MPRI 2.30: Proofs of Security Protocols

2. Security Proofs

Adrien Koutsos
2023/2024

Security Proof

Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

e |y is the initiator with identity X;

e Sy is the server, accepting messages from X;
The adversary must not be able to distinguish |5 | Sa from Ic | Sa.

Ix :vr. vn. out(cr, {(pkx , nl>};ks)

Sx :vrg.vns.in(cg, x). if m1(d) = pkyx
then out(cs, {(m2(d), n5>};0kx)
else out(cs, {O}LOkX)

We assume the encryption is IND-CCA; and KP-CCA;.

Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the plain-text.
Hence, since len((n;, ns)) # len(0), there is an attack:

7 {5 ns) g, ~ {0}gike

even if the encryption is IND-CCA; and KP-CCA;.

Private Authentication: Anonymity

We fix the protocol by:

e adding a length check;

e using a decoy message of the correct length.

The PA Protocol, v3
Ix :vr. vn. out(cr, {(pkx , n|>};ks)
Sx : vro.vns.in(cr, x). if m1(d) = pky A len(ma2(d)) = len(ns)

then out(cs, {(m2(d), ”S>};ka)
else out(cs, {(ns, ns)}i)

Private Authentication: Anonymity

Ix :vr. vnp. out(cr, {(pky , ”I>};ks)
Sx : vrg.vns.in(cr, x). if m1(d) = pky A len(m2(d)) = len(ns)
then out(cs, {(m2(d) , ns)} 5)

else out(cs, {(ns, ns)}g)

To prove Ip | Sa = Ic | Sa, we have several traces:

in(cI), OUt(CI), Out(Cs) in(cI), OUt(Cs), OUt(CI)
out(c1),in(cz), out(cg) out(c1),out(cs),in(cr)
out(cs),in(cz), out(cr) out(cs), out(cs),in(cr)

Private Authentication: Anonymity

Ix :vr. vn. out(cr, {(pkx , M) }o,)
Sx : vrg.vns.in(cr, x). if m1(d) = pky A len(m2(d)) = len(ns)

then out(cs, {(m2(d) , ns)} 5)

else out(cs, {(ns, ns)}g)

To prove Ip | Sa = Ic | Sa, we have several traces:

in(cI), OUt(CI), OUt(Cs) in(cI), OUt(Cs), OUt(CI)
out(cg),in(cz), out(cg) out(c1),out(cs),in(cr)
out(cs),in(cz), out(cr) out(cs), out(cs),in(cr)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

Private Authentication: Anonymity

We must prove that:
out?, outé’A[out/f] ~ out$, out?’A[outf]
where:
ot = {{pk.,)}

outy’ Y [M] = if 71 (d[M]) = pky A len(ma(d[M])) = len(ns)

then {(m2(d[M]), ”S>},r)0kY
else {(ns, ns)}j,

d[M] = dec(atto([M]), sks)

Private Authentication: Anonymity

First, we push the branching under the encryption:

out, outh*[out?] ~ outS, outh[outS] outs*out§] = out)y*[out§]

out?, outy *Jouth] ~ out§, outh*[out]

where:

fo

if 71(d[M]) = pkyx A len(m2(d[M])) = len(ns)

then (m2(d[M]), ns)
else (ns, ns)

outy"¥ [M]

pky

We let my[M] be the content of the encryption above.

Private Authentication: Anonymity

Then, we use KP-CCA; to change the encryption key:

KP-CCAq
out?, outy " out?] out$, outh “Jout]

~ out{,outy [outf] ~ outf, oty [outf]

TRANS
out?, oty [out?] ~ out$, outhy*[out§]

since:

e the encryption randomness rq is correctly used;

e the key randomness np and ng appear only in pk(-) and dec(_, sk(-))
positions.

Private Authentication: Anonymity

Then, we use IND-CCA; to change the encryption content:

[len(mc[outf]) = len(ma[out]])] IND-CCA1

out$, ou‘cc2 Clout?]

out?, outy " [out?]

~ outf,ng’c[outf] ~ out$, outAz"c[outf]

out?, outy*[out}] ~ outf,%?’c[outf]

TRANS

since:

e the encryption randomness rq is correctly used;

e the key randomness nc appear only in pk(-) and dec(_,sk(+)) positions.

