
MPRI 2.30: Proofs of Security Protocols

2. The CCSA Logic

Adrien Koutsos

2024/2025

Outline

The CCSA Logic

Proof System

Structuring Rules

Basic Single-Step Reasoning Rules

Implementation Rules

Cryptographic Rules

2

The CCSA Logic

The CCSA Logic

We now present a logic, to state (and later prove) properties about
bitstring distributions.

This is a first-order logic with a predicate ∼1 representing
computational indistinguishability.

Φ := ⊤̃ | ⊥̃
| Φ ∧̃ Φ | Φ ∨̃ Φ | Φ →̃ Φ | ¬̃Φ

| ∀̃x.Φ | ∃̃x.Φ (x ∈ X)

| t1, . . . , tn ∼n tn+1, . . . , t2n (t1, . . . , t2n ∈ T (S))

Remark: we use ∧̃, ∨̃, →̃, . . . for the logical connectives, to avoid
confusion with the boolean function symbols ∧,∨,→, . . . in terms.
1Actually, one predicate ∼n of arity 2n for every n ∈ N.

3

Semantics of the Logic

The logic has a standard FO semantics, using D as interpretation
domain and interpreting ∼ as computational indistinguishability.

The satisfaction M |= Φ of Φ in M is as expected for boolean
connective and FO quantifiers. E.g.:

M |= ⊤̃ M |= Φ ∧̃Ψ if M |= Φ and M |= Ψ

M |= ¬̃Φ if not M |= Φ M |= ∀̃x.Φ if ∀m ∈ D, M[x 7→ m] |= Φ

4

Semantics of the Logic

Finally, ∼n is interpreted as computational indistinguishability.

M |= t1, . . . , tn ∼n s1, . . . , sn

if, for every PPTM A with a n + 1 input (and working) tapes, and a
single random tape:∣∣∣∣∣ Prρ (A(1η, (JtiK

η,ρ
M)1≤i≤n, ρa) = 1)

− Prρ (A(1η, (JsiK
η,ρ
M)1≤i≤n, ρa) = 1)

∣∣∣∣∣ (⋆)

is a negligible function of η.

The quantity in (⋆) is called the advantage of A against the left/right
game t1, . . . , tn ∼n s1, . . . , sn

5

Negligible Functions

A function f (η) is negligible, which we write f ∈ negl(η), if it is
asymptotically smaller than the inverse of any polynomial, i.e.:

∀c ∈ N,∃N ∈ N s.t. ∀n ≥ N, f (n) ≤ 1
nc

Example
Let f be the function defined by:

f (η)
def
= Prρ

(
Jn0Kη,ρ = Jn1Kη,ρ

)
If n0 ̸≡ n1, then f (η) = 1

2η , and f is negligible.

6

Satisfiability and Validity

A formula Φ is satisfied by a model M when M |= Φ.

Φ is valid, denoted by |= Φ, if it is satisfied by every model.

Φ is C-valid if it is satisfied by every model M ∈ C.

7

Protocol Indistinguishability

P and Q are indistinguishable, written P ≈ Q, if for any τ :

|= s-exec(P, τ) ∼ s-exec(Q, τ)

Remark
While there are countably many observable traces τ , the set of foldings
of a protocol P is always finite:2∣∣{s-exec(P, τ) | τ}∣∣ < +∞

2If we remove trailing sequences of error terms.

8

Exercise: Negligibility

Exercise
Show the following properties:

• If f ∈ negl(η) and g ∈ negl(η) then f + g ∈ negl(η).

• Idem, but for max(f , g) and min(f , g).

• Take a polynomial P . If, for every 1 ≤ i ≤ P(η), fi ∈ negl(η), then∑
1≤i≤P(η) fi is not necessarily negligible.

• Show that
∑

1≤i≤P(η) fi is negligible if there exists f ∈ negl(η)
uniformly bounding the fi ’s, i.e. s.t. fi (η) ≤ f (η) for every i , η.

