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Introduction



Context

Security Protocols

• Distributed programs which aim at providing some security
properties.

• Uses cryptographic primitives: e.g. encryption.
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Context: Security Properties

There is a large variety of security properties that such protocols must
provide.

Confidentiality
Authentication

Privacy

Privacy
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Context: Attacker Model

Against whom should these properties hold?

• concretely, in the real world: malicious individuals, corporations,
state agencies, ...

• more abstractly, one (or many) computers sitting on the network.

Abstract attacker model
• Network capabilities: worst-case scenario:

eavesdrop, block and forge messages.

• Computational capabilities: the adversary’s
computational power.

• Side-channels capabilities: observing the
agents (e.g. time, power-consumption)
⇒ not in this lecture.
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BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:

• uses an RFID tag.

• guard access to information stored.

• should guarantee data
confidentiality and user privacy.

Some security mechanisms:

• integrity: obtaining key k requires
physical access.

• no replay: random nonce n, old
messages cannot be re-used.

n

enck(n, . . . )

ok(· · · )

(valid key + no replay)
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BAC Protocol (simplified)

Privacy: Unlinkability
No adversary can know whether it inter-
acted with a particular user, in any con-
text.

Example. For two user sessions:

att
(

,

)
=


, ?

, ?

French version of BAC:

• ̸= error messages for replay and
integrity checks.

⇒ unlinkability attack.

n

enck(n, . . . )

ok(· · · )
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BAC Protocol: Privacy Attack

n0

enck(n0, . . . )

ok(· · · )

n1

enck(n0, . . . )

replay error

n1

enck(n0, . . . )

integrity error
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BAC Protocol: Lessons

Take-away lessons:

• This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.

• Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?
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High-Confidence Security Guarantees

Verification
Formal mathematical proof of security protocols:

S |= Φ

system satisfies property

• Must be sound: proof ⇒ property always holds.

• Usually undecidable: approaches either incomplete or interactive.

• Machine-checked proofs yield a high degree of confidence.
▶ general-purpose tools (e.g. Coq and Lean).
▶ in security protocol analysis, mostly dedicated tools.

E.g. CryptoVerif, EasyCrypt, Squirrel.
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Computer-aided Verification of Cryptographic Protocols

Goal
Design formal frameworks allowing for mechanized verification of
cryptographic protocols.

• At the intersection of cryptography and verification.

• Particular verification challenges:
▶ small or medium-sized programs
▶ complex properties
▶ concurrent and probabilistic programs + arbitrary adversary
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The CCSA Approach to Cryptographic Protocol Verification

The Computationally Complete Symbolic Attacker (CCSA) [1] is a
framework in the computational model for the verification of
cryptographic protocols.

Key ingredients

• Protocol executions modeled as pure symbolic terms.

• A probabilistic logic.
⇒ interpret terms as PTIME-computable bitstring distributions.

• Reasoning rules capturing cryptographic arguments.

• Abstract approach: no probabilities, no security parameter.
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Processes



Process: Syntax

Elementary processes:

E ::= in(c, x) | out(c, t) | ν n | if b then E |
E.E | null

(c ∈ C, x, n ∈ X )

where C is a set of channel symbols and X a set of variables.

Processes:

P0 ::= E | (P0 | P0) P ::= P0 | ν n.P (n ∈ X )

We let chans(P) be the channels of a process P.

Restrictions: elementary process must use a single channel, and distinct
elementary processes must use distinct channels. I.e. if P = E1 | · · · | En

then ∀i . |chans(Ei )| ≤ 1 ∀i ̸= j , chans(Ei ) ∩ chans(Ej) = ∅.
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Example of a Protocol

As an example, we consider a simple authentication protocol:

The Private Authentication (PA) Protocol, v1

I = ν nI. out(I, {⟨pkI , nI⟩}pkS
)

S = ν nS. in(S, x). out(S, {⟨π2(dec(x, skI)) , nS⟩}pkI
)

where pkI ≡ pk(kI) and pkS ≡ pk(kS).

The full protocol is ν kI. ν kS.
(
I | S

)
.

Notation: ≡ denotes syntactic equality of terms.
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Terms

We use terms to model protocol messages, built upon a set of symbols
S which includes:

• Variables X , used, e.g. x in in(A, x) or n in ν n.