Private Authentication: Anonymity

Recall that:
mx[M] = if 71(d[M]) = pkx A len(m2(d[M])) = len(ns)
then (ma(d[M]), ns)
else (ns, ng)
Then:

Aih Faen Ien(mc[outf]) = len(ma[out?])

[len(mc[out§]) = len(malout?])]

GEN

if A, contains the axiom?:

Vx,y.len((x, y)) = ¢,)(len(x),len(y))

where ¢, (+, ") is left unspecified.

1This axiom must be satisfied by the protocol implementation for the security proof
to apply.
10

Private Authentication: Anonymity

Then, we a-rename the key randomness nc, rewrite back the encryption, and
conclude.

a-EQU + R + REFL
out?, outy ™ [out?] ~ out§, outs[out§]

11

Privacy

We proved anonymity of the Private Authentication protocol, which we
defined as:

|A‘SA%IC’SA

But does this really guarantees that this protocol protects the privacy of
its users?

= No, because of linkability attacks

12

Linkability Attacks

Consider the following authentication protocol, called KCL, between a
reader R and a tag Tx with identity X:

R :vng. out(cg, NR)

Tx : vnt.in(cg,x). out(cr, (X ® nt, nT & H(x, kx)))

Assuming H is a PRF (Pseudo-Random Function), and & is the
exclusive-or, we can prove that KCL provides anonymity.

TA‘R%TB’R

13

Linkability Attacks

But there are privacy attacks against KCL, using two sessions:
1:E > Ta:ng E —>Ta:ngr
2: Ta—E : <AEBHT, nT@H(nR,kA» Tao—E <AEBHT, nT@H(nR,kA»

3:E —Ta:nr E —Tg:nr
4:Tao—E :{A®nT,nT ®H(nr,ka)) | Ts—E :(B@®nT, nT & H(nr, ks))

Let t, and t; be the outputs of T. Then, on the left scenario:
ma(t2) ® m2(ta) = (n7 ® H(ng, ka)) ® (n7 & H(nr, ka))
=nt D n/T
= 771(t2)) 771(t4)

The same equality check will almost never hold on the right, under
reasonable assumption on H.

14

Linkability Attacks

We just saw an attack against:

(TAIR) [(TAIR) = (Ta|R) | (Te | R)

15

Unlinkability

To prevent such attacks, we need to prove a stronger property, called
unlinkability. It requires to prove the equivalence between:

e a real-world, where each agent can run many sessions:

vk, ..., Kn. id<n !sia<m P(Ed)

e and an ideal-world, where each agent run at most a single session:

—

vKoo, .-+, Kn.m La<n !sia<m P(kid sia)
Remark
The processes above are parameterized by N, M € N. Unlinkability holds
if the equivalence holds for any N, M.

For the sack of simplicity, we omit channel names.

16

Unlinkability

Example An unlinkability scenario.

17

Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any
information on identities.
= hence no link can be efficiently found in the real word.

18

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.
User-specific server, accepting a single identity.
The processes P(ks, ki) and S(ks, ki) are parameterized by:

e some global key material Ks:

e and some user-specific key material k.

Then, we require that:

vks. vko,...,kn. ba<n 'sia<m (P(E&Eid) | S(E&Eid))
ki ki

~ vks. vkoo, ..., knm lid<n 'sia<m (Plks, ki

19

Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process P(ks, ky).
The server S(ks, ky, ..., ku,,) is parameterized by:

e some global key material ES;

o all users key material ky,, ..., ky,,.

The we require that:

vks. vko, . kn. (lia<n losa<m P(LZS,Ed)) |
('t S(ks, ko, -- -, kn))
~ vks. vkoo, -+ knme (liaen lsia<m P(ks, Kid s1a)) |
('<t S(ksy ko0, - - s kn,m))

20

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property that does

not often hold.

Example
Assume S leaks whether it succeeded or not. This models the fact

that the adversary can distinguish success from failure:
e e.g. because a door opens, which can be observed;

e or because success is followed by further communication, while
failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:

(P(K) | S(k)) | (P(K) | S(k)) = (P(ko) | S(ko)) | (P(kz) | S(k1))

~N_

v X
21

Private Authentication: Unlinkability

Private Authentication

We parameterize the initiator and server in PA by the key material:
I(ks, kx) :vr. vny. out(cr, {(Pkx , M)},)
S(ks, kx) : vro. v ns.in(c, x). if T1(d) = pky A len(m2(d)) = len(ns)

then out(cs, {(m2(d) , ns)}gi)
else out(csg, {(ns, n5>}:)0kx)

where skx = sk(kx), pkyx = pk(kx) and d = dec(x, sks).