9

Exercise: Validity

Exercise
Which of the formulas below are valid? Which are not?

̸|=

true ∼ false

|=

n0 ∼ n0

|=

n0 ∼ n1

|=

n0 = n1 ∼ false

̸|=

n0, n0 ∼ n0, n1

|=

f (n0) ∼ f (n1) where f ∈ F ∪ G

̸|=

π1(⟨n0 , n1⟩) = n0 ∼ true

10

Exercise: Validity

Exercise
Which of the formulas below are valid? Which are not?

̸|= true ∼ false |= n0 ∼ n0 |= n0 ∼ n1 |= n0 = n1 ∼ false

̸|= n0, n0 ∼ n0, n1 |= f (n0) ∼ f (n1) where f ∈ F ∪ G

̸|= π1(⟨n0 , n1⟩) = n0 ∼ true

10

Exercise: Protocol Indistinguishability

Exercise
Informally, determine which of the following protocols
indistinguishabilities hold, and under what assumptions:

out(c, t1) ≈ out(c, t2) out(c, t) ≈ null in(c, x) ≈ null

out(c, t) ≈ if b then out(c, t1) else out(c, t2)

11

Proof System

Cryptographic Arguments

High-level structure of a game-hopping proof:

G0 ∼ϵ1 . . . ∼ϵn Gn ⇒
G0 ∼ϵ1+···+ϵn Gn

where each game-hop Gi ∼ϵi+1 Gi+1 is justified by:

• bridging steps showing that G ∼0 G′.
• up-to-bad argument |Pr(G)− Pr(G′)| ≤ Pr(bad).

▶ Pr(bad) ≤ ϵ through a probabilistic argument (e.g. collision
probability).

▶ . . .

• a cryptographic reduction to some hardness assumption.
• . . .

=⇒ how to capture these arguments in the logic?

12

Soundness

A rule:
ϕ1 ... ϕn

ϕ

is sound if ϕ is valid whenever ϕ1, . . . , ϕn are valid.

Example
y ∼ x
x ∼ y is sound

These are typically structural rules, which are valid in all models.

Other rules, e.g. rules relying on cryptographic hardness assumptions,
which only hold in a subset of all models.

13

Proof System

Structuring Rules

Structuring Rules

Structuring rules allow to:

• capture the high-level structure of a cryptographic proof;

• handle low-level manipulation of the proof-goal (bookkeeping).

14

Structuring Rules

Computational indistinguishability is an equivalence relation:

u⃗ ∼ u⃗
Refl v⃗ ∼ u⃗

u⃗ ∼ v⃗
Sym

u⃗ ∼ w⃗ w⃗ ∼ v⃗

u⃗ ∼ v⃗
Trans

Alpha-renaming.

u⃗ ∼ u⃗α
α-equ

when α is an injective renaming of names in N .

Proofs. Basic properties of indistinguishability.

15

Structuring Rules

Permutation. If π is a permutation of {1, . . . , n} then:

uπ(1), . . . , uπ(n) ∼ vπ(1), . . . , vπ(n)
u1, . . . , un ∼ v1, . . . , vn Perm

Restriction. The adversary can throw away some values:

u⃗ , s ∼ v⃗ , t

u⃗ ∼ v⃗
Restr

16

Structuring Rules

Duplication. Giving twice the same value to the adversary is useless:

u⃗ , s ∼ v⃗ , t

u⃗ , s, s ∼ v⃗ , t, t
Dup

Function application. If the arguments of a function are
indistinguishable, so is the image:

u⃗1, v⃗1 ∼ u⃗1, v⃗2

f (u⃗1), v⃗1 ∼ f (u⃗2), v⃗2
FA

where f ∈ F ∪ G.

Proofs. These last four rules are proved by cryptographic reductions.