• Function symbols F , e.g.:

A, B, ⟨· , ·⟩, π1(·), π2(·), {·}··, pk(·), sk(·),
if · then · else·, ·= ·, · ∧ ·, · ∨ ·, · → ·

We note T (S) the set of well-typed (see next slide) terms over
symbols S. Terms are usually written t, and boolean terms b.

Examples

pk(kA) {⟨pkA , nA⟩}pkB
π1(nA)
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Terms: Types

Types
Each symbol s ∈ S comes with a type type(s) of the form:

(τ1
b ⋆ · · · ⋆ τnb ) → τb or τb

where τ1
b , . . . , τ

n
b , τb are all base types in B.

• We ask that B contains at least the message and bool types.

• We restrict variables to base types, i.e.:

∀x ∈ X , type(x) ∈ B.

• We require that terms are well-typed and of a base type:

⊢ t : τb where τb ∈ B.
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Terms: Semantics

The interpretation ⟨|t|⟩η,σL of a term t as a bitstring is parameterized by:

• the security parameter η;

• a library L which provides the semantics L·ML of symbols in F
(details on next slides);

• the valuation σ : X ↪→ {0, 1}∗ maps variables to their values.1

We may omit σ, L and η when they are clear from the context.

1f : A ↪→ B denotes a partial f function from A to B.
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Terms: Semantics

Function symbols.
For a function symbols f ∈ F , we simply apply Lf ML:

⟨|f (t1, . . . , tn)|⟩η,σL

def
= Lf ML(1

η, ⟨|t1|⟩η,σL , . . . , ⟨|tn|⟩η,σL )

Restriction: Lf ML must be poly-time computable and deterministic.

Variables.
The interpretation ⟨|x |⟩η,σL of a variable x ∈ X is given by the valuation σ:

⟨|x|⟩η,σL

def
= σ(x)
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Terms: Builtins

We force the interpretation of some function symbols.

• if · then · else· is interpreted as branching:

Lif · then · else·MM(b, v1, v2)
def
=

v1 if b = 1

v2 otherwise

• ·= · is interpreted as an equality test:

L·= ·MM(v1, v2)
def
=

1 if v1 = v2

0 otherwise

Similarly, we force the interpretations of ∧,∨,→, true, false.
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Process: Concrete Configuration

A concrete configuration is a tuple (ϕ, σ,P) representing a partially
executed process where:

• the concrete frame ϕ is the sequence bitstrings
w1, . . . ,wn ∈ {0, 1}∗ outputted since the protocol execution started.

• the valuation σ.

• the process P is the process that remains to be executed.

A concrete configuration records the current state of an execution.

Initial configuration: (ϵ, [st 7→ 0],P)

• st is a special variable used to store the adversarial state.
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Finite Distributions

Processes are probabilistic:
⇒ The semantics of a process is a distribution of configurations.

Discrete distributions.
A discrete distribution over a set S is a formal sum

∑
i∈I ai · si where:

I is countable
∑

i∈I ai = 1 ai ≥ 0 for any i ∈ I

Examples

• 1
3 · ”0” + 2

3 · ”42”

• 1
2 · 0 + 1

2 · 1 (unbiased coin flip).
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Process: Concrete Semantics

A trace tr is a sequence of observable actions α1, . . . , αn. The trace
tr represents a protocol/adversary interaction scenario.

α ::= in(c) | out(c) tr ::= ϵ | α | tr, tr (where c ∈ C)

The concrete semantics is given by the relation (see next slides):

(ϕ, σ,P) tr
====⇒
L,A,η

∑
i∈I

ai · (ϕi , σi ,Pi )

Adversary. A is a stateful, probabilistic and poly-time program.

Notations. We omit A,L, η when they are fixed or clear from context.
Further, we write =⇒ instead of ϵ

=⇒.
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Process: Concrete Semantics

Structural rules:

(ϕ, σ,null | P) =⇒ (ϕ, σ,P) (ϕ, σ,P) =⇒ (ϕ, σ,P′) when P ≈AC P′

where ≈AC is the small congruence relation over processes which
contains:

• commutativity P0 | P1 ≈AC P1 | P0;

• associativity (P0 | P1) | P2 ≈AC P0 | (P1 | P2);

• α-renaming ν n0.P ≈AC ν n1.P[n0 7→ n1]

(same for inputs in(c, x).P).
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Process: Concrete Semantics

Branching rules:

⟨|b|⟩η,σL = true

(ϕ, σ, if b then P | P′) =⇒ (ϕ, σ,P | P′)