22

Private Authentication: Unlinkability

Theorem
Private Authentication, v3 satisfies the unlinkability property (with
user-specific server). l.e., for all N, M € N:

vks. vko,....kn. lid<n lsia<m (I(ks, kia) | S(ks, kia))

~ vks. vkoo,. .., knm lid<n 'sia<m (I(ks, kidoia) | S(ks, kid,ia))

Proof sketch
For all N, M, for all trace of observables tr, we show that:

= fold(Py, tr) ~ fold(Pg, tr)

by induction over tr, where Pz and Px are, resp., the left and right protocols
in the theorem above.

For details, see the SQUIRREL file private-authentication-many.sp.

23

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: reachability and
correspondance properties (e.g. authentication)

These are properties on a single protocol, often expressed as a temporal
property on events of the protocol. E.g.

If Alice accepts Bob at time T then Bob must have initiated a
session with Alice at time 7/ < .

To formalize the cryptographic arguments proving such properties, we
will design a specialized framework and proof system.

24

Hash-Lock

The Hash-Lock Protocol
Let Z be a finite set of identities.

T(Av i) vnT;. in(cz,mx)' OUt(C£,17 <nT.i ; H(<Xa nTAi>a kA)>)
R(i) :vnrj. in(c?‘,) out(c?‘7 NR,j)-
in(c?z,y).

i if vAeI m2(y) = H((nr.j, m1(y)), ka)

Hash-Lock

then out(cl;z, ok)
else out(c?z, ko)

We consider N sessions of each tag, and M sessions of the reader:

v (ka)aez. (!AGZ Li<n T(Aai)) ’ (!j<M R(j))

Remark: we let the adversary do the scheduling between parties.
25

e we let < be the prefix relation over observable traces:
tro < trp iff. Itr’. try = trg; tr’
e tr:c states that tr ends with an output on c:

tr: c iff. 3tr'’. tr = tr’; out(c)

Remark: tr:c <tr’ meanstr:c Atr < tr’.

26

POR Result (Assumed)

We let T, be the set of observable traces where all outputs are always
directly preceded by an input on the same channel, i.e.:

tr € Tp iff. Vtr':c <tr. Jtr”. tr' = tr’;in(c); out(c)

Assumption: POR
We admit that to analyze the Hash-Lock protocol, it is sufficient to
consider only observables traces in 7.

27

Authentication

Informal Definition
If the j-th session of R accepts believing it talked to tag A, then:

e there exists a session i of tag A properly interleaved with the j-th
session of R;

e messages have been properly forwarded between the j-th session
of tag A and the j-th session of R.

Q@ The second condition is often relaxed to require only a partial correspondence

between messages.

28

Authentication of the Hash-Lock Protocol

For any tr: c?‘z € T, We let accept@tr be a term (defined later)
stating that the reader accepts the tag A at the end of the trace tr.

29

Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all tr € T, try : c?‘l
and trs: cl;2 such that:

tr; < trz <tr and accept?@trs
there must exists tr, : ¢y ; such that tr; < trs < trz and:

out@tr; = in@tr, A out@tr, = in@tr;

Graphically:
out@tr; = in@tr, out@tr, = in@tr;
=T ‘\\x /’// T
ey 3 @ tra:cp 4 trs: cl’
accept’Qtrs;

30

Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the
Hash-Lock protocol?

e define the (generic) terms representing the output, input and
acceptance, which we need to state the property;

e have a set of sound one-sided rules, to do the proof.

31

Authentication Protocols

Macro Terms

Notations: Predecessor

For any observable trace tr and observable «, we let:

pred(tr; @) ey

32

Macro Terms

We now define some generic terms by induction of the observable
trace tr.

Let P be a action-deterministic protocol and tr € Ti, with j inputs. If

fold(P, tr) = ti,...,t, then we let:
t if dc. tr:c
outp@tr] "
empty otherwise

; onp & (framep@pred(tr), outp@tr) if tr #e
ramep@tr =
r empty iftr = ¢

tt;(f 0t if t
inp@(t;in(c); out(c)) 4 { (framep@tr) if tr # e
atto() iftr=c¢
Remark: we omit P when it is clear from context.