17

Proof of Function Application

u⃗1, v⃗1 ∼ u⃗1, v⃗2

f (u⃗1), v⃗1 ∼ f (u⃗2), v⃗2
FA

Proof. Assume f ∈ F (the case f ∈ G is similar). The proof is by
contrapositive. Let M and A s.t. its advantage against:

f (u⃗1), v⃗1 ∼ f (u⃗2), v⃗2 (†)

is not negligible. Let B be the distinguisher defined by, for any bitstrings w⃗u, w⃗v

and tape ρa:

B(1η, w⃗u, w⃗v , ρa)
def
= A(1η, Lf MM(1

η, w⃗u), w⃗v , ρa)

B is a PPTM since A is and Lf MM can be evaluated in pol. time. Then:

B(1η, Ju⃗iKη,ρM , Jv⃗iK
η,ρ
M , ρa)

= A(1η, Jf (u⃗i)K
η,ρ
M , Jv⃗iK

η,ρ
M , ρa)

(i ∈ {1, 2})

Hence the advantage of B in distinguishing u⃗1, v⃗1 ∼ u⃗1, v⃗2 is exactly the
advantage of A in distinguishing (†). □18

Structuring Rules

Case Study. We can do case disjunction over branching terms:

w⃗1, b0, u0 ∼ w⃗1, b1, u1 w⃗0, b0, v0 ∼ w⃗1, b1, v1

w⃗0, if b0 then u0 else v0 ∼ w⃗1, if b1 then u1 else v1
CS

19

Proof of Case Study

b0, u0 ∼ b1, u1 b0, v0 ∼ b1, v1

t0 ≡ if b0 then u0 else v0 ∼ t1 ≡ if b1 then u1 else v1
CS

Proof. (by contrapositive) Assume M and A s.t. its advantage against:

if b0 then u0 else v0 ∼ if b1 then u1 else v1 (†)

is non-negligible. Let B⊤ be the distinguisher:

B⊤(1η,wb,w , ρa)
def
=

{
A(1η,w , ρa) if wb = 1

0 otherwise

B⊤ is trivially a PPTM. Moreover, for any i ∈ {1, 2}:

Prρ
(
B⊤(1η, JbiK

η,ρ
M , JuiK

η,ρ
M , ρa) = 1

)
= Prρ

(
A(1η, JtiK

η,ρ
M , ρa) = 1 ∧ JbiK

η,ρ
M = 1

)}
p⊤,i

20

Proof of Case Study (continued)

Hence the advantage of B⊤ against b0, u0 ∼ b1, u1 is |p⊤,1 − p⊤,0|.

Similarly, let B⊥ be the distinguisher:

B⊥(1η,wb,w , ρa)
def
=

{
A(1η,w , ρa) if wb ̸= 1

0 otherwise

By an identical reasoning, we get that the advantage of B⊥ against
b0, v0 ∼ b1, v1 is |p⊥,1 − p⊥,0|, where p⊥,i is:

Prρ
(
A(1η, JtiK

η,ρ
M , ρa) = 1 ∧ JbiK

η,ρ
M ̸= 1

)

21

Proof of Case Study (continued)

The advantage of A against t0 ∼ t1 is, by partitioning and triangular
inequality:

|(p⊤,1 + p⊥,1)− (p⊤,0 + p⊥,1)| ≤ |p⊤,1 − p⊤,0|+ |p⊥,1 − p⊥,1|

Since A’s advantage is non-negligible, at least one of the two quantity
above is non-negligible. Hence either B⊤ or B⊥ has a non-negligible
advantage against a premise of the CS rule. □.

22

Counter-Examples

Remark that b is necessary in CS

w⃗1, b0, u0 ∼ w⃗1, b1, u1 w⃗0, b0, v0 ∼ w⃗1, b1, v1

w⃗0, if b0 then u0 else v0 ∼ w⃗1, if b1 then u1 else v1
CS

We have:

|= ⟨0 , n0⟩ ∼ ⟨0 , n0⟩ |= ⟨1 , n0⟩ ∼ ⟨1 , n0⟩ |= even(n0) ∼ odd(n0)

But:

̸|=
if even(n0) then ⟨0 , n0⟩ else ⟨1 , n0⟩

∼ if odd(n0) then ⟨0 , n0⟩ else ⟨1 , n0⟩

Why is the later formula not valid?

