
MPRI 2.30: Proofs of Security Protocols

2. Security Proofs

Adrien Koutsos

2023/2024

Security Proof

Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

• IX is the initiator with identity X;

• SX is the server, accepting messages from X;

The adversary must not be able to distinguish IA | SA from IC | SA.

IX : ν r. ν nI. out(cI, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.
= pkX

then out(cS, {⟨π2(d) , nS⟩}r0
pkX

)

else out(cS, {0}r0
pkX

)

We assume the encryption is IND-CCA1 and KP-CCA1.

2

Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the plain-text.
Hence, since len(⟨nI , nS⟩) ̸= len(0), there is an attack:

̸|= {⟨nI , nS⟩}r0
pkA

∼ {0}r0
pkC

even if the encryption is IND-CCA1 and KP-CCA1.

3

Private Authentication: Anonymity

We fix the protocol by:

• adding a length check;

• using a decoy message of the correct length.

The PA Protocol, v3

IX : ν r. ν nI. out(cI, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.
= pkX

.
∧ len(π2(d))

.
= len(nS)

then out(cS, {⟨π2(d) , nS⟩}r0
pkX

)

else out(cS, {⟨nS , nS⟩}r0
pkX

)

4

Private Authentication: Anonymity

IX : ν r. ν nI. out(cI, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.
= pkX

.
∧ len(π2(d))

.
= len(nS)

then out(cS, {⟨π2(d) , nS⟩}r0
pkX

)

else out(cS, {⟨nS , nS⟩}r0
pkX

)

To prove IA | SA ≈ IC | SA, we have several traces:
in(cI), out(cI), out(cS) in(cI), out(cS), out(cI)

out(cI), in(cI), out(cS) out(cI), out(cS), in(cI)

out(cS), in(cI), out(cI) out(cS), out(cS), in(cI)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

5

Private Authentication: Anonymity

IX : ν r. ν nI. out(cI, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(cI, x). if π1(d)
.
= pkX

.
∧ len(π2(d))

.
= len(nS)

then out(cS, {⟨π2(d) , nS⟩}r0
pkX

)

else out(cS, {⟨nS , nS⟩}r0
pkX

)

To prove IA | SA ≈ IC | SA, we have several traces:
in(cI), out(cI), out(cS) in(cI), out(cS), out(cI)

out(cI), in(cI), out(cS) out(cI), out(cS), in(cI)

out(cS), in(cI), out(cI) out(cS), out(cS), in(cI)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

5

Private Authentication: Anonymity

We must prove that:

outA1 , outA,A2 [outA1] ∼ outC1 , outA,A2 [outC1]

where:

outX1 ≡ {⟨pkX , nI⟩}r
pkS

outX,Y2 [M] ≡ if π1(d [M])
.
= pkX

.
∧ len(π2(d [M]))

.
= len(nS)

then {⟨π2(d [M]) , nS⟩}r0
pkY

else {⟨nS , nS⟩}r0
pkY

d [M] ≡ dec(att0([M]), skS)

6

Private Authentication: Anonymity

First, we push the branching under the encryption:

outA1 , outA,A2 [outA1] ∼ outC1 , outA,A2 [outC1] outA,A2 [outC1] = outA,A2 [outC1]

outA1 , outA,A2 [outA1] ∼ outC1 , outA,A2 [outC1]
R

where:

outX,Y2 [M] ≡


if π1(d [M])

.
= pkX

.
∧ len(π2(d [M]))

.
= len(nS)

then ⟨π2(d [M]) , nS⟩
else ⟨nS , nS⟩


r0

pkY

We let mX[M] be the content of the encryption above.

7

Private Authentication: Anonymity

Then, we use KP-CCA1 to change the encryption key:

outA1 , outA,A2 [outA1]

∼ outC1 , outA,C2 [outC1]

outC1 , outA,C2 [outC1]

∼ outC1 , outA,A2 [outC1]

kp-cca1

outA1 , outA,A2 [outA1] ∼ outC1 , outA,A2 [outC1]
Trans

since:

• the encryption randomness r0 is correctly used;

• the key randomness nA and nB appear only in pk(·) and dec(_, sk(·))
positions.

