantics of processes tell the adversary if an
input succeeded or not, we replace Φ (in the rhs) by:

Φ,
∨̇

1≤i≤n bi

29

Folding: Output Rule

Rule for outputs:

(Φ;σ; j ; (out(c, t1).P1, b1), . . . , (out(c, tn).Pn, bn),Π1, . . . ,Πl)

out(c)
↪→ (Φ, tσ;σ; j ; (P1, b1), . . . , (Pn, bn),Π1, . . . ,Πl)

if the lhs folding configuration is ↪→-irreducible and if for every i , Π1

does not start by an output on c and:

t ≡ if b1 then t1 else . . . if bn then tn else error

� The input and output rules make sense because we restrict ourselves to
action-deterministic processes.

Remark: we omit the error message when (
∨̇

1≤i≤n bi) ⇔ true.

30

Folding

A folding observable action a is either in(c) or out(c).

Given an action-deterministic process P and a trace tr of folding
observable, if:

(ϵ; ∅; 0; (P,⊤))
tr
↪→ (Φ;_;_;_)

then Φ is the folding of P over tr, denoted fold(P, tr).

31

Folding: Exercises

Exercise
What are all the possible foldings of the following protocols?

in(c, x). out(c, t) out(c, t1) | in(c0, x). out(c0, t2)

if b then out(c, t1) else out(c, t2)

if b then out(c1, t1) else out(c2, t2)

Exercise
Extend the folding algorithm with a rule allowing to handle processes
with let bindings.

32

Semantics of Terms

Semantics of Terms

We showed how to represent protocol execution, on some fixed trace of
observables tr, as a sequence of terms.

Intuitively, the terms corresponds to PTIME-computable bitstring
distributions.

Example

If ⟨_ , _⟩ is the concatenation, and samplings are done uniformly at
random among bitstrings of length η ∈ N, then folding:

ν n0, ν n1, out(c, ⟨n0 , ⟨00 , n1⟩⟩) yields ⟨n0 , ⟨00 , n1⟩⟩

which represent a distribution over bitstrings of length 2 · η + 2, where
all bits are sampled uniformly and independently, except for the bits at
positions η and η + 1, which are always 0.

33

Semantics of Terms

We interpret t ∈ T (S) as a Probabilistic Polynomial-time Turing
machine (PPTM), with:

• a working tape (also used as input tape);

• two read-only tapes ρ = (ρa, ρh) for adversary and honest
randomness.

We let D be the set of such machines.

� The machine must be polynomial in the size of its input on the
working tape only.

34

Terms Interpretation

The interpretation JtKM ∈ D of a term t is parameterized by a model M
which provides:

• the set of random tapes TM,η = T a
M,η × T h

M,η, where T a
M,η and T h

M,η

are finite same-length set of bit-strings.
We equip it with the uniform probability measure.
(T a

M,η for the adversary, T h
M,η for honest functions)

• the semantics L·MM of symbols in S (details on next slides).

We may omit M when it is clear from context.

We define the machine JtKM ∈ D, by defining its behavior JtKη,ρM for every
η ∈ N and pairs of random tapes ρ = (ρa, ρh) ∈ TM,η.

35

Terms Interpretation: Function Symbols

Function symbols interpretations is just composition.

For function symbols in f ∈ F , we simply apply Lf MM:

Jf (t1, . . . , tn)K
η,ρ
M

def
= Lf MM(1η, Jt1K

η,ρ
M , . . . , JtnK

η,ρ
M)

Adversarial function symbols g ∈ G also have access to ρa:

Jg(t1, . . . , tn)K
η,ρ
M

def
= LgMM(1η, Jt1K

η,ρ
M , . . . , JtnK

η,ρ
M , ρa)

Restrictions. Lf MM and LgMM are:

• PTIME-computable;

• deterministic (all randomness must come explicitly, from ρ).

36

Terms Interpretation: Variables and Names

The interpretation LxMM of a variable x ∈ X is an arbitrary machine
in D. Then:

JxKη,ρM

def
= LxMM(1η, ρ).

Names n ∈ G are interpreted as uniform random samplings among
bitstrings of length η, extracted from ρh:

JnKη,ρM

def
= LnMM(1η, ρh)

For every pair of different names n0, n1, we require that Ln0MM and Ln1MM
extracts disjoint parts of ρh.
� Hence different names are independent random samplings.

37

Terms Interpretation: Builtins

We force the interpretation of some function symbols.

• if_then_else_ is interpreted as branching:

Jif b then t1 else t2K
η,ρ
M

def
=

Jt1K
η,ρ
M if Jt1K

η,ρ
M = 1

Jt2K
η,ρ
M otherwise

• _ .
= _ is interpreted as an equality test:

Jt1
.
= t2K

η,ρ
M

def
=

1 if Jt1K
η,ρ
M = Jt2K

η,ρ
M

0 otherwise

Similarly, we force the interpretations of
.
∧,

.
∨, .→, true, false.

38

Terms Interpretation: Modeling and Randomness

̸= in how randomness is sampled:

• In the “real-world” , the adversary A samples randomness on-the-fly,
as needed.
⇒ possibly P(η) random bits, where P is the (polynomial)
running-time of A.

• In the logic, we restrict TM,η = T a
M,η × T h

M,η to be finite and fixed
by M.
⇒ all randomness sampled eagerly according to M, independently of
the adversary A.

This ̸= of behaviors is not an issue, i.e. the logic can soundly model
real-world adversaries:

• Indeed, for any adversary A, there exists a model M with enough
randomness. 39

A First-Order Logic for
Indistinguishability

A First-Order Logic for Indistinguishability

We now present a logic, to state (and later prove) properties about
bitstring distributions.

This is a first-order logic with a predicate ∼1 representing
computational indistinguishability.

Φ := ⊤ | ⊥
| Φ ∧ Φ | Φ ∨ Φ | Φ → Φ | ¬Φ
| ∀x.Φ | ∃x.Φ (x ∈ X)

| t1, . . . , tn ∼n tn+1, . . . , t2n (t1, . . . , t2n ∈ T (S))

Remark: we use
.
∧,

.
∨, .→ in for the boolean function symbols in terms, to

avoid confusion with the boolean connectives in formulas.
1Actually, one predicate ∼n of arity 2n for every n ∈ N.

40

Semantics of the Logic

The logic has a standard FO semantics, using D as interpretation
domain and interpreting ∼ as computational indistinguishability.

The satisfaction M |= Φ of Φ in M is as expected for boolean
connective and FO quantifiers. E.g.:

M |= ⊤ M |= Φ ∧Ψ if M |= Φ and M |= Ψ

M |= ¬Φ if not M |= Φ M |= ∀x.Φ if ∀m ∈ D,M[x 7→ m] |= Φ

41

Semantics of the Logic

Finally, ∼n is interpreted as computational indistinguishability.

M |= t1, . . . , tn ∼n s1, . . . , sn

if, for every PPTM A with a n + 1 input (and working) tapes, and a
single random tape:∣∣∣∣∣ Prρ (A(1η, (JtiK

η,ρ
M)1≤i≤n, ρa) = 1)

− Prρ (A(1η, (JsiK
η,ρ
M)1≤i≤n, ρa) = 1)

∣∣∣∣∣ (⋆)

is a negligible function of η.

The quantity in (⋆) is called the advantage of A against the left/right
game t1, . . . , tn ∼n s1, . . . , sn

42

Negligible Functions

A function f (η) is negligible if it is asymptotically smaller than the
inverse of any polynomial, i.e.:

∀c ∈ N,∃N ∈ N s.t. ∀n ≥ N, f (n) ≤ 1
nc

Example
Let f be the function defined by:

f (η)
def
= Prρ

(
Jn0Kη,ρ = Jn1Kη,ρ

)
If n0 ̸≡ n1, then f (η) = 1

2η , and f is negligible.

43

Satisfiability and Validity

A formula Φ is satisfied by a model M when M |= Φ.

Φ is valid, denoted by |= Φ, if it is satisfied by every model.

Φ is C-valid if it is satisfied by every model M ∈ C.

44

Validity: Exercise

Exercise
Which of the formulas below are valid? Which are not?

̸|=

true ∼ false

|=

n0 ∼ n0

|=

n0 ∼ n1

|=

n0
.
= n1 ∼ false

̸|=

n0, n0 ∼ n0, n1

|=

f (n0) ∼ f (n1) where f ∈ F ∪ G

̸|=

π1(⟨n0 , n1⟩)
.
= n0 ∼ true

45

Validity: Exercise

Exercise
Which of the formulas below are valid? Which are not?

̸|= true ∼ false |= n0 ∼ n0 |= n0 ∼ n1 |= n0
.
= n1 ∼ false

̸|= n0, n0 ∼ n0, n1 |= f (n0) ∼ f (n1) where f ∈ F ∪ G

̸|= π1(⟨n0 , n1⟩)
.
= n0 ∼ true

45

Protocol Indistinguishability

P and Q are indistinguishable, written P ≈ Q, if for any τ :

|= fold(P, τ) ∼ fold(Q, τ)

Remark
While there are countably many observable traces τ , the set of foldings
of a protocol P is always finite:2∣∣{fold(P, τ) | τ

}∣∣ < +∞

2If we remove trailing sequences of error terms.

46

Protocol Indistinguishability: Exercise

Exercise
Informally, determine which of the following protocols
indistinguishabilities hold, and under what assumptions:

out(c, t1) ≈ out(c, t2) out(c, t) ≈ null in(c, x) ≈ null

out(c, t) ≈ if b then out(c, t1) else out(c, t2)

out(c, t) ≈ if b then out(c, t) else out(c0, t0)

47

Structural Rules

Rules: Soundness

A rule:
ϕ1 ... ϕn

ϕ

is sound if ϕ is valid whenever ϕ1, . . . , ϕn are valid.

Example
y ∼ x
x ∼ y is sound

These are typically structural rules, which are valid in all models.

48

Structural Rules

Computational indistinguishability is an equivalence relation:

u⃗ ∼ u⃗
Refl v⃗ ∼ u⃗

u⃗ ∼ v⃗
Sym u⃗ ∼ w⃗ w⃗ ∼ v⃗

u⃗ ∼ v⃗
Trans

Permutation. If π is a permutation of {1, . . . , n} then:

uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)
u1, . . . , un ∼ v1, . . . , vn Perm

49

Structural Rules

Alpha-renaming.

u⃗ ∼ u⃗α
α-equ

when α is an injective renaming of names in N .

Restriction. The adversary can throw away some values:

u⃗ , s ∼ v⃗ , t

u⃗ ∼ v⃗
Restr

50

Structural Rules

Duplication. Giving twice the same value to the adversary is useless:

u⃗ , s ∼ v⃗ , t

u⃗ , s, s ∼ v⃗ , t, t
Dup

Function application. If the arguments of a function are
indistinguishable, so is the image:

u⃗1, v⃗1 ∼ u⃗1, v⃗2

f (u⃗1), v⃗1 ∼ f (u⃗2), v⃗2
FA

where f ∈ F ∪ G.

51

Structural Rules: Proof of Function Application

u⃗1, v⃗1 ∼ u⃗1, v⃗2

f (u⃗1), v⃗1 ∼ f (u⃗2), v⃗2
FA

Proof. The proof is by contrapositive. Assume M and A s.t. its advantage
against:

f (u⃗1), v⃗1 ∼ f (u⃗2), v⃗2 (†)
is not negligible. Let B be the distinguisher defined by, for any bitstrings w⃗u, w⃗v

and tape ρa:

B(1η, w⃗u, w⃗v , ρa)
def
= A(1η, Lf MM(1η, w⃗u), w⃗v , ρa)

B is a PPTM since A is and Lf MM can be evaluated in pol. time. Then:

B(1η, Ju⃗iKη,ρM , Jv⃗iK
η,ρ
M , ρa)

= A(1η, Jf (u⃗i)K
η,ρ
M , Jv⃗iK

η,ρ
M , ρa)

(i ∈ {1, 2})

Hence the advantage of B in distinguishing u⃗1, v⃗1 ∼ u⃗1, v⃗2 is exactly the
advantage of A in distinguishing (†). □

52

Structural Rules

Case Study. We can do case disjunction over branching terms:

w⃗1, b0, u0 ∼ w⃗1, b1, u1 w⃗0, b0, v0 ∼ w⃗1, b1, v1

w⃗0, if b0 then u0 else v0 ∼ w⃗1, if b1 then u1 else v1
CS

53

Structural Rules: Proof of Case Study

b0, u0 ∼ b1, u1 b0, v0 ∼ b1, v1

t0 ≡ if b0 then u0 else v0 ∼ t1 ≡ if b1 then u1 else v1
CS

Proof. (by contrapositive) Assume M and A s.t. its advantage against:

if b0 then u0 else v0 ∼ if b1 then u1 else v1 (†)

is non-negligible. Let B⊤ be the distinguisher:

B⊤(1η,wb,w , ρa)
def
=

{
A(1η,w , ρa) if wb = 1

0 otherwise

B⊤ is trivially a PPTM. Moreover, for any i ∈ {1, 2}:

Prρ
(
B⊤(1η, JbiK

η,ρ
M , JuiK

η,ρ
M , ρa) = 1

)
= Prρ

(
A(1η, JtiK

η,ρ
M , ρa) = 1 ∧ JbiK

η,ρ
M = 1

)}
p⊤,i

54

Structural Rules: Proof of Case Study (continued)

Hence the advantage of B⊤ against b0, u0 ∼ b1, u1 is |p⊤,1 − p⊤,0|.

Similarly, let B⊥ be the distinguisher:

B⊥(1η,wb,w , ρa)
def
=

{
A(1η,w , ρa) if wb ̸= 1

0 otherwise

By an identical reasoning, we get that the advantage of B⊥ against
b0, v0 ∼ b1, v1 is |p⊥,1 − p⊥,0|, where p⊥,i is:

Prρ
(
A(1η, JtiK

η,ρ
M , ρa) = 1 ∧ JbiK

η,ρ
M ̸= 1

)

55

Structural Rules: Proof of Case Study (continued)

The advantage of A against t0 ∼ t1 is, by partitioning and triangular
inequality:

|(p⊤,1 + p⊥,1)− (p⊤,0 + p⊥,1)| ≤ |p⊤,1 − p⊤,0|+ |p⊥,1 − p⊥,1|

Since A’s advantage is non-negligible, at least one of the two quantity
above is non-negligible. Hence either B⊤ or B⊥ has a non-negligible
advantage against a premise of the CS rule. □.

56

Counter-Examples

Remark that b is necessary in CS

w⃗1, b0, u0 ∼ w⃗1, b1, u1 w⃗0, b0, v0 ∼ w⃗1, b1, v1

w⃗0, if b0 then u0 else v0 ∼ w⃗1, if b1 then u1 else v1
CS

We have:

|= ⟨0 , n0⟩ ∼ ⟨0 , n0⟩ |= ⟨1 , n0⟩ ∼ ⟨1 , n0⟩ |= even(n0) ∼ odd(n0)

But:

̸|=
if even(n0) then ⟨0 , n0⟩ else ⟨1 , n0⟩

∼ if odd(n0) then ⟨0 , n0⟩ else ⟨1 , n0⟩

Why is the later formula not valid?

57

Structural Rules: Equality Reasoning

If |= (s
.
= t) ∼ true, then s and t are equal with overwhelming

probability. Hence we can safely replace s by t in any context.

If ϕ is a term of type bool, let [ϕ] def
= ϕ ∼ true.

⇒ i.e. ϕ is overwhelmingly true (equivalently, ¬ϕ is negligible).

Then the following rule is sound:

u⃗ , t ∼ v⃗ [s
.
= t]

u⃗ , s ∼ v⃗
R

58

Structural Rules: Equality Reasoning

Proof
First, for any model M, we have:

M |= [ϕ] iff. Prρ
(
JϕKη,ρM

)
is overwhelming.

• Left-to-right:
M |= [ϕ]

⇒ ∀A ∈ D.
∣∣Prρ (A(1η, JϕKη,ρM , ρa)

)
− Prρ

(
A(1η, JtrueKη,ρM , ρa)

)∣∣ ∈ negl(η)

⇒
∣∣Prρ (JϕKη,ρM

)
− 1
)∣∣ ∈ negl(η) (taking A(1η,w , ρa) = w)

⇒ Prρ
(
JϕKη,ρM

)
∈ o.w.(η)

• Right-to-left, assume Prρ
(
JϕKη,ρM

)
∈ o.w.(η) and take A ∈ D:∣∣Prρ (A(1η, JϕKη,ρM , ρa)
)
− Prρ

(
A(1η, JtrueKη,ρM , ρa)

)∣∣
≤ Prρ

(
¬JϕKη,ρM

)
(up-to-bad)

∈ negl(η)

59

Structural Rules: Equality Reasoning

This allows to conclude immediately since:

|Pr(A(Ju⃗, tK))− Pr(A(Jv⃗ K))|
≤ |Pr(A(Ju⃗, sK))− Pr(A(Jv⃗ K))|+ Pr (JsK ̸= JtK) (up-to-bad)

Reminder: up-to-bad argument
If B,E ,E ′ are events such that:

(E ∧ ¬B) ⇔ (E ′ ∧ ¬B), (⋄)

then |Pr(E)− Pr(E ′)| ≤ Pr(B).

Indeed, by triangular inequality and total probabilities:

|Pr(E)− Pr(E ′)| ≤ |Pr(E ∧ B)− Pr(E ′ ∧ B)|+ |Pr(E ∧ ¬B)− Pr(E ′ ∧ ¬B)|

We conclude by observing that:

• |Pr(E ∧ ¬B)− Pr(E ′ ∧ ¬B)| = 0 by (⋄);

• |Pr(E ∧ B)− Pr(E ′ ∧ B)| ≤ max(Pr(E ∧ B),Pr(E ′ ∧ B)) ≤ Pr(B).
60

Structural Rules: Generic Equality Reasoning

To prove |= [s
.
= t] (or more generally |= [ϕ]), we use the rule:

Ath ⊢Gen ϕ

[ϕ]
gen

where ⊢Gen is any sound proof system for generic mathematical
reasoning (e.g. higher-order logic).

This allows exact (i.e. non-probabilistic) mathematical reasoning.

We allow additional axioms using Ath (e.g. for if_then_else_).

Example

Ath ⊢Gen v
.
= w

.→

(
if u .

= v then u else t
.
=

if u .
= v then w else t

)

61

Structural Rules: Probabilistic Independence

Two rules exploiting the independence of bitstring distributions:

[t
.
̸= n]

=-ind
when n ̸∈ st(t)

u⃗ ∼ v⃗
u⃗ , n0 ∼ v⃗ , n1

Fresh when n0 ̸∈ st(u⃗) and n1 ̸∈ st(v⃗)

Remark
To check that the rules side-conditions hold, we require that they do not
contain free variables. Hence we actually have a countable, recursive, set
of ground rules (i.e. rule schemata).

62

Structural Rules: Probability Independence

We give the proof of the first rule:

[t
.
̸= n]

=-ind
when n ̸∈ st(t)

Proof. For any model M (we omit it below):

Prρ(Jt
.
= nKη,ρ)

= Prρ(JtKη,ρ = JnKη,ρ)

=
∑

w∈{0,1}∗ Prρ(JtKη,ρ = w ∧ JnKη,ρ = w)

=
∑

w∈{0,1}∗ Prρ(JtKη,ρ = w) · Prρ(JnKη,ρ = w)

= 1
2η ·

∑
w∈{0,1}η Prρ(JtKη,ρ = w)

=
1
2η

□

63

Structural Rules: Exercise

Exercise
Give a derivation of the following formula:

n0 ∼ if b then n0 else n1 (when n0, n1 ̸∈ st(b))

64

Implementation Rules

Rules: Soundness

A rule is C-sound if ϕ is C-valid whenever ϕ1, . . . , ϕn are C-valid.

Example

[π1⟨x , y⟩
.
= x]

is not sound, because we do not require anything on the interpretation
of π1 and the pair.

Obviously, it is Cπ-sound, where Cπ is the set of model where π1

computes the first projection of the pair ⟨_ , _⟩.

65

Implementation Assumptions

The general philosophy of the CCSA approach is to make the minimum
number of assumptions possible on the interpretations of function
symbols in a model.

Any additional necessary assumption is added through rules, which
restrict the set of model for which the formula holds (hence limit the
scope of the final security result).

Typically, this is used for:

• functional properties, which must be satisfied by the protocol
functions (e.g. the projection/pair rule).

• cryptographic hardness assumptions, which must be satisfied by
the cryptographic primitives (e.g. IND-CCA).

66

Functional Properties

Example. Equational theories for protocol functions:

• πi (⟨x1, x2⟩) = xi i ∈ {1, 2}
• dec({x}zpk(y), sk(y)) = x

• (x ⊕ y)⊕ z = x ⊕ (y ⊕ z)

• . . .

67

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of
computational security.

Cryptographic Reduction S ≤red H
If you can break the cryptographic design S, then you can break the
hardness assumption H using roughly the same time.

• We assume that H cannot be broken in a reasonable time:
▶ Low-level assumptions: D-Log, DDH, ...
▶ Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...

• Hence, S cannot be broken in a reasonable time.

68

Cryptographic Reduction

Cryptographic Reduction S ≤red H
S reduces to a hardness hypothesis H (e.g. IND-CCA, DDH) if:

∀A. ∃B. AdvηS(A) ≤ P(AdvηH(B), η)

where A and B are taken among PPTMs and P is a polynomial.

69

Cryptographic Rules

We are now going to give rules which capture some cryptographic
hardness hypotheses.

The validity of these rules will be established through a cryptographic
reduction.

• Asymmetric encryption: indistinguishability (IND-CCA1) and
key-privacy (KP-CCA1);

• Hash function: collision-resistance (CR-HK);

• MAC: unforgeability (EUF-CMA);

70

Cryptographic Rules

Asymmetric Encryption

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

• public and private key generation functions pk(_), sk(_);

• randomized3 encryption function {_}_
_;

• a decryption function dec(_,_)

It must satisfies the functional equality:

dec({x}zpk(y), sk(y)) = x

3The role of the randomization will become clear later.

71

IND-CCA1 Security

An encryption scheme is indistinguishable against chosen cipher-text
attacks (IND-CCA1) iff. for every PPTM A with access to:

• a left-right oracle Ob,n
LR (·, ·):

Ob,n
LR (m0,m1)

def
=

{mb}r
pk(n) if len(m1) = len(m2) (r fresh)

0 otherwise

• and a decryption oracle On
dec(·),

where A can call OLR once, and cannot call Odec after OLR, then:∣∣ Prn
(
AO1,n

LR ,On
dec (1η, pk(n)) = 1

)
− Prn

(
AO0,n

LR ,On
dec (1η, pk(n)) = 1

) ∣∣
is negligible in η, where n is drawn uniformly in {0, 1}η.

72

IND-CCA1 Security: Exercise

Exercise
Show that if the encryption ignore its randomness, i.e. there exists
aenc(_,_) s.t. for all x , y , r :

{x}ry = aenc(x , y)

then the encryption does not satisfy IND-CCA1.

73

IND-CCA1 Rule

Indistinguishability Against Chosen Ciphertexts Attacks
If the encryption scheme is IND-CCA1, then the ground rule:

[len(t0)
.
= len(t1)]

u⃗, {t0}r
pk(n) ∼ u⃗, {t1}r

pk(n)
ind-cca1

is sound, when:

• r does not appear in u⃗, t0, t1, i.e. r ̸∈ st(u⃗, t0, t1);

• n appears only in pk(·) or dec(_, sk(·)) positions in u⃗, t0, t1, which
we write:

n ⊑pk(·),dec(_,sk(·)) u⃗, t0, t1

74

IND-CCA1 Rule: Conditions

Definition: Positions
We write pos(t) ∈ {ϵ} ∪ N (·N)∗ the set of positions of t and t|p the
sub-term of t at position p.

Example
if t ≡ f (g(a, b), h(c)) then pos(t) = {ϵ, 0, 1, 0 · 0, 0 · 1, 1, 1 · 0} and:

t|ϵ ≡ t t|0 ≡ g(a, b) t|0·0 ≡ a t|0·1 ≡ b t|1 ≡ h(c)

t|1·0 ≡ c

75

IND-CCA1 Rule: Conditions

Definition: CCA1 Side-Condition
(n ⊑pk(·),dec(_,sk(·)) u) iff. for any p ∈ pos(u), if t|p ≡ n, either:

• p = p0 · 0 and t|p0 ≡ pk(n);

• or p = p0 · 1 · 0 and t|p0 ≡ dec(s, sk(n)).

Examples (writing ⊑ instead of ⊑pk(·),dec(_,sk(·)))

n ̸⊑ n n ⊑ pk(pk(n)) n ⊑ dec(pk(n), sk(n))

n ̸⊑ dec(sk(n), sk(n)) n ⊑ t if n ̸∈ st(t)

76

IND-CCA1 Rule: Proof

Proof sketch
Proof by contrapositive. Let M be a model, A an adversary and u⃗, t0, t1 ground
terms such that: ∣∣∣ Prρ(A(1η, Ju⃗ Kη,ρM , J{t0}r

pk(n)K
η,ρ
M , ρa)

− Prρ(A(1η, Ju⃗ Kη,ρM , J{t1}r
pk(n)K

η,ρ
M , ρa)

∣∣∣
is not negligible, and M |= [len(t0)

.
= len(t1)].

We must build a PPTM B s.t. B wins the IND-CCA1 security game.

77

IND-CCA1 Rule: Proof

Let BOb,n
LR ,On

dec(1η, Jpk(n)Kη,ρM) be the following program:

i) lazily4 samples the random tapes (ρa, ρ
′
h) where:

ρ′h := ρh[n 7→ 0, r 7→ 0]

ii) compute5:
wu⃗,wt0 ,wt1 := Ju⃗ , t0, t1K

η,ρ
M

using (ρa, ρ
′
h), Jpk(n)Kη,ρM and calls to On

dec.

iii) return 0 if len(t0)
.

̸= len(t1).

iii) otherwise, compute:

wlr := Ob,n
LR (wt0 ,wt1) = J{tb}r

pk(n)K
η,ρ
M

iv) return A(1η,wu⃗ ,wlr , ρa).
4Why do we need this?
5We describe how later.

78

IND-CCA1 Rule: Proof

Then:

Adv(A) ≤ Adv(A ∧ len(t0)
.
= len(t1)) + Pr(len(t0)

.

̸= len(t1)) (up-to-bad)

= Adv(B ∧ len(t0)
.
= len(t1)) + Pr(len(t0)

.

̸= len(t1))

= Adv(B) + Pr(len(t0)
.

̸= len(t1))

Hence B’s advantage against IND-CCA1 is at least A’s advantage against:

u⃗, {t0}r
pk(n) ∼ u⃗, {t1}r

pk(n) (†)

up-to a negligible quantity (the probability that len(t0)
.

̸= len(t1)).

Since (†) is assumed non-negligible, so is B’s advantage.

79

IND-CCA1 Rule: Proof

It only remains to explain how to do step ii) in polynomial time.

We prove by structural induction that for any subterm s of u⃗ , t0, t1:

• either s is a forbidden subterm n or sk(n);

• or B can compute ws := JsKη,ρM in polynomial time.

Assuming this holds, we conclude by observing that ind-cca1 side conditions
guarantees that u⃗ , t0, t1 are not forbidden subterms.

80

IND-CCA1 Rule: Proof

Induction. We are in one of the following cases:

• s ∈ X is not possible, since u⃗, t0, t1 are ground.

• s ∈ {r, n} are forbidden, hence the induction hypothesis holds.

• s ∈ N\{r, n}, then B computes s directly from ρ′h = ρh[n 7→ 0, r 7→ 0].

• s ≡ f (t1, . . . , tn) and t1, . . . , tn are not forbidden. Then, by induction
hypothesis, B can compute wi := JtiK

η,ρ
M for any 1 ≤ i ≤ n. Then B simply

computes:

ws :=

{
Lf MM(1η,w1, . . . ,wn) if f ∈ F
Lf MM(1η,w1, . . . ,wn, ρa) if f ∈ G

81

IND-CCA1 Rule: Proof

case disjunction (continued):

• s ≡ f (t1, . . . , tn) and at least one of the ti is forbidden.

Using ind-cca1 side conditions, either s is either pk(n) or dec(m, sk(n)).

The first case is immediate since B receives Jpk(n)Kη,ρM as argument.

For the second case, from ind-cca1 side conditions, we know that m ̸= n
and m ̸= sk(n). Hence, by induction hypothesis, B can compute
wm = JmKη,ρM . We conclude using:

ws := On
dec(wm) □

82

IND-CCA1 Rule: Exercise

Exercise
Which of the following formulas can be proven using ind-cca1?

pk(n), {0}r
pk(n) ∼ pk(n), {1}r

pk(n)

pk(n), {0}r
pk(n), {0}

r0
pk(n) ∼ pk(n), {1}r

pk(n), {0}
r0
pk(n)

pk(n), {0}r
pk(n), {0}

r
pk(n) ∼ pk(n), {0}r

pk(n), {1}
r
pk(n)

pk(n), {0}r
pk(n) ∼ pk(n), {sk(n)}r

pk(n)

83

IND-CCA1 Rule: Exercise

Exercise (Hybrid Argument)
Prove the following formula using ind-cca1:

{0}r0
pk(n), {1}

r1
pk(n), . . . , {n}

rn
pk(n) ∼ {0}r0

pk(n), {0}
r1
pk(n), . . . , {0}

rn
pk(n)

Note: we assume that all plain-texts above have the same length (e.g.
they are all represented over L bits, for L large enough)

84

KP-CCA1 Security

A scheme provides key privacy against chosen cipher-text attacks
(KP-CCA1) iff for every PPTM A with access to:

• a left-right encryption oracle Ob,n0,n1
LR (·):

Ob,n0,n1
LR (m)

def
= {m}r

pk(nb)
(r fresh)

• and two decryption oracles On0
dec(·) and On1

dec(·),

where A can call OLR once, and cannot call the decryption oracles after
OLR, then:∣∣∣∣∣∣ Prn0,n1

(
AO1,n0,n1

LR ,On0
dec,O

n1
dec (1η, pk(n0), pk(n1)) = 1

)
− Prn0,n1

(
AO0,n0,n1

LR ,On0
dec,O

n1
dec (1η, pk(n0), pk(n1)) = 1

)
∣∣∣∣∣∣

is negligible in η, where n0, n1 are drawn in {0, 1}η.

85

Security Notions: Exercise

Exercise
Show that IND-CCA1 ̸⇒ KP-CCA1 and KP-CCA1 ̸⇒ IND-CCA1.

86

KP-CCA1 Rule

Key Privacy Against Chosen Ciphertexts Attacks
If the encryption scheme is KP-CCA1, then the ground rule:

u⃗ , {t}r
pk(n0)

∼ u⃗ , {t}r
pk(n1)

kp-cca1

is sound, when:

• r does not appear in u⃗ , t;

• n0, n1 appear only in pk(·) or dec(_, sk(·)) positions in u⃗ , t.

The proof is similar to the ind-cca1 soundness proof. We omit it.

87

References i

[1] G. Bana and H. Comon-Lundh.
A computationally complete symbolic attacker for equivalence
properties.
In CCS, pages 609–620. ACM, 2014.

	Introduction
	Protocols as Sequences of Terms
	Protocol Inputs
	Protocol Branching

	Folding
	Folding Algorithm

	Semantics of Terms
	A First-Order Logic for Indistinguishability
	Structural Rules
	Implementation Rules
	Cryptographic Rules
	Asymmetric Encryption

	Appendix