⟨|b|⟩η,σL = false

(ϕ, σ, if b then P | P′) =⇒ (ϕ, σ,P′)

Output rules:

ϕ′ = (ϕ, ⟨|t|⟩η,σL )(
ϕ, σ, (out(c, t);P) | P′) out(c)

====⇒ (ϕ′, σ,P | P′)

ϕ′ = (ϕ, error)
c ̸∈ chans(P) or P = (in(c, x).P0)(

ϕ, σ,P
) out(c)
====⇒ (ϕ′, σ,P)
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Process: Concrete Semantics

New rule:
n ̸∈ dom(σ)(

ϕ, σ, (ν n;P) | P′)=⇒∑
|w |=η

1
2η · (ϕ, σ[n 7→ w ],P | P′)

Input rule:

x ̸∈ dom(σ) A(1η, ϕ, σ[st]) =
∑

i ai · (wi , si )(
ϕ, σ, (in(c, x);P) | P′) in(c)

===⇒
∑

i ai · (ϕ′, σ[x 7→ wi , st 7→ si ],P | P′)

c ̸∈ chans(P) or P = (out(c, t).P0) A(1η, ϕ, σ[st]) =
∑

i ai · (wi , si )(
ϕ, σ,P

) in(c)
===⇒

∑
i ai · (ϕ′, σ[st 7→ si ],P)

Remark: dom(f )
def
= {x | f (x) defined} is the domain of the partial

function f .
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Process: Concrete Semantics

Transitivity rule:

(ϕ, σ,P) tr0==⇒
∑

i ai · (ϕi , σi ,Pi )

∀i . (ϕi , σi ,Pi )
tr1==⇒

∑
j bi ,j · (ϕi ,j , σi ,j ,Pi ,j)

(ϕ, σ,P)
tr0,tr1
=====⇒

∑
i ,j ai · bi ,j · (ϕi ,j , σi ,j ,Pi ,j)
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Process: Concrete Semantics

The relation =⇒ is non-deterministic.

Still, thanks to the restrictions on processes, different non-deterministic
choices yield identical distributions on frames:

(ϕ, σ,P) tr
=⇒

∑
i ai · (ϕi

0, σ
i
0,P

i
0)

∧ (ϕ, σ,P) tr
=⇒

∑
j bj · (ϕ

j
1, σ

j
1,P

j
1)

⇒
∑

i ai · ϕi
0 =

∑
j bj · ϕ

j
1

Thus, given a process P and a trace tr, if:

(ϵ, [st 7→ 0],P) tr
====⇒
L,A,η

∑
i

ai · (ϕi , σi ,Pi )

then the distribution
∑

i ai · ϕi is the concrete execution of P over tr,
denoted execηL,A(P, tr).
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A Motivating Example



Toy Protocol

We consider a toy protocol as a motivating example:

A : ν n. out(A, {n}k). out(A, n)
B : in(B, x). if dec(x, k) ̸= ⊥ then

in(B, y). out(B, dec(x, k) = y)

Security property.
B outputs false if A does not send its second message.

Assumptions. (informally)
We assume that the symmetric encryption {·}· is a secure AE:

• Integrity: if dec(m, k) ̸=⊥ then m is an honest encryption.
• Confidentiality: {m0}k and {m1}k are indistinguishable.

(when m0 and m1 are of the same length.)
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Security of our Toy Protocol

A : ν n. out(A, {n}k). out(A, n)
B : in(B, x). if dec(x, k) ̸= ⊥ then

in(B, y). out(B, dec(x, k) = y)

When executing the trace

out(A), in(B), in(B), out(B),

the adversary sees the messages:

{n}k , if
(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
where Φ1 = {n}k , and att1, att2 represents, resp., the first and second
inputs to B chosen by the adversary.
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Security of our Toy Protocol

Our toy protocol is secure if the following indistinguishability holds:

{n}k , if
(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then false
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Informal Security Proof

Using the integrity of the encryption, we have:(
dec(att1(Φ1), k) ̸=⊥

)
⇔

(
att1(Φ1) = {n}k

)
.

Thus:
{n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)

Using the confidentiality of the encryption, we can replace {n}k by {0η}k

(assuming len(n) = η). Thus:

{n}k , if
(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
≈ {0η}k , if

(
att1({0η}k) = {0η}k

)
then

(
n = att2({0η}k)

)
By probabilistic independence: n ̸= att2({0η}k) (overwhelmingly), yielding:

{0η}k , if
(
att1({0η}k) = {0η}k

)
then false

We conclude by a similar proof in the other direction.

31



Informal Security Proof

Using the integrity of the encryption, we have:(
dec(att1(Φ1), k) ̸=⊥

)
⇔

(
att1(Φ1) = {n}k

)
.

Thus:
{n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
Using the confidentiality of the encryption, we can replace {n}k by {0η}k

(assuming len(n) = η). Thus:

{n}k , if
(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
≈ {0η}k , if

(
att1({0η}k) = {0η}k

)
then

(
n = att2({0η}k)

)

By probabilistic independence: n ̸= att2({0η}k) (overwhelmingly), yielding:

{0η}k , if
(
att1({0η}k) = {0η}k

)
then false

We conclude by a similar proof in the other direction.

31



Informal Security Proof

Using the integrity of the encryption, we have:(
dec(att1(Φ1), k) ̸=⊥

)
⇔

(
att1(Φ1) = {n}k

)
.

Thus:
{n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
Using the confidentiality of the encryption, we can replace {n}k by {0η}k

(assuming len(n) = η). Thus:

{n}k , if
(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
≈ {0η}k , if

(
att1({0η}k) = {0η}k

)
then

(
n = att2({0η}k)

)
By probabilistic independence: n ̸= att2({0η}k) (overwhelmingly), yielding:

{0η}k , if
(
att1({0η}k) = {0η}k

)
then false

We conclude by a similar proof in the other direction. 31



Outline

Verification of Cryptographic Protocols

∀A ∈ C. (A || P) |= Φ

To build a verification framework from what we just did, we need to:

• represent the adversary/protocol interaction (A || P) as symbolic
terms;

• express the security property Φ using a logical formula;

• capture the cryptographic arguments |= as reasoning rules.
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Symbolic Protocol Execution

Goal: obtain symbolic representations of protocol executions that:

• faithfully model the protocol semantics;

• are amenable to formal reasoning.

How? Use the same techniques as in our motivating example.

• 1. Explicit probabilistic dependencies:
randomness is sampled eagerly and not lazily.

• 2. Pure encoding of the adversary:
no adversarial state.
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Symbolic Execution: Explicit Probabilistic Dependencies

1. Explicit probabilistic dependencies.

Key idea.
Sample randomness before-hand (eagerly), and retrieve it as needed.

Concretely, we rewrite a process P by moving randomness early:

P = E1 | · · · | El ⇔ (ν n⃗1.E′
1) | · · · | (ν n⃗l .E′

l)

⇔ ν n⃗1, . . . , n⃗l . (E′
1 | · · · | E′

l)

where (ν n⃗i .E′
i ) is Ei with all random samplings moved at the beginning.

and names are distincts:

∀i ̸= j . n⃗i ∩ n⃗j = ∅.
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Symbolic Execution: Explicit Probabilistic Dependencies

More precisely, Ei ⇝! (ν n⃗i .E′
i ) where ⇝ is defined by the rules:

(E0. ν n.E1)⇝ ν n. (E0.E1) (E0 | ν n.E1)⇝ ν n. (E0 | E1)

if b then ν n.E ⇝ ν n. if b then E

where n ̸∈ fv(E0) and n ̸∈ fv(b).

 Recall that process are taken modulo α-renaming.

Notations. E0 ⇝! E1 iff. E0 ⇝∗ E1 and E1 ̸⇝ E′ for all E′.
fv(E) and fv(t) are the free variables of, resp., E and t.
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Symbolic Executions: Pure Encoding of the Adversary

2. Pure encoding of the adversary.

We need a deterministic and stateless representation Ap of the
adversary A.

• deterministic: sample the adversary’s randomness ρa eagerly and
pass it as an explicit argument.

• stateless: Ap recomputes A’s state each time it is called.
 This exploits determinism, and requires us to
provide the full history each time we call Ap.
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Symbolic Executions: Pure Encoding of the Adversary

Informally, we want that:

A(w1) , . . . , A(wn)

=distr. Ap(w1 , ρa ) , . . . , Ap(w1, . . . ,wn , ρa )

where ρa is a long enough sequence of bits sampled independently
uniformly at random.

We call Ap a pure representation of A.

We do not detail it, but Ap can be systematically built from A.
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Terms



Terms

To define our symbolic execution rules, we need to extend our set of
term symbols S = N ⊎ X ⊎ F ⊎ G:

• Variables X .