8

Private Authentication: Anonymity

Then, we use IND-CCA1 to change the encryption content:

outA1 , outA,A2 [outA1]

∼ outC1 , outC,C2 [outC1]

[
len(mC[outC1])

.
= len(mA[outA1])

]
outC1 , outC,C2 [outA1]

∼ outC1 , outA,C2 [outC1]

ind-cca1

outA1 , outA,A2 [outA1] ∼ outC1 , outA,C2 [outC1]
Trans

since:

• the encryption randomness r0 is correctly used;

• the key randomness nC appear only in pk(·) and dec(_, sk(·)) positions.

9

Private Authentication: Anonymity

Recall that:
mX[M] ≡ if π1(d [M])

.
= pkX

.
∧ len(π2(d [M]))

.
= len(nS)

then ⟨π2(d [M]) , nS⟩
else ⟨nS , nS⟩

Then:
Ath ⊢Gen len(mC[outC1])

.
= len(mA[outA1])[

len(mC[outC1])
.
= len(mA[outA1])

] gen

if Ath contains the axiom1:

∀x , y .len(⟨x , y⟩) = c⟨_ ,_⟩(len(x), len(y))

where c⟨_ ,_⟩(·, ·) is left unspecified.

1This axiom must be satisfied by the protocol implementation for the security proof
to apply.

10

Private Authentication: Anonymity

Then, we α-rename the key randomness nC, rewrite back the encryption, and
conclude.

outA1 , outA,A2 [outA1] ∼ outC1 , outC,C2 [outC1]
α-equ + R + Refl

11

Privacy

Privacy

We proved anonymity of the Private Authentication protocol, which we
defined as:

IA | SA ≈ IC | SA

But does this really guarantees that this protocol protects the privacy of
its users?
⇒ No, because of linkability attacks

12

Linkability Attacks

Consider the following authentication protocol, called KCL, between a
reader R and a tag TX with identity X:

R : ν nR. out(cR, nR)

TX : ν nT. in(cR, x). out(cI, ⟨X ⊕ nT , nT ⊕ H(x, kX)⟩)

Assuming H is a PRF (Pseudo-Random Function), and ⊕ is the
exclusive-or, we can prove that KCL provides anonymity.

TA | R ≈ TB | R

13

Linkability Attacks

But there are privacy attacks against KCL, using two sessions:

1 : E →TA : nR E →TA : nR

2 : TA →E : ⟨A ⊕ nT , nT ⊕ H(nR , kA)⟩ TA →E : ⟨A ⊕ nT , nT ⊕ H(nR , kA)⟩

3 : E →TA : nR E →TB : nR

4 : TA →E : ⟨A ⊕ n′
T , n′

T ⊕ H(nR, kA)⟩ TB →E : ⟨B ⊕ n′
T , n′

T ⊕ H(nR, kB)⟩

Let t2 and t4 be the outputs of T. Then, on the left scenario:

π2(t2)⊕ π2(t4) =
(
nT ⊕ H(nR , kA)

)
⊕
(
n′T ⊕ H(nR, kA)

)
= nT ⊕ n′T
= π1(t2)⊕ π1(t4)

The same equality check will almost never hold on the right, under
reasonable assumption on H.

14

Linkability Attacks

We just saw an attack against:(
TA | R

)
|
(
TA | R

)
≈
(
TA | R

)
|
(
TB | R

)

15

Unlinkability

To prevent such attacks, we need to prove a stronger property, called
unlinkability. It requires to prove the equivalence between:

• a real-world, where each agent can run many sessions:

ν k⃗0, . . . , k⃗N . !id≤N !sid≤M P (⃗kid)

• and an ideal-world, where each agent run at most a single session:

ν k⃗0,0, . . . , k⃗N,M . !id≤N !sid≤M P (⃗kid,sid)

Remark
The processes above are parameterized by N,M ∈ N. Unlinkability holds
if the equivalence holds for any N,M.