23

Proof System

Basic Single-Step Reasoning Rules

Equality Reasoning

If |= (s = t) ∼ true, then s and t are equal with overwhelming
probability. Hence we can safely replace s by t in any context.

If ϕ is a term of type bool, let [ϕ] def
= ϕ ∼ true.

⇒ i.e. ϕ is overwhelmingly true (equivalently, ¬ϕ is negligible).

Then the following rule is sound:

u⃗ , t ∼ v⃗ [s = t]

u⃗ , s ∼ v⃗
R

24

Equality Reasoning

Proof
First, for any model M, we have:

M |= [ϕ] iff. Prρ
(
JϕKη,ρM

)
is overwhelming.

• Left-to-right:
M |= [ϕ]

⇒ ∀A ∈ D.
∣∣Prρ (A(1η, JϕKη,ρM , ρa)

)
− Prρ

(
A(1η, JtrueKη,ρM , ρa)

)∣∣ ∈ negl(η)

⇒
∣∣Prρ (JϕKη,ρM

)
− 1
)∣∣ ∈ negl(η) (taking A(1η,w , ρa) = w)

⇒ Prρ
(
JϕKη,ρM

)
∈ o.w.(η)

• Right-to-left, assume Prρ
(
JϕKη,ρM

)
∈ o.w.(η) and take A ∈ D:∣∣Prρ (A(1η, JϕKη,ρM , ρa)
)
− Prρ

(
A(1η, JtrueKη,ρM , ρa)

)∣∣
≤ Prρ

(
¬JϕKη,ρM

)
(up-to-bad)

∈ negl(η)

25

Equality Reasoning

This allows to conclude immediately since:

|Pr(A(Ju⃗, tK))− Pr(A(Jv⃗ K))|
≤ |Pr(A(Ju⃗, sK))− Pr(A(Jv⃗ K))|+ Pr (JsK ̸= JtK) (up-to-bad)

Reminder: up-to-bad argument
If B,E ,E ′ are events such that:

(E ∧ ¬B) ⇔ (E ′ ∧ ¬B), (⋄)

then |Pr(E)− Pr(E ′)| ≤ Pr(B).

Indeed, by triangular inequality and total probabilities:

|Pr(E)− Pr(E ′)| ≤ |Pr(E ∧ B)− Pr(E ′ ∧ B)|+ |Pr(E ∧ ¬B)− Pr(E ′ ∧ ¬B)|

We conclude by observing that:

• |Pr(E ∧ ¬B)− Pr(E ′ ∧ ¬B)| = 0 by (⋄);

• |Pr(E ∧ B)− Pr(E ′ ∧ B)| ≤ max(Pr(E ∧ B),Pr(E ′ ∧ B)) ≤ Pr(B).
26

Generic Equality Reasoning

To prove |= [s = t] (or more generally |= [ϕ]), we use the rule:

Ath ⊢Gen ϕ

[ϕ]
gen

where ⊢Gen is any sound proof system for generic mathematical
reasoning (e.g. higher-order logic).

This allows exact (i.e. non-probabilistic) mathematical reasoning.

We allow additional axioms using Ath (e.g. for if · then · else·).

Example

Ath ⊢Gen v = w →

(
if u = v then u else t =

if u = v then w else t

)

27

Equality Reasoning

Up-to-bad arguments (game-hop style)
Two games G,G′ such that:

Pr(G ∧ ¬bad) = Pr(G′ ∧ ¬bad).

Then |Pr(G)− Pr(G′)| ≤ Pr(bad).

In the CCSA logic:
[¬ϕbad] [¬ϕbad → u = v]

u ∼ v
U2B

Proof. Rewriting rule + some basic reasoning.

Other direction [·] ⇒ (· ∼ ·) also exists:
[ψ] ϕ ∼ ψ

[ϕ]
Rewrite-Equiv

=⇒ enables back-and-forth between both predicates.