Q@ The restriction to traces in T;, simplifies the definition of inp@tr.
33

Macro Terms

framep@tr contains all the information known to an adversary against
P after the execution of tr.

More precisely, we can show that for all action-deterministic processes P
and Q, for all tr € Ti:

M = fold(P, tx) ~ fold(Q, tr) iff. M |= framep@tr ~ frameg@tr

for any M satisfying:
[71'1<X,y>iX] [7T2<X,y>i_)/]

Proof

= apply FA to build framer @tr from fold(R, tr) for R € {P, O}

< apply FA + DUP + the pair injectivity rules to compute all terms in
fold(R, tr) from framer @tr for R € {P, Q}

34

Hash-Lock: Accept

T(A,1) s vnTs.in(ch.1,x). out(ca,s, (N1, H({(x, n7.:),ka)))
R(j) :vngrj. in(c?l,). out(c?l7 nR,j)-

in(c?,y).

if Vacz m2(y) = H((nr.s, 1(y)), ka)

then out(c?, ok)

Hash-Lock

else out(c}?, ko)

To be able to state some authentication property of Hash-Lock, we need

an additional macro. For all tr: c?z € Tio, We let:

accept"@tr & mo(in@tr) = H((nrj, m1(in@tr)), ka)

@ We made sure that all names in the protocol are unique, so that they
don't have to be renamed during the folding.

35

Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides authentication:

VA € Z.Vtr € Tio. Vtr1: c?l, tr3: c?z s.t. tr; < tr3 < tr,

\'/ out@try; = in@try A

.. ~ true
out@tr, =in@trs

acceptA@tr3 -

trg:c/\
,i
tr;<tr,<trs

This kind of one-sided formulas are called reachability formulas.
Proving the validity of such formulas requires additional rules, to allow
for propositional reasoning.

36

Authentication Protocols

Reachability Proof System

Reachability Judgements

We define a judgments dedicated to reachability correspondance
properties.

Definition
A reachability judgement ' F t comprises a sequence of terms
=t —---—>t, and a (boolean) term t.

I'F tis valid if and only if the following formula is valid:

[t1 = =ty > t]

37

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability and
equivalence levels!

Exercise

Determine which directions are correct.
. ?
ty N\ ty ~ true = ty ~ true A\ ty, ~ true
. ?
ty V ty ~ true = ty ~ true V ty, ~ true

?
ty — ty ~ true & ty ~ true — ty, ~ true

38

Boolean Connectives in Reachability Judgements

Careful not to confuse the boolean connectives at the reachability and
equivalence levels!

Exercise

Determine which directions are correct.

ty Aty ~true &ty ~ true Aty ~ true
ty V ty ~true < tg~ trueV t, ~ true

ty — ty ~ true = ty ~ true — ty, ~ true

The second relation works both ways when ty or t; is a constant formula.

38

Reachability Proof System

Our reachability judgements can be trivially equipped with a sequent

calculus.
rFtw r,twktgb
F,t¢l—t¢ IEty
Fl—t¢ Fl—t¢ r,tl/,,tqﬂ—tg
Mty Aty [ty Aty to
I'}—t¢ rl_tw r,td,l_tg I',t¢l—t9

MEty Vit MEty Vit Moty Vs ty
Fktw r,t(/)th r,t@kl}b
r,l@%l}hkt‘g FF%%%

39

Reachability Proof System (cont.)

I, ty FL

M+ ity rLkE ty
Fl,t¢,t¢,rg F ty F, ty, ty [ty
rl,t,/},t(/),rg F tg r, ty F ty

40

Reachability Proof System: Soundness

The reachability proof system is sound.

Proof
First, recall that for any I and ty:

[+ tg is valid iff. Pr, ([(AT) A =tg] ") is negligible. (1)

41

Reachability Proof System: Soundness

We will only detail one rule, say:

r, ty F ty Mty -ty

Moty V ity - to.
By the previous remark (}), since (I, ty, - tg) and (I, ty - tp) are valid
o Pr, ([(AT) A ty A =tg]”) is negligible.
o Pr, ([(AT) A tg A Stg]{i?) is negligible.

Since the union of two negligible (7-indexed families of) events is a negligible
(n-indexed families of) events,

Pr, <[[((Ar) Aty A=tg) V ((AT) Aty A %tg)ﬂ&]”’> is negligible
& Pr, ([[(Ar) A (L V ts) A Atemfj is negligible
Hence using (1) again, I, t, V t, b= tg is valid.