For the sack of simplicity, we omit channel names.

16

Unlinkability

Example An unlinkability scenario.

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

17

Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any
information on identities.
⇒ hence no link can be efficiently found in the real word.

18

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.
The processes P (⃗kS, k⃗U) and S (⃗kS, k⃗U) are parameterized by:

• some global key material k⃗S;

• and some user-specific key material k⃗U.

Then, we require that:

ν k⃗S. ν k⃗0, . . . , k⃗N . !id≤N !sid≤M

(
P (⃗kS, k⃗id) | S (⃗kS, k⃗id)

)
≈ ν k⃗S. ν k⃗0,0, . . . , k⃗N,M . !id≤N !sid≤M

(
P (⃗kS, k⃗idsid) | S (⃗kS, k⃗idsid)

)

19

Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process P (⃗kS, k⃗U).
The server S (⃗kS, k⃗U1 , . . . , k⃗UM

) is parameterized by:

• some global key material k⃗S;

• all users key material k⃗U1 , . . . , k⃗UM
.

The we require that:

ν k⃗S. ν k⃗0, . . . , k⃗N .
(
!id≤N !sid≤M P (⃗kS, k⃗id)

)
|(

!≤L S (⃗kS, k⃗0, . . . , k⃗N)
)

≈ ν k⃗S. ν k⃗0,0, . . . , k⃗N,M .
(
!id≤N !sid≤M P (⃗kS, k⃗id,sid)

)
|(

!≤L S (⃗kS, k⃗0,0, . . . , k⃗N,M)
)

20

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property that does
not often hold.

Example
Assume S leaks whether it succeeded or not. This models the fact
that the adversary can distinguish success from failure:

• e.g. because a door opens, which can be observed;

• or because success is followed by further communication, while
failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:

(P (⃗k) | S (⃗k)) | (P (⃗k) | S (⃗k)) ≈ (P (⃗k0) | S (⃗k0)) | (P (⃗k1) | S (⃗k1))

✓ ✗
21

Private Authentication: Unlinkability

Private Authentication
We parameterize the initiator and server in PA by the key material:

I(kS, kX) : ν r. ν nI. out(cI, {⟨pkX , nI⟩}r
pkS

)

S(kS, kX) : ν r0. ν nS. in(cI, x). if π1(d)
.
= pkX

.
∧ len(π2(d))

.
= len(nS)

then out(cS, {⟨π2(d) , nS⟩}r0
pkX

)

else out(cS, {⟨nS , nS⟩}r0
pkX

)

where skX ≡ sk(kX), pkX ≡ pk(kX) and d ≡ dec(x , skS).

22

Private Authentication: Unlinkability

Theorem
Private Authentication, v3 satisfies the unlinkability property (with
user-specific server). I.e., for all N,M ∈ N:

ν kS. ν k0, . . . , kN . !id≤N !sid≤M

(
I (kS, kid) | S(kS, kid)

)
≈ ν kS. ν k0,0, . . . , kN,M . !id≤N !sid≤M

(
I (kS, kidsid) | S(kS, kidsid)

)
Proof sketch
For all N,M, for all trace of observables tr, we show that:

|= fold(PL, tr) ∼ fold(PR, tr)

by induction over tr, where PL and PR are, resp., the left and right protocols
in the theorem above.

For details, see the Squirrel file private-authentication-many.sp.

23

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: reachability and
correspondance properties (e.g. authentication)

These are properties on a single protocol, often expressed as a temporal
property on events of the protocol. E.g.

If Alice accepts Bob at time τ then Bob must have initiated a
session with Alice at time τ ′ < τ .

To formalize the cryptographic arguments proving such properties, we
will design a specialized framework and proof system.

24

Hash-Lock

The Hash-Lock Protocol
Let I be a finite set of identities.

T(A, i) : ν nT,i. in(cTA,i, x). out(cTA,i, ⟨nT,i , H(⟨x , nT,i⟩, kA)⟩)
R(j) : ν nR,j. in(cR1

j ,_). out(cR1
j , nR,j).

in(cR2
j , y).

if
∨̇

A∈I π2(y)
.
= H(⟨nR,j , π1(y)⟩, kA)

then out(cR2
j , ok)

else out(cR2
j , ko)

H
as

h-
Lo

ck

We consider N sessions of each tag, and M sessions of the reader:

ν (kA)A∈I .
(
!A∈I !i<N T(A, i)

)
|
(
!j<M R(j)

)
Remark: we let the adversary do the scheduling between parties.

25

Notations

• we let ≤ be the prefix relation over observable traces:

tr0 ≤ tr1 iff. ∃tr′. tr1 = tr0; tr′

• tr : c states that tr ends with an output on c:

tr : c iff. ∃tr′. tr = tr′; out(c)

Remark: tr : c ≤ tr ′ means tr : c ∧ tr ≤ tr ′.

26

POR Result (Assumed)

We let Tio be the set of observable traces where all outputs are always
directly preceded by an input on the same channel, i.e.:

tr ∈ Tio iff. ∀tr′ : c ≤ tr. ∃tr′′. tr′ = tr′′; in(c); out(c)

Assumption: POR
We admit that to analyze the Hash-Lock protocol, it is sufficient to
consider only observables traces in Tio.

27

Authentication

Informal Definition
If the j-th session of R accepts believing it talked to tag A, then:

• there exists a session i of tag A properly interleaved with the j-th
session of R ;

• messages have been properly forwarded between the i-th session
of tag A and the j-th session of R .

 The second condition is often relaxed to require only a partial correspondence

between messages.

28

Authentication of the Hash-Lock Protocol

For any tr : cR2
j ∈ Tio, we let acceptA@tr be a term (defined later)

stating that the reader accepts the tag A at the end of the trace tr.

29

Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all tr ∈ Tio, tr1 : c
R1
j

and tr3 : c
R2
j such that:

tr1 < tr3 ≤ tr and acceptA@tr3

there must exists tr2 : cTA,i such that tr1 ≤ tr2 ≤ tr3 and:

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

Graphically:

•
tr1 : c

R1
j

•
tr2 : cTA,i

•
tr3 : c

R2
j

acceptA@tr3

out@tr1 = in@tr2 out@tr2 = in@tr3

30

Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the
Hash-Lock protocol?

• define the (generic) terms representing the output, input and
acceptance, which we need to state the property;

• have a set of sound one-sided rules, to do the proof.

31

Authentication Protocols

Macro Terms

Notations: Predecessor

For any observable trace tr and observable α, we let:

pred(tr;α) def
= tr

32

Macro Terms

We now define some generic terms by induction of the observable
trace tr.

Let P be a action-deterministic protocol and tr ∈ Tio with j inputs. If
fold(P, tr) = t1, . . . , tn then we let:

outP@tr
def
=

{
tn if ∃c. tr : c
empty otherwise

frameP@tr
def
=

{
⟨frameP@pred(tr) , outP@tr⟩ if tr ̸= ϵ

empty if tr = ϵ

inP@(tr; in(c); out(c)) def
=

{
attj(frameP@tr) if tr ̸= ϵ

att0() if tr = ϵ

Remark: we omit P when it is clear from context.

 The restriction to traces in Tio simplifies the definition of inP@tr.
33

Macro Terms

frameP@tr contains all the information known to an adversary against
P after the execution of tr.

More precisely, we can show that for all action-deterministic processes P
and Q, for all tr ∈ Tio:

M |= fold(P, tr) ∼ fold(Q, tr) iff. M |= frameP@tr ∼ frameQ@tr

for any M satisfying:

[π1⟨x , y⟩
.
= x] [π2⟨x , y⟩

.
= y]

Proof
⇒ apply FA to build frameR@tr from fold(R, tr) for R ∈ {P,Q}
⇐ apply FA + Dup + the pair injectivity rules to compute all terms in
fold(R, tr) from frameR@tr for R ∈ {P,Q}