• Function symbols F .

• Names N .

• Adversarial function symbols G, of any arity.

Changes.

• Names are no longer represented by variables in X , but by special
symbols in N with a tailored semantics (presented later).
(For the sack of simplicity, we asks that all names are of type message.)

• Adversarial function symbols G are used to represent calls to Ap.
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Adversarial function symbols

More precisely, if:

• there has already been n outputs, represented by the terms
t1, . . . , tn;

• and we are doing the j-th input since the protocol started;

then the input bitstring is represented by:

attj(t1, . . . , tn)

where attj ∈ G is an adversarial function symbol of arity n.

 j allows to have different values for consecutive inputs.
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Symbolic Executions

We describe a systematic method to compute, given a process P and a
trace tr of observable actions, the terms representing the outputted
messages during the execution of P over tr.

This is the symbolic execution of P over tr.

We deal with the protocol randomness and adversarial inputs using the
two techniques we just saw.
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Symbolic Configuration

Symbolic configuration

A symbolic configuration is a tuple (Φ;λ; j ; Π1, . . . ,Πl) where:

• Φ is a sequence of terms (in T (S)).
• λ is a finite sequence of mappings (x 7→ t) where t is a term.

• j ∈ N.

• for every i , Πi = (Pi , bi ) where Pi is a protocol and bi is a boolean
term.
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Symbolic Configuration: Intuition

In a symbolic configuration (Φ;λ; j ; Π1, . . . ,Πl):

• Φ is the frame, i.e. the sequence of terms outputted since the
execution started.

• λ records inputs, it maps input variable to their corresponding term.

• j counts the number of inputs since the execution started.

• (P, b) represent the protocol P if b is true (and is null otherwise).
Using this interpretation, Π1, . . . ,Πl is the current process.

Initial configuration: (ϵ; ∅; 0; (P,⊤))
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Symbolic Execution: Branching and Input Rules

Rule for protocol branching:

(Φ;λ; j ; (if b0 then P, b1),Π1, . . . ,Πl)

↪→ (Φ;λ; j ; (P, b0 ∧ b1),Π1, . . . ,Πl)

Rules for inputs:

(Φ;λ; j ; (in(c, x).P, b),Π1, . . . ,Πl)
in(c)
↪→ (Φ;λ[x 7→ attj(Φ)]; j + 1; (P, b),Π1, . . . ,Πl)

(x ̸∈ dom(λ))

(Φ;λ; j ; Π1, . . . ,Πl)
in(c)
↪→ (Φ;λ; j + 1; Π1, . . . ,Πl) (†)

where (†): c ̸∈ chans(Π1, . . . ,Πl) or ∃i s.t. Πi starts with out(c, ·).
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Symbolic Execution: Output Rule

Rules for outputs:

(Φ;λ; j ; (out(c, t).P, b),Π1, . . . ,Πl)

out(c)
↪→ (Φ, (if b then t)λ;λ; j ; (P, b),Π1, . . . ,Πl)

(Φ;λ; j ; Π1, . . . ,Πl)
out(c)
↪→ (Φ, error;λ; j ; Π1, . . . ,Πl) (‡)

where (‡): c ̸∈ chans(Π1, . . . ,Πl) or ∃i s.t. Πi starts with out(c, ·).

 The input and output rules make sense because we restrict ourselves to
elementary processes with distinct channels.
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Symbolic Execution

Given a process P (without ν ) and a trace tr, if:

(ϵ; ∅; 0; (P,⊤))
tr
↪→ (Φ;_;_;_)

then Φ is the symbolic execution of P over tr, denoted s-exec(P, tr) .

Handling the ν construct.
If P contains ν , we compute P0 s.t. P ⇝! ν n⃗. P0 with n⃗ ∈ N , and then
symbolically execute P0.
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Symbolic Execution: Soundness

Claim (informal).
The symbolic execution is sound w.r.t. the concrete semantics.
More precisely, for every library L, adversary A, and security parameter η:

execηL,A(P, tr) =distr. Js-exec(P, tr)Kη,ρ
L[att 7→Ap]

where:

• ρ is sampled uniformly at random among bitstrings of sufficient
length.

• Ap is a pure representation of A.

Remark: JtKη,ρM is the semantics of the terms coming from the symbolic
execution, which we define in the next section.
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Symbolic Execution: Exercises

Exercise
What are all the possible symbolic executions of the following
protocols?

in(c, x). out(c, t) out(A, t1) | in(B, x). out(B, t2)

if b then out(c, t1) else out(c, t2) if b then out(A, t1) else out(B, t2)

Exercise
Extend the symbolic algorithm with a rule allowing to handle processes
with let bindings.
Could the same thing be done for mutable, inter-process, state?
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Semantics of Terms

We showed how to represent protocol execution, on some fixed trace of
observables tr, as a sequence of terms.

Intuitively, the terms corresponds to PTIME-computable bitstring
distributions.

Example

If ⟨_ , _⟩ is the concatenation, and samplings are done uniformly at
random among bitstrings of length η ∈ N, then:

ν n0, ν n1, out(c, ⟨n0 , ⟨00 , n1⟩⟩) yields ⟨n0 , ⟨00 , n1⟩⟩

which represent a distribution over bitstrings of length 2 · η + 2, where
all bits are sampled uniformly and independently, except for the bits at
positions η and η + 1, which are always 0.
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Semantics of Terms

We interpret t ∈ T (S) as a Probabilistic Polynomial-time Turing
machine (PPTM), with:

• a working tape (also used as input tape);

• two read-only tapes ρ = (ρa, ρh) for adversary and honest
randomness.

We let D be the set of such machines.

 The machine must be polynomial in the size of its input on the
working tape only.
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Terms Interpretation

The interpretation JtKM ∈ D of a term t is parameterized by a model M
which provides:

• the set of random tapes TM,η = T a
M,η × T h

M,η, where T a
M,η and T h

M,η

are finite same-length set of bit-strings.
We equip it with the uniform probability measure.
(T a

M,η for the adversary, T h
M,η for honest functions)

• the semantics L·MM of symbols in S (details on next slides).
(This extends the interpretation L·ML of symbols by a library L.)

We may omit M when it is clear from context.

We define the machine JtKM ∈ D, by defining its behavior JtKη,ρM for every
η ∈ N and pairs of random tapes ρ = (ρa, ρh) ∈ TM,η.
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Terms Interpretation: Function Symbols

Function symbols interpretations is just composition.

For function symbols in f ∈ F , we simply apply Lf MM:

Jf (t1, . . . , tn)K
η,ρ
M

def
= Lf MM(1

η, Jt1K
η,ρ
M , . . . , JtnK

η,ρ
M )

Adversarial function symbols g ∈ G also have access to ρa:

Jg(t1, . . . , tn)K
η,ρ
M

def
= LgMM(1

η, Jt1K
η,ρ
M , . . . , JtnK

η,ρ
M , ρa)

Restrictions. Lf MM and LgMM are:

• PTIME-computable;

• deterministic (all randomness must come explicitly, from ρ).
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Terms Interpretation: Variables and Names

The interpretation LxMM of a variable x ∈ X is an arbitrary machine
in D. Then:

JxKη,ρM

def
= LxMM(1

η, ρ).

Names n ∈ G are interpreted as uniform random samplings among
bitstrings of length η, extracted from ρh:

JnKη,ρM

def
= LnMM(1η, ρh)

For every pair of different names n0, n1, we require that Ln0MM and Ln1MM
extracts disjoint parts of ρh.
 Hence different names are independent random samplings.
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Terms Interpretation: Names

Examples
• If (n, n0 : message) then:

JnKη =distr. sample w in {0, 1}η

J(n, n0)Kη =distr. sample w in {0, 1}η

sample w ′ in {0, 1}η independently
build (w ,w ′)

J(n, n)Kη =distr. sample w in {0, 1}η

build (w ,w)

Indeed:

J(n, n)Kη,ρ = (JnKη,ρ, JnKη,ρ) = (w ,w) (where w = LnM(1η, ρh))
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Terms Interpretation: Modeling and Randomness

̸= in how randomness is sampled:

• In the “real-world” , the adversary A samples randomness on-the-fly,
as needed.
⇒ possibly P(η) random bits, where P is the (polynomial)
running-time of A.

• In the logic, we restrict TM,η = T a
M,η × T h

M,η to be finite and fixed
by M.
⇒ all randomness sampled eagerly according to M, independently of
the adversary A.

This ̸= of behaviors is not an issue, i.e. the logic can soundly model
real-world adversaries:

• Indeed, for any adversary A, there exists a model M with enough
randomness. 54
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