
MPRI 2.30: Proofs of Security Protocols

1. The CCSA Approach to Computational Security

Adrien Koutsos

2024/2025

Introduction

Context

Security Protocols

• Distributed programs which aim at providing some security
properties.

• Uses cryptographic primitives: e.g. encryption.

2

Context: Security Properties

There is a large variety of security properties that such protocols must
provide.

Confidentiality
Authentication

Privacy

Privacy

3

Context: Attacker Model

Against whom should these properties hold?

• concretely, in the real world: malicious individuals, corporations,
state agencies, ...

• more abstractly, one (or many) computers sitting on the network.

Abstract attacker model
• Network capabilities: worst-case scenario:

eavesdrop, block and forge messages.

• Computational capabilities: the adversary’s
computational power.

• Side-channels capabilities: observing the
agents (e.g. time, power-consumption)
⇒ not in this lecture.

4

BAC Protocol (simplified)

The Basic Access Control protocol in
e-passports:

• uses an RFID tag.

• guard access to information stored.

• should guarantee data
confidentiality and user privacy.

Some security mechanisms:

• integrity: obtaining key k requires
physical access.

• no replay: random nonce n, old
messages cannot be re-used.

n

enck(n, . . .)

ok(· · ·)

(valid key + no replay)

5

BAC Protocol (simplified)

Privacy: Unlinkability
No adversary can know whether it inter-
acted with a particular user, in any con-
text.

Example. For two user sessions:

att
(

,

)
=

, ?

, ?

French version of BAC:

• ̸= error messages for replay and
integrity checks.

⇒ unlinkability attack.

n

enck(n, . . .)

ok(· · ·)

6

BAC Protocol: Privacy Attack

n0

enck(n0, . . .)

ok(· · ·)

n1

enck(n0, . . .)

replay error

n1

enck(n0, . . .)

integrity error

7

BAC Protocol: Lessons

Take-away lessons:

• This is a protocol-level attack: no issue with cryptography:
⇒ cryptographic primitives are but an ingredient.

• Innocuous-looking changes can break security:
⇒ designing security protocols is hard.

How to get a strong confidence in a protocol’s security guarantees?

8

High-Confidence Security Guarantees

Verification
Formal mathematical proof of security protocols:

S |= Φ

system satisfies property

• Must be sound: proof ⇒ property always holds.

• Usually undecidable: approaches either incomplete or interactive.

• Machine-checked proofs yield a high degree of confidence.
▶ general-purpose tools (e.g. Coq and Lean).
▶ in security protocol analysis, mostly dedicated tools.

E.g. CryptoVerif, EasyCrypt, Squirrel.

9

Computer-aided Verification of Cryptographic Protocols

Goal
Design formal frameworks allowing for mechanized verification of
cryptographic protocols.

• At the intersection of cryptography and verification.

• Particular verification challenges:
▶ small or medium-sized programs
▶ complex properties
▶ concurrent and probabilistic programs + arbitrary adversary

10

The CCSA Approach to Cryptographic Protocol Verification

The Computationally Complete Symbolic Attacker (CCSA) [1] is a
framework in the computational model for the verification of
cryptographic protocols.

Key ingredients

• Protocol executions modeled as pure symbolic terms.

• A probabilistic logic.
⇒ interpret terms as PTIME-computable bitstring distributions.

• Reasoning rules capturing cryptographic arguments.

• Abstract approach: no probabilities, no security parameter.

11

Outline

Introduction

Processes

Terms

Process Semantics

A Motivating Example

Symbolic Protocol Execution

Terms

Symbolic Rules

Semantics of Terms

12

Processes

Process: Syntax

Elementary processes:

E ::= in(c, x) | out(c, t) | ν n | if b then E |
E.E | null

(c ∈ C, x, n ∈ X)

where C is a set of channel symbols and X a set of variables.

Processes:

P0 ::= E | (P0 | P0) P ::= P0 | ν n.P (n ∈ X)

We let chans(P) be the channels of a process P.

Restrictions: elementary process must use a single channel, and distinct
elementary processes must use distinct channels. I.e. if P = E1 | · · · | En

then ∀i . |chans(Ei)| ≤ 1 ∀i ̸= j , chans(Ei) ∩ chans(Ej) = ∅.

13

Example of a Protocol

As an example, we consider a simple authentication protocol:

The Private Authentication (PA) Protocol, v1

I = ν nI. out(I, {⟨pkI , nI⟩}pkS
)

S = ν nS. in(S, x). out(S, {⟨π2(dec(x, skI)) , nS⟩}pkI
)

where pkI ≡ pk(kI) and pkS ≡ pk(kS).

The full protocol is ν kI. ν kS.
(
I | S

)
.

Notation: ≡ denotes syntactic equality of terms.

14

Processes

Terms

Terms

We use terms to model protocol messages, built upon a set of symbols
S which includes:

• Variables X , used, e.g. x in in(A, x) or n in ν n.

• Function symbols F , e.g.:

A, B, ⟨· , ·⟩, π1(·), π2(·), {·}··, pk(·), sk(·),
if · then · else·, ·= ·, · ∧ ·, · ∨ ·, · → ·

We note T (S) the set of well-typed (see next slide) terms over
symbols S. Terms are usually written t, and boolean terms b.

Examples

pk(kA) {⟨pkA , nA⟩}pkB
π1(nA)

15

Terms: Types

Types
Each symbol s ∈ S comes with a type type(s) of the form:

(τ1
b ⋆ · · · ⋆ τnb) → τb or τb

where τ1
b , . . . , τ

n
b , τb are all base types in B.

• We ask that B contains at least the message and bool types.

• We restrict variables to base types, i.e.:

∀x ∈ X , type(x) ∈ B.

• We require that terms are well-typed and of a base type:

⊢ t : τb where τb ∈ B.

16

Terms: Semantics

The interpretation ⟨|t|⟩η,σL of a term t as a bitstring is parameterized by:

• the security parameter η;

• a library L which provides the semantics L·ML of symbols in F
(details on next slides);

• the valuation σ : X ↪→ {0, 1}∗ maps variables to their values.1

We may omit σ, L and η when they are clear from the context.

1f : A ↪→ B denotes a partial f function from A to B.

17

Terms: Semantics

Function symbols.
For a function symbols f ∈ F , we simply apply Lf ML:

⟨|f (t1, . . . , tn)|⟩η,σL

def
= Lf ML(1

η, ⟨|t1|⟩η,σL , . . . , ⟨|tn|⟩η,σL)

Restriction: Lf ML must be poly-time computable and deterministic.

Variables.
The interpretation ⟨|x |⟩η,σL of a variable x ∈ X is given by the valuation σ:

⟨|x|⟩η,σL

def
= σ(x)

18

Terms: Builtins

We force the interpretation of some function symbols.

• if · then · else· is interpreted as branching:

Lif · then · else·MM(b, v1, v2)
def
=

v1 if b = 1

v2 otherwise

• ·= · is interpreted as an equality test:

L·= ·MM(v1, v2)
def
=

1 if v1 = v2

0 otherwise

Similarly, we force the interpretations of ∧,∨,→, true, false.

19

Processes

Process Semantics

Process: Concrete Configuration

A concrete configuration is a tuple (ϕ, σ,P) representing a partially
executed process where:

• the concrete frame ϕ is the sequence bitstrings
w1, . . . ,wn ∈ {0, 1}∗ outputted since the protocol execution started.

• the valuation σ.

• the process P is the process that remains to be executed.

A concrete configuration records the current state of an execution.

Initial configuration: (ϵ, [st 7→ 0],P)

• st is a special variable used to store the adversarial state.

20

Finite Distributions

Processes are probabilistic:
⇒ The semantics of a process is a distribution of configurations.

Discrete distributions.
A discrete distribution over a set S is a formal sum

∑
i∈I ai · si where:

I is countable
∑

i∈I ai = 1 ai ≥ 0 for any i ∈ I

Examples

• 1
3 · ”0” + 2

3 · ”42”

• 1
2 · 0 + 1

2 · 1 (unbiased coin flip).

21

Process: Concrete Semantics

A trace tr is a sequence of observable actions α1, . . . , αn. The trace
tr represents a protocol/adversary interaction scenario.

α ::= in(c) | out(c) tr ::= ϵ | α | tr, tr (where c ∈ C)

The concrete semantics is given by the relation (see next slides):

(ϕ, σ,P) tr
====⇒
L,A,η

∑
i∈I

ai · (ϕi , σi ,Pi)

Adversary. A is a stateful, probabilistic and poly-time program.

Notations. We omit A,L, η when they are fixed or clear from context.
Further, we write =⇒ instead of ϵ

=⇒.

22

Process: Concrete Semantics

Structural rules:

(ϕ, σ,null | P) =⇒ (ϕ, σ,P) (ϕ, σ,P) =⇒ (ϕ, σ,P′) when P ≈AC P′

where ≈AC is the small congruence relation over processes which
contains:

• commutativity P0 | P1 ≈AC P1 | P0;

• associativity (P0 | P1) | P2 ≈AC P0 | (P1 | P2);

• α-renaming ν n0.P ≈AC ν n1.P[n0 7→ n1]

(same for inputs in(c, x).P).

23

Process: Concrete Semantics

Branching rules:

⟨|b|⟩η,σL = true

(ϕ, σ, if b then P | P′) =⇒ (ϕ, σ,P | P′)

⟨|b|⟩η,σL = false

(ϕ, σ, if b then P | P′) =⇒ (ϕ, σ,P′)

Output rules:

ϕ′ = (ϕ, ⟨|t|⟩η,σL)(
ϕ, σ, (out(c, t);P) | P′) out(c)

====⇒ (ϕ′, σ,P | P′)

ϕ′ = (ϕ, error)
c ̸∈ chans(P) or P = (in(c, x).P0)(

ϕ, σ,P
) out(c)
====⇒ (ϕ′, σ,P)

24

Process: Concrete Semantics

New rule:
n ̸∈ dom(σ)(

ϕ, σ, (ν n;P) | P′)=⇒∑
|w |=η

1
2η · (ϕ, σ[n 7→ w],P | P′)

Input rule:

x ̸∈ dom(σ) A(1η, ϕ, σ[st]) =
∑

i ai · (wi , si)(
ϕ, σ, (in(c, x);P) | P′) in(c)

===⇒
∑

i ai · (ϕ′, σ[x 7→ wi , st 7→ si],P | P′)

c ̸∈ chans(P) or P = (out(c, t).P0) A(1η, ϕ, σ[st]) =
∑

i ai · (wi , si)(
ϕ, σ,P

) in(c)
===⇒

∑
i ai · (ϕ′, σ[st 7→ si],P)

Remark: dom(f)
def
= {x | f (x) defined} is the domain of the partial

function f .

25

Process: Concrete Semantics

Transitivity rule:

(ϕ, σ,P) tr0==⇒
∑

i ai · (ϕi , σi ,Pi)

∀i . (ϕi , σi ,Pi)
tr1==⇒

∑
j bi ,j · (ϕi ,j , σi ,j ,Pi ,j)

(ϕ, σ,P)
tr0,tr1
=====⇒

∑
i ,j ai · bi ,j · (ϕi ,j , σi ,j ,Pi ,j)

26

Process: Concrete Semantics

The relation =⇒ is non-deterministic.

Still, thanks to the restrictions on processes, different non-deterministic
choices yield identical distributions on frames:

(ϕ, σ,P) tr
=⇒

∑
i ai · (ϕi

0, σ
i
0,P

i
0)

∧ (ϕ, σ,P) tr
=⇒

∑
j bj · (ϕ

j
1, σ

j
1,P

j
1)

⇒
∑

i ai · ϕi
0 =

∑
j bj · ϕ

j
1

Thus, given a process P and a trace tr, if:

(ϵ, [st 7→ 0],P) tr
====⇒
L,A,η

∑
i

ai · (ϕi , σi ,Pi)

then the distribution
∑

i ai · ϕi is the concrete execution of P over tr,
denoted execηL,A(P, tr).

27

A Motivating Example

Toy Protocol

We consider a toy protocol as a motivating example:

A : ν n. out(A, {n}k). out(A, n)
B : in(B, x). if dec(x, k) ̸= ⊥ then

in(B, y). out(B, dec(x, k) = y)

Security property.
B outputs false if A does not send its second message.

Assumptions. (informally)
We assume that the symmetric encryption {·}· is a secure AE:

• Integrity: if dec(m, k) ̸=⊥ then m is an honest encryption.
• Confidentiality: {m0}k and {m1}k are indistinguishable.

(when m0 and m1 are of the same length.)

28

Security of our Toy Protocol

A : ν n. out(A, {n}k). out(A, n)
B : in(B, x). if dec(x, k) ̸= ⊥ then

in(B, y). out(B, dec(x, k) = y)

When executing the trace

out(A), in(B), in(B), out(B),

the adversary sees the messages:

{n}k , if
(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
where Φ1 = {n}k , and att1, att2 represents, resp., the first and second
inputs to B chosen by the adversary.

29

Security of our Toy Protocol

Our toy protocol is secure if the following indistinguishability holds:

{n}k , if
(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then false

30

Informal Security Proof

Using the integrity of the encryption, we have:(
dec(att1(Φ1), k) ̸=⊥

)
⇔

(
att1(Φ1) = {n}k

)
.

Thus:
{n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)

Using the confidentiality of the encryption, we can replace {n}k by {0η}k

(assuming len(n) = η). Thus:

{n}k , if
(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
≈ {0η}k , if

(
att1({0η}k) = {0η}k

)
then

(
n = att2({0η}k)

)
By probabilistic independence: n ̸= att2({0η}k) (overwhelmingly), yielding:

{0η}k , if
(
att1({0η}k) = {0η}k

)
then false

We conclude by a similar proof in the other direction.

31

Informal Security Proof

Using the integrity of the encryption, we have:(
dec(att1(Φ1), k) ̸=⊥

)
⇔

(
att1(Φ1) = {n}k

)
.

Thus:
{n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
Using the confidentiality of the encryption, we can replace {n}k by {0η}k

(assuming len(n) = η). Thus:

{n}k , if
(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
≈ {0η}k , if

(
att1({0η}k) = {0η}k

)
then

(
n = att2({0η}k)

)

By probabilistic independence: n ̸= att2({0η}k) (overwhelmingly), yielding:

{0η}k , if
(
att1({0η}k) = {0η}k

)
then false

We conclude by a similar proof in the other direction.

31

Informal Security Proof

Using the integrity of the encryption, we have:(
dec(att1(Φ1), k) ̸=⊥

)
⇔

(
att1(Φ1) = {n}k

)
.

Thus:
{n}k , if

(
dec(att1(Φ1), k) ̸=⊥

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
dec(att1(Φ1), k) = att2(Φ1)

)
≈ {n}k , if

(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
Using the confidentiality of the encryption, we can replace {n}k by {0η}k

(assuming len(n) = η). Thus:

{n}k , if
(
att1(Φ1) = {n}k

)
then

(
n = att2(Φ1)

)
≈ {0η}k , if

(
att1({0η}k) = {0η}k

)
then

(
n = att2({0η}k)

)
By probabilistic independence: n ̸= att2({0η}k) (overwhelmingly), yielding:

{0η}k , if
(
att1({0η}k) = {0η}k

)
then false

We conclude by a similar proof in the other direction. 31

Outline

Verification of Cryptographic Protocols

∀A ∈ C. (A || P) |= Φ

To build a verification framework from what we just did, we need to:

• represent the adversary/protocol interaction (A || P) as symbolic
terms;

• express the security property Φ using a logical formula;

• capture the cryptographic arguments |= as reasoning rules.

32

Symbolic Protocol Execution

Symbolic Protocol Execution

Goal: obtain symbolic representations of protocol executions that:

• faithfully model the protocol semantics;

• are amenable to formal reasoning.

How? Use the same techniques as in our motivating example.

• 1. Explicit probabilistic dependencies:
randomness is sampled eagerly and not lazily.

• 2. Pure encoding of the adversary:
no adversarial state.

33

Symbolic Execution: Explicit Probabilistic Dependencies

1. Explicit probabilistic dependencies.

Key idea.
Sample randomness before-hand (eagerly), and retrieve it as needed.

Concretely, we rewrite a process P by moving randomness early:

P = E1 | · · · | El ⇔ (ν n⃗1.E′
1) | · · · | (ν n⃗l .E′

l)

⇔ ν n⃗1, . . . , n⃗l . (E′
1 | · · · | E′

l)

where (ν n⃗i .E′
i) is Ei with all random samplings moved at the beginning.

and names are distincts:

∀i ̸= j . n⃗i ∩ n⃗j = ∅.

34

Symbolic Execution: Explicit Probabilistic Dependencies

More precisely, Ei ⇝! (ν n⃗i .E′
i) where ⇝ is defined by the rules:

(E0. ν n.E1)⇝ ν n. (E0.E1) (E0 | ν n.E1)⇝ ν n. (E0 | E1)

if b then ν n.E ⇝ ν n. if b then E

where n ̸∈ fv(E0) and n ̸∈ fv(b).

 Recall that process are taken modulo α-renaming.

Notations. E0 ⇝! E1 iff. E0 ⇝∗ E1 and E1 ̸⇝ E′ for all E′.
fv(E) and fv(t) are the free variables of, resp., E and t.

35

Symbolic Executions: Pure Encoding of the Adversary

2. Pure encoding of the adversary.

We need a deterministic and stateless representation Ap of the
adversary A.

• deterministic: sample the adversary’s randomness ρa eagerly and
pass it as an explicit argument.

• stateless: Ap recomputes A’s state each time it is called.
 This exploits determinism, and requires us to
provide the full history each time we call Ap.

36

Symbolic Executions: Pure Encoding of the Adversary

Informally, we want that:

A(w1) , . . . , A(wn)

=distr. Ap(w1 , ρa) , . . . , Ap(w1, . . . ,wn , ρa)

where ρa is a long enough sequence of bits sampled independently
uniformly at random.

We call Ap a pure representation of A.

We do not detail it, but Ap can be systematically built from A.

37

Symbolic Protocol Execution

Terms

Terms

To define our symbolic execution rules, we need to extend our set of
term symbols S = N ⊎ X ⊎ F ⊎ G:

• Variables X .

• Function symbols F .

• Names N .

• Adversarial function symbols G, of any arity.

Changes.

• Names are no longer represented by variables in X , but by special
symbols in N with a tailored semantics (presented later).
(For the sack of simplicity, we asks that all names are of type message.)

• Adversarial function symbols G are used to represent calls to Ap.

38

Adversarial function symbols

More precisely, if:

• there has already been n outputs, represented by the terms
t1, . . . , tn;

• and we are doing the j-th input since the protocol started;

then the input bitstring is represented by:

attj(t1, . . . , tn)

where attj ∈ G is an adversarial function symbol of arity n.

 j allows to have different values for consecutive inputs.

39

Symbolic Protocol Execution

Symbolic Rules

Symbolic Executions

We describe a systematic method to compute, given a process P and a
trace tr of observable actions, the terms representing the outputted
messages during the execution of P over tr.

This is the symbolic execution of P over tr.

We deal with the protocol randomness and adversarial inputs using the
two techniques we just saw.

40

Symbolic Configuration

Symbolic configuration

A symbolic configuration is a tuple (Φ;λ; j ; Π1, . . . ,Πl) where:

• Φ is a sequence of terms (in T (S)).
• λ is a finite sequence of mappings (x 7→ t) where t is a term.

• j ∈ N.

• for every i , Πi = (Pi , bi) where Pi is a protocol and bi is a boolean
term.

41

Symbolic Configuration: Intuition

In a symbolic configuration (Φ;λ; j ; Π1, . . . ,Πl):

• Φ is the frame, i.e. the sequence of terms outputted since the
execution started.

• λ records inputs, it maps input variable to their corresponding term.

• j counts the number of inputs since the execution started.

• (P, b) represent the protocol P if b is true (and is null otherwise).
Using this interpretation, Π1, . . . ,Πl is the current process.

Initial configuration: (ϵ; ∅; 0; (P,⊤))

42

Symbolic Execution: Branching and Input Rules

Rule for protocol branching:

(Φ;λ; j ; (if b0 then P, b1),Π1, . . . ,Πl)

↪→ (Φ;λ; j ; (P, b0 ∧ b1),Π1, . . . ,Πl)

Rules for inputs:

(Φ;λ; j ; (in(c, x).P, b),Π1, . . . ,Πl)
in(c)
↪→ (Φ;λ[x 7→ attj(Φ)]; j + 1; (P, b),Π1, . . . ,Πl)

(x ̸∈ dom(λ))

(Φ;λ; j ; Π1, . . . ,Πl)
in(c)
↪→ (Φ;λ; j + 1; Π1, . . . ,Πl) (†)

where (†): c ̸∈ chans(Π1, . . . ,Πl) or ∃i s.t. Πi starts with out(c, ·).

43

Symbolic Execution: Output Rule

Rules for outputs:

(Φ;λ; j ; (out(c, t).P, b),Π1, . . . ,Πl)

out(c)
↪→ (Φ, (if b then t)λ;λ; j ; (P, b),Π1, . . . ,Πl)

(Φ;λ; j ; Π1, . . . ,Πl)
out(c)
↪→ (Φ, error;λ; j ; Π1, . . . ,Πl) (‡)

where (‡): c ̸∈ chans(Π1, . . . ,Πl) or ∃i s.t. Πi starts with out(c, ·).

 The input and output rules make sense because we restrict ourselves to
elementary processes with distinct channels.

44

Symbolic Execution

Given a process P (without ν) and a trace tr, if:

(ϵ; ∅; 0; (P,⊤))
tr
↪→ (Φ;_;_;_)

then Φ is the symbolic execution of P over tr, denoted s-exec(P, tr) .

Handling the ν construct.
If P contains ν , we compute P0 s.t. P ⇝! ν n⃗. P0 with n⃗ ∈ N , and then
symbolically execute P0.

45

Symbolic Execution: Soundness

Claim (informal).
The symbolic execution is sound w.r.t. the concrete semantics.
More precisely, for every library L, adversary A, and security parameter η:

execηL,A(P, tr) =distr. Js-exec(P, tr)Kη,ρ
L[att 7→Ap]

where:

• ρ is sampled uniformly at random among bitstrings of sufficient
length.

• Ap is a pure representation of A.

Remark: JtKη,ρM is the semantics of the terms coming from the symbolic
execution, which we define in the next section.

46

Symbolic Execution: Exercises

Exercise
What are all the possible symbolic executions of the following
protocols?

in(c, x). out(c, t) out(A, t1) | in(B, x). out(B, t2)

if b then out(c, t1) else out(c, t2) if b then out(A, t1) else out(B, t2)

Exercise
Extend the symbolic algorithm with a rule allowing to handle processes
with let bindings.
Could the same thing be done for mutable, inter-process, state?

47

Semantics of Terms

Semantics of Terms

We showed how to represent protocol execution, on some fixed trace of
observables tr, as a sequence of terms.

Intuitively, the terms corresponds to PTIME-computable bitstring
distributions.

Example

If ⟨_ , _⟩ is the concatenation, and samplings are done uniformly at
random among bitstrings of length η ∈ N, then:

ν n0, ν n1, out(c, ⟨n0 , ⟨00 , n1⟩⟩) yields ⟨n0 , ⟨00 , n1⟩⟩

which represent a distribution over bitstrings of length 2 · η + 2, where
all bits are sampled uniformly and independently, except for the bits at
positions η and η + 1, which are always 0.

48

Semantics of Terms

We interpret t ∈ T (S) as a Probabilistic Polynomial-time Turing
machine (PPTM), with:

• a working tape (also used as input tape);

• two read-only tapes ρ = (ρa, ρh) for adversary and honest
randomness.

We let D be the set of such machines.

 The machine must be polynomial in the size of its input on the
working tape only.

49

Terms Interpretation

The interpretation JtKM ∈ D of a term t is parameterized by a model M
which provides:

• the set of random tapes TM,η = T a
M,η × T h

M,η, where T a
M,η and T h

M,η

are finite same-length set of bit-strings.
We equip it with the uniform probability measure.
(T a

M,η for the adversary, T h
M,η for honest functions)

• the semantics L·MM of symbols in S (details on next slides).
(This extends the interpretation L·ML of symbols by a library L.)

We may omit M when it is clear from context.

We define the machine JtKM ∈ D, by defining its behavior JtKη,ρM for every
η ∈ N and pairs of random tapes ρ = (ρa, ρh) ∈ TM,η.

50

Terms Interpretation: Function Symbols

Function symbols interpretations is just composition.

For function symbols in f ∈ F , we simply apply Lf MM:

Jf (t1, . . . , tn)K
η,ρ
M

def
= Lf MM(1

η, Jt1K
η,ρ
M , . . . , JtnK

η,ρ
M)

Adversarial function symbols g ∈ G also have access to ρa:

Jg(t1, . . . , tn)K
η,ρ
M

def
= LgMM(1

η, Jt1K
η,ρ
M , . . . , JtnK

η,ρ
M , ρa)

Restrictions. Lf MM and LgMM are:

• PTIME-computable;

• deterministic (all randomness must come explicitly, from ρ).

51

Terms Interpretation: Variables and Names

The interpretation LxMM of a variable x ∈ X is an arbitrary machine
in D. Then:

JxKη,ρM

def
= LxMM(1

η, ρ).

Names n ∈ G are interpreted as uniform random samplings among
bitstrings of length η, extracted from ρh:

JnKη,ρM

def
= LnMM(1η, ρh)

For every pair of different names n0, n1, we require that Ln0MM and Ln1MM
extracts disjoint parts of ρh.
 Hence different names are independent random samplings.

52

Terms Interpretation: Names

Examples
• If (n, n0 : message) then:

JnKη =distr. sample w in {0, 1}η

J(n, n0)Kη =distr. sample w in {0, 1}η

sample w ′ in {0, 1}η independently
build (w ,w ′)

J(n, n)Kη =distr. sample w in {0, 1}η

build (w ,w)

Indeed:

J(n, n)Kη,ρ = (JnKη,ρ, JnKη,ρ) = (w ,w) (where w = LnM(1η, ρh))

53

Terms Interpretation: Modeling and Randomness

̸= in how randomness is sampled:

• In the “real-world” , the adversary A samples randomness on-the-fly,
as needed.
⇒ possibly P(η) random bits, where P is the (polynomial)
running-time of A.

• In the logic, we restrict TM,η = T a
M,η × T h

M,η to be finite and fixed
by M.
⇒ all randomness sampled eagerly according to M, independently of
the adversary A.

This ̸= of behaviors is not an issue, i.e. the logic can soundly model
real-world adversaries:

• Indeed, for any adversary A, there exists a model M with enough
randomness. 54

References i

[1] G. Bana and H. Comon-Lundh.
A computationally complete symbolic attacker for equivalence
properties.
In CCS, pages 609–620. ACM, 2014.

	Introduction
	Processes
	Terms
	Process Semantics

	A Motivating Example
	Symbolic Protocol Execution
	Terms
	Symbolic Rules

	Semantics of Terms
	Appendix