34

Hash-Lock: Accept

T(A, i) : ν nT,i. in(cTA,i, x). out(cTA,i, ⟨nT,i , H(⟨x , nT,i⟩, kA)⟩)

R(j) : ν nR,j. in(cR1j ,_). out(cR1j , nR,j).

in(cR2j , y).

if
∨̇

A∈I π2(y)
.
= H(⟨nR,j , π1(y)⟩, kA)

then out(cR2j , ok)

else out(cR2j , ko)

H
as

h-
Lo

ck

To be able to state some authentication property of Hash-Lock, we need
an additional macro. For all tr : cR2

j ∈ Tio, we let:

acceptA@tr def
= π2(in@tr)

.
= H(⟨nR,j , π1(in@tr)⟩, kA)

 We made sure that all names in the protocol are unique, so that they
don’t have to be renamed during the folding.

35

Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides authentication:

∀A ∈ I. ∀tr ∈ Tio. ∀tr1 : c
R1
j , tr3 : c

R2
j s.t. tr1 < tr3 ≤ tr,

acceptA@tr3
.→

∨̇
tr2:cTA,i

tr1≤tr2≤tr3

out@tr1
.
= in@tr2

.
∧

out@tr2
.
= in@tr3

∼ true

This kind of one-sided formulas are called reachability formulas.
Proving the validity of such formulas requires additional rules, to allow
for propositional reasoning.

36

Authentication Protocols

Reachability Proof System

Reachability Judgements

We define a judgments dedicated to reachability correspondance
properties.

Definition
A reachability judgement Γ ⊢ t comprises a sequence of terms
Γ = t1

.→ · · · .→ tn and a (boolean) term t.

Γ ⊢ t is valid if and only if the following formula is valid:

[t1
.→ · · · .→ tn

.→ t]

37

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability and
equivalence levels!

Exercise
Determine which directions are correct.

tϕ
.
∧ tψ ∼ true ?⇔ tϕ ∼ true ∧ tψ ∼ true

tϕ
.
∨ tψ ∼ true ?⇔ tϕ ∼ true ∨ tψ ∼ true

tϕ
.→ tψ ∼ true ?⇔ tϕ ∼ true → tψ ∼ true

The second relation works both ways when tϕ or tψ is a constant formula.

38

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability and
equivalence levels!

Exercise
Determine which directions are correct.

tϕ
.
∧ tψ ∼ true ⇔ tϕ ∼ true ∧ tψ ∼ true

tϕ
.
∨ tψ ∼ true ⇐ tϕ ∼ true ∨ tψ ∼ true

tϕ
.→ tψ ∼ true ⇒ tϕ ∼ true → tψ ∼ true

The second relation works both ways when tϕ or tψ is a constant formula.

38

Reachability Proof System

Our reachability judgements can be trivially equipped with a sequent
calculus.

Γ, tϕ ⊢ tϕ

Γ ⊢ tψ Γ, tψ ⊢ tϕ

Γ ⊢ tϕ

Γ ⊢ tψ Γ ⊢ tϕ

Γ ⊢ tψ
.
∧ tϕ

Γ, tψ, tϕ ⊢ tθ

Γ, tψ
.
∧ tϕ ⊢ tθ

Γ ⊢ tϕ

Γ ⊢ tψ
.
∨ tϕ

Γ ⊢ tψ

Γ ⊢ tψ
.
∨ tϕ

Γ, tψ ⊢ tθ Γ, tϕ ⊢ tθ

Γ, tψ
.
∨ tϕ ⊢ tθ

Γ ⊢ tψ Γ, tϕ ⊢ tθ

Γ, tψ
.→ tϕ ⊢ tθ

Γ, tψ ⊢ tϕ

Γ ⊢ tψ
.→ tϕ

39

Reachability Proof System (cont.)

Γ, tϕ ⊢ ⊥
Γ ⊢ ¬tϕ Γ,⊥ ⊢ tϕ

Γ1, tϕ, tψ, Γ2 ⊢ tθ

Γ1, tψ, tϕ, Γ2 ⊢ tθ

Γ, tψ, tψ ⊢ tϕ

Γ, tψ ⊢ tϕ

40

Reachability Proof System: Soundness

The reachability proof system is sound.

Proof
First, recall that for any Γ and tθ:

Γ ⊢ tθ is valid iff. Prρ
(
J(
.
∧Γ)

.
∧ .¬tϕKη,ρM

)
is negligible. (†)

41

Reachability Proof System: Soundness

We will only detail one rule, say:

Γ, tψ ⊢ tθ Γ, tϕ ⊢ tθ

Γ, tψ
.
∨ tϕ ⊢ tθ.

By the previous remark (†), since (Γ, tψ ⊢ tθ) and (Γ, tϕ ⊢ tθ) are valid

• Prρ
(
J(
.
∧Γ)

.
∧ tψ

.
∧ .¬tθKη,ρM

)
is negligible.

• Prρ
(
J(
.
∧Γ)

.
∧ tϕ

.
∧ .¬tθKη,ρM

)
is negligible.

Since the union of two negligible (η-indexed families of) events is a negligible
(η-indexed families of) events,

Prρ
(
J
(
(
.
∧Γ)

.
∧ tψ

.
∧ .¬tθ

) .
∨
(
(
.
∧Γ)

.
∧ tϕ

.
∧ .¬tθ

)
Kη,ρM

)
is negligible

⇔ Prρ
(
J(
.
∧Γ)

.
∧ (tψ

.
∨ tϕ)

.
∧ .¬tθKη,ρM

)
is negligible

Hence using (†) again, Γ, tψ
.
∨ tϕ ⊢ tθ is valid.

42

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash H(_,_) is computationally collision
resistant if no PPTM adversary can built collisions, even when it has
access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks
(CR-HK) iff for every PPTM A, the following quantity:

Prk
(
AOH(·,k)(1η) = ⟨m1 , m2⟩,m1 ̸= m2 and H(m1, k) = H(m2, k)

)
is negligible, where k is drawn uniformly in {0, 1}η.

43

CR Rule

Collision Resistance
If H is a CR-HK function, then the ground rule:

H(m1, k)
.
= H(m2, k)

.→m1
.
=m2 ∼ true

cr

is sound, when k appears only in H key positions in m1,m2.

44

CR Rule: Exercise

Exercise
Let H be CR-HK. Show that the following rule is not sound:

.¬(H(m1, k)
.
= H(m2, k)) ∼ true

cr

when k appears only in H key positions in m1,m2 and m1 ̸≡ m2.

45

Authentication Protocols

Cryptographic Rule: Message
Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic schema
which:

• create message authentication codes using mac_(_)

• verifies mac using verify_(_,_)

It must satisfies the functional equality:

verifyk(mack(m),m) = true

46

MAC Security

A MAC must be computationally unforgeable, even when the adversary
has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for
every PPTM A, the following quantity:

Prk

(
AOmack (·),Overifyk (·,·)(1η) = ⟨m , σ⟩, m not queried to Omack (·)

and verifyk(σ,m) = 1

)

is negligible, where k is drawn uniformly in {0, 1}η.

47

EUF-MAC Rule

Take two messages s,m and a key k ∈ N such that

• s and m are ground.

• k ∈ N appears only in mac or verify key positions in s,m.

Key Idea
To build a rule for EUF-CMA, we proceed as follow:

• Compute Js,mK bottum-up, calling Omack (·) and Overifyk (·,·) if
necessary.

• Log all sub-terms Smac(s,m) sent to Omack (·).

⇒ If verifyk(s,m) then m = u for some u ∈ Smac(s,m).

 Smac(s,m) are the calls to Omack (·) needed to compute s,m.

48

EUF-MAC Rule

Smac(·) defined by induction on ground terms:

Smac(n)
def
= ∅

Smac(verifyk(u1, u2))
def
= Smac(u1) ∪ Smac(u2)

Smac(mack(u))
def
= {u} ∪ Smac(u)

Smac(f (u1, . . . , un))
def
=

⋃
1≤i≤n

Smac(ui) (for other cases)

49

EUF-MAC Rule

Message Authentication Code Unforgeability
If mac is an EUF-CMA function, then the ground rule:

verifyk(s,m)
.→
∨̇

u∈S m
.
= u ∼ true

euf-mac

is sound, when:

• S = Smac(s,m);
• k ∈ N appears only in mac or verify key positions in s,m.

Example
If t1 t2 and t3 are terms which do not contain k, then:

Φ ≡ mack(t1),mack(t2),mack0(t3)

|= verifyk(g(Φ), n)
.→
(
n .
= t1

.
∨ n .

= t2
)
∼ true

50

EUF-MAC Rule: Exercise

Exercise
Assume mac is EUF-CMA. Show that the following rule is sound:

verifyk(if b then s0 else s1,m)
.→
∨̇

u∈S1∪S2
m

.
= u ∼ true

when b, s0, s1,m are ground terms, and:

• Si = {u | mack(u) ∈ Smac(si ,m)}, for i ∈ {0, 1};
• k appears only in mac or verify key positions in s0, s1,m.

Remark: we do not make any assumption on b, except that it is ground.
E.g., we can have b ≡ (att(k) .

= mack(0)).

51

Authentication Protocols

Authentication of the Hash-Lock Protocol

Authentication: Hash-Lock

Theorem
Assuming that the hash function is EUF-CMA2, the Hash-Lock protocol
provides authentication, i.e. for any identity a ∈ I, for any tr ∈ Tio,
tr1 : c

R1
j and tr3 : c

R2
j s.t.:

tr1 < tr3 ≤ tr

the following formula is valid:

acceptA@tr3
.→

∨̇
tr2:cTA,i

tr1≤tr2≤tr3

out@tr1
.
= in@tr2

.
∧

out@tr2
.
= in@tr3

∼ true

2Taking verifyk(s,m)
def
= s

.
= H(m, k).

52

Authentication: Hash-Lock

Proof. Let a ∈ I, and let tr ∈ Tio, tr1 : cR1
j and tr3 : cR2

j be s.t.:

tr1 < tr3 ≤ tr

We let:

tconc
def
=

∨̇
tr2:cTA,i

tr1≤tr2≤tr3

out@tr1
.
= in@tr2

.
∧ out@tr2

.
= in@tr3

We must prove that the following reachability judgement is valid:

acceptA@tr3 ⊢ tconc

i.e. that:
π2(in@tr3)

.
= H(⟨nR,j , π1(in@tr3)⟩, kA) ⊢ tconc

53

Authentication: Hash-Lock

We use the euf-mac rule on the equality:

π2(in@tr3)
.
= H(⟨nR,j , π1(in@tr3)⟩, kA) (†)

The terms above are ground, and the key kA is correctly used in them.
Moreover, the set of honest hashes using key kA appearing in (†), excluding the
top-level hash, is:

Smac(π2(in@tr3), ⟨nR,j , π1(in@tr3)⟩)
= Smac(in@tr3)

=
{
H(⟨in@tr2 , nT,i⟩, kA) | tr2 : cTA,i < tr3

}
 The hashes in the reader’s outputs can be seen as verify checks, and can
therefore be ignored.

54

Authentication: Hash-Lock

Hence using euf-mac plus some basic reasoning, we have:

acceptA@tr3,
⟨in@tr2 , nT,i⟩

.
=

⟨nR,j , π1(in@tr3)⟩
⊢ tconc for every tr2 : cTA,i < tr3

acceptA@tr3,
∨̇

tr2:cTA,i<tr3

⟨in@tr2 , nT,i⟩
.
=

⟨nR,j , π1(in@tr3)⟩
⊢ tconc

acceptA@tr3 ⊢ tconc

55

Authentication: Hash-Lock

Assuming that the pair and projections satisfy:

(π1⟨x , y⟩
.
= x) ∼ true (π2⟨x , y⟩

.
= y) ∼ true

We only have to show that for every tr2 : cTA,i < tr3:

Γ ⊢ tconc

is valid, where:

Γ
def
= acceptA@tr3, in@tr2

.
= nR,j, nT,i

.
= π1(in@tr3)

56

Authentication: Hash-Lock

Since tr1 : cR1
j < tr3 we know that:

out@tr1
def
= nR,j

Moreover:
out@tr2

def
= ⟨nT,i , H(⟨in@tr2 , nT,i⟩, kA)⟩

Hence:
Γ ⊢ π1(out@tr2)

.
= π1(in@tr3) (⋄)

Similarly:

Γ ⊢ π2(out@tr2)
.
= H(⟨in@tr2 , nT,i⟩, kA)
.
= H(⟨nR,j , π1(in@tr3)⟩, kA)
.
= π2(in@tr3)

Consequently:
Γ ⊢ π2(out@tr2)

.
= π2(in@tr3) (⋆)

57

Authentication: Hash-Lock

Assuming that the pair and projections satisfy the property:

π1 x
.
= π1 y

.→ π2 x
.
= π2 y

.→ x
.
= y

We deduce from (⋆) and (⋄) that:

Γ ⊢ out@tr2
.
= in@tr3

Putting everything together, we get:

Γ ⊢ out@tr1
.
= in@tr2

.
∧ out@tr2

.
= in@tr3 (‡)

58

Authentication: Hash-Lock

Recall that:

tconc
def
=

∨̇
tr2:cTA,i

tr1≤tr2≤tr3

out@tr1
.
= in@tr2

.
∧ out@tr2

.
= in@tr3

and we must show that Γ ⊢ tconc. Hence, using (‡), it only remains to prove
that whenever tr2 < tr1, we have:

Γ, out@tr1
.
= in@tr2, out@tr2

.
= in@tr3 ⊢ ⊥

This follows from the independence rule:

(t
.
= n) = false

=-ind when t is ground and n ̸∈ st(t)

using the fact that:
out@tr1

def
= nR,j

and that if tr2 < tr1 then nR,j ̸∈ st(in@tr2).

59

Authentication Protocols

Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:
∀trR : cR. ∃trT : cT.

•
trT : cT

•
trR : cR

accept@trR

does not exclude the scenario:

•
trT : cT

•
trR : cR1

accept@trR

•
tr′R : c

R
2

accept@tr′R

60

Replay Attack

This is a replay attack: the same message (or partial transcript), when
replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a door at
will once it eavesdropped one honest interaction.

Example
The following protocol, called Basic Hash, suffer from such attacks:

T(A, i) : ν nT,i. out(cTA,i, ⟨nT,i , H(nT,i, kA)⟩)

R(j) : in(cR2
j , y). if

∨̇
A∈I π2(y)

.
= H(π1(y), kA)

then out(cR2
j , ok)

else out(cR2
j , ko)

61

Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a
stronger property, injective authentication.

62

Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides injective authentication:
∀A ∈ I. ∀tr ∈ Tio. ∀tr1 : c

R1
j , tr3 : c

R2
j s.t. tr1 < tr3 ≤ tr

acceptA@tr3
.→

∨̇
tr2:cTA,i

tr1≤tr2≤tr3

out@tr1
.
= in@tr2

.
∧

out@tr2
.
= in@tr3

.
∧

∧̇
tr′1:c

R1
k , tr

′
3:c

R2
k

tr′1<tr
′
3≤tr

(
acceptA@tr′3

.
∧

out@tr2
.
= in@tr′3

.→ j = k

)

63

References i

[1] D. Baelde, S. Delaune, and L. Hirschi.
Partial order reduction for security protocols.
In CONCUR, volume 42 of LIPIcs, pages 497–510. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015.

	Security Proof
	Privacy
	Authentication Protocols
	Macro Terms
	Reachability Proof System
	Cryptographic Rule: Collision Resistance
	Cryptographic Rule: Message Authentication Code
	Authentication of the Hash-Lock Protocol
	Beyond Authentication

	Appendix