42

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash H(_,) is computationally collision
resistant if no PPTM adversary can built collisions, even when it has
access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks
(CR-HK) iff for every PPTM A, the following quantity:

Pr, (AOHw(ln) — (m1, ma), my # mp and H(mx, k) = H(my, k))

is negligible, where k is drawn uniformly in {0, 1}".

43

CR Rule

Collision Resistance
If His a CR-HK function, then the ground rule:

H(mz, k) =H(mga, k) = my = my ~ true

is sound, when k appears only in H key positions in my, m,.

44

CR Rule: Exercise

Exercise
Let H be CR-HK. Show that the following rule is not sound:

S(H(my, k) = H{ma, K)) ~ troe

when k appears only in H key positions in my, mp and my £ my.

45

Authentication Protocols

Cryptographic Rule: Message
Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic schema
which:

e create message authentication codes using mac (_)

e verifies mac using verify (_,)
It must satisfies the functional equality:

verify, (mac, (m), m) = true

46

MAC Security

A MAC must be computationally unforgeable, even when the adversary
has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for
every PPTM A, the following quantity:

. (Aomack(')’ove”fyk("')(1”) = (m, o), m not queried to Omack(.)>
I

and verify, (o, m) =1

is negligible, where k is drawn uniformly in {0, 1}".

47

EUF-MAC Rule

Take two messages s, m and a key k € A/ such that
e s and m are ground.

e k € \/ appears only in mac or verify key positions in s, m.

Key Idea
To build a rule for EUF-CMA, we proceed as follow:

e Compute [[s, m] bottum-up, calling Onac, () and Oerify, (..) if
necessary.

e Log all sub-terms Smac(s, m) sent to Opac, (-

= If verify, (s, m) then m = u for some u € Spmac(s, m).

V Smac(s, m) are the calls to O, (. needed to compute s, m.

48

EUF-MAC Rule

Smac(+) defined by induction on ground terms

Smac(n) £ 0

Smac(verify, (u1, 1)) & Smac(1) U Smac(u2)
Smac(maci (1)) = {u} U Smac(u)

Smac(F(un,- .., up)) &

= U Smac U/

(for other cases)
1<i<n

49

EUF-MAC Rule

Message Authentication Code Unforgeability
If mac is an EUF-CMA function, then the ground rule:
EUF-MAC

verify, (s, m) = vues m = u ~ true
is sound, when:
e S= Smac(sa m);

e k € \/ appears only in mac or verify key positions in s, m.

Example
If t; to and t3 are terms which do not contain k, then:

® = macy(t1), macy(t2), macy,(t3)
= verify, (g(®),n) = (n=tVn=t) ~ true

50

EUF-MAC Rule: Exercise

Exercise
Assume mac is EUF-CMA. Show that the following rule is sound:

verify, (if b then s else s, m) = vu€S1U82 m = u ~ true

when b, s, s1, m are ground terms, and:

o S; = {u| mac,(u) € Smac(si,m)}, for i € {0,1};

e k appears only in mac or verify key positions in sg, s1, m.

Remark: we do not make any assumption on b, except that it is ground.
E.g., we can have b = (att(k) = macy(0)).

51

Authentication Protocols

Authentication of the Hash-Lock Protocol

Authentication: Hash-Lock

Theorem
Assuming that the hash function is EUF-CMA?, the Hash-Lock protocol
provides authentication, i.e. for any identity a € Z, for any tr € T,

try: c?l and tr3: 0?2 s.t.:

tr; < trz3 <tr

the following formula is valid:

\'/ out@tr; = in@tr, A

A 5
accept” @tr3z = . ~ true
. ? out@tr, =in@trj
trz:CA,i
tr;<tr,<trs

2Taking verify, (s, m) = H(m, k).
52

Authentication: Hash-Lock

Proof. Let a € Z, and let tr € Ty, try: c?l and trz: c?z be s.t.:

tr; < trz < tr
We let:
def ’ . . .
teonc = \/ out@tr; =in@tr, A out@tr, =in@trs

traich ;
try <tro<trs

We must prove that the following reachability judgement is valid:
A
accept” Otr3 F teone
i.e. that:

Wz(in@tr3) = H((nR_j , 7T1(in©tr3)>, kA) F teonc

53

Authentication: Hash-Lock

We use the EUF-MAC rule on the equality:
7r2(in©tr3)iH(<nR_j 9 7T1(ih@tI‘3)>7kA) (T)

The terms above are ground, and the key ka is correctly used in them.
Moreover, the set of honest hashes using key ka appearing in (}), excluding the
top-level hash, is:

Smac(m2(in@tr3), (nr ;, T1(in@tr3)))
= Smac(in@tr3)
= {H((in@trg, nT_i>, kA) ‘ try: Cg,i < tr3}

Q@ The hashes in the reader’s outputs can be seen as verify checks, and can
therefore be ignored.

54

Authentication: Hash-Lock

Hence using EUF-MAC plus some basic reasoning, we have:

(in@try, nT3) =

A
t"QOtrs, .
aceep s (nR,j, m1(in@tr3))

b teone for every trp : Cg,i < trs

(in@try, nT3) =

' -t
Vtr:ZCTA’j<tI‘3 <anj , 7T1(in@tr3)> conc

accept?@trs,

accept®@trs b teonc

55

Authentication: Hash-Lock

Assuming that the pair and projections satisfy:

(m{x, y) = x) ~ true (ma(x, y) =y) ~ true

We only have to show that for every tr; : cg’i < trs:
r }7 tconc
is valid, where:

def
I = accept’@trs, in@tr, = NR,j, NT,; =m1(in@tr3)

56

Authentication: Hash-Lock

Since try : c?‘ < tr3 we know that:

def
OUt@tIl = NR,j

Moreover:
out@tr, =t (nt;i, H{(in@try, n1;),ka))
Hence:
rkwl(out@trg)im(in@trg,) (<>)
Similarly:

I ma(out@try) = H((in@trs, nt ;) ka)
H((nR_j . 7F1(iﬂ@tl’3)>, k/_\)

7r2(in@tr3)

Consequently:
I mo(out@try) = mo(in@trs) (%)

57

Authentication: Hash-Lock

Assuming that the pair and projections satisfy the property:

MX=T1Y ST X=Toy F+X=Y
We deduce from (x) and (¢) that:
[+ out@tr, =in@tr;3
Putting everything together, we get:

[+ out@tr; =in@tr, A out@tr, = in@tr3 (i)

58

Authentication: Hash-Lock

Recall that:

def |’ . : .
teone = \V traich out@tr; = in@tr, A out@tr, = in@trs
trlgtrgéth

and we must show that I' F t.one. Hence, using (1), it only remains to prove
that whenever tr, < try, we have:

I, out@try; =in@tr,, out@tr, =inO@trz - L
This follows from the independence rule:

(t =n) = false =IND hen tis ground and n ¢ st(t)

using the fact that:
def
out@tr; = NR,;

and that if tr, < tr; then ngj & st(in@tr,).

59

Authentication Protocols

Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:

Vtryg : cg. dtry: CT.

7 RN
trT': CT trR': CRr
acceptOtry

7~ X X
trr:cr trg:ch trg @ ch
accept@try accept@try

60

Replay Attack

This is a replay attack: the same message (or partial transcript), when
replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a door at
will once it eavesdropped one honest interaction.

Example
The following protocol, called Basic Hash, suffer from such attacks:

T(A,i):vnt;. out(cTA’i, {nTi, H(nT.i,ka)))
R(3) cin(cf,y). if Vaez ma(y) = H(mi(y), ka)
then out(c?, ok)
else out(c2, ko)

J

61

Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a
stronger property, injective authentication.

62

Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides injective authentication'
VA e Z.Vtr € Tip. Vtry:cit, try: c s.t. tr; < trz < tr

v out@tr; = in@tr, A

A .
accept” Qtrz — .
P 9 out@tr, =in@tr;

traiCp
try<tr><trs

) A ,
; accept”@trz A
A ==k
/\ (out@tro =in@tr} J=
B D, Tl
tr1<tr3§tr

63

References i

[1] D. Baelde, S. Delaune, and L. Hirschi.
Partial order reduction for security protocols.
In CONCUR, volume 42 of LIPIcs, pages 497-510. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2015.

	Security Proof
	Privacy
	Authentication Protocols
	Macro Terms
	Reachability Proof System
	Cryptographic Rule: Collision Resistance
	Cryptographic Rule: Message Authentication Code
	Authentication of the Hash-Lock Protocol
	Beyond Authentication

	Appendix