28

Equality Reasoning

Up-to-bad arguments (game-hop style)
Two games G,G′ such that:

Pr(G ∧ ¬bad) = Pr(G′ ∧ ¬bad).

Then |Pr(G)− Pr(G′)| ≤ Pr(bad).

In the CCSA logic:
[¬ϕbad] [¬ϕbad → u = v]

u ∼ v
U2B

Proof. Rewriting rule + some basic reasoning.

Other direction [·] ⇒ (· ∼ ·) also exists:
[ψ] ϕ ∼ ψ

[ϕ]
Rewrite-Equiv

=⇒ enables back-and-forth between both predicates. 28

Probabilistic Independence

Two rules exploiting the independence of bitstring distributions:

[t ̸= n]
=-ind when n ̸∈ st(t)

u⃗ ∼ v⃗

u⃗ , n0 ∼ v⃗ , n1
Fresh when n0 ̸∈ st(u⃗) and n1 ̸∈ st(v⃗)

Remark
To check that the rules side-conditions hold, we require that they do not
contain free variables. Hence we actually have a countable, recursive, set
of ground rules (i.e. rule schemata).

29

Probability Independence

We give the proof of the first rule:

[t ̸= n]
=-ind when n ̸∈ st(t)

Proof. For any model M (we omit it below):

Prρ(Jt = nKη,ρ)

= Prρ(JtKη,ρ = JnKη,ρ)

=
∑

w∈{0,1}∗ Prρ(JtKη,ρ = w ∧ JnKη,ρ = w)

=
∑

w∈{0,1}∗ Prρ(JtKη,ρ = w) · Prρ(JnKη,ρ = w)

= 1
2η ·

∑
w∈{0,1}η Prρ(JtKη,ρ = w)

=
1
2η

□

30

Exercise

Exercise
Give a derivation of the following formula:

n0 ∼ if b then n0 else n1 (when n0, n1 ̸∈ st(b))

31

Proof System

Implementation Rules

Rules: Soundness

A rule is C-sound if ϕ is C-valid whenever ϕ1, . . . , ϕn are C-valid.

Example

[π1⟨x , y⟩= x]

is not sound, because we do not require anything on the interpretation
of π1 and the pair.

Obviously, it is Cπ-sound, where Cπ is the set of model where π1

computes the first projection of the pair ⟨_ , _⟩.

32

Implementation Assumptions

The general philosophy of the CCSA approach is to make the minimum
number of assumptions possible on the interpretations of function
symbols in a model.

Any additional necessary assumption is added through rules, which
restrict the set of model for which the formula holds (hence limit the
scope of the final security result).

Typically, this is used for:

• functional properties, which must be satisfied by the protocol
functions (e.g. the projection/pair rule).

• cryptographic hardness assumptions, which must be satisfied by
the cryptographic primitives (e.g. IND-CCA).

33

Functional Properties

Example. Equational theories for protocol functions:

• πi (⟨x1, x2⟩) = xi i ∈ {1, 2}
• dec({x}zpk(y), sk(y)) = x

• (x ⊕ y)⊕ z = x ⊕ (y ⊕ z)

• . . .

34

Proof System

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of
computational security.

Cryptographic Reduction S ≤red H
If you can break the cryptographic design S, then you can break the
hardness assumption H using roughly the same time.

• We assume that H cannot be broken in a reasonable time:
▶ Low-level assumptions: D-Log, DDH, ...
▶ Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...

• Hence, S cannot be broken in a reasonable time.

35

Cryptographic Reduction

Cryptographic Reduction S ≤red H
S reduces to a hardness hypothesis H (e.g. IND-CCA, DDH) if:

∀A. ∃B. AdvηS(A) ≤ P(AdvηH(B), η)

where A and B are taken among PPTMs and P is a polynomial.

36

Cryptographic Rules

We are now going to give rules which capture some cryptographic
hardness hypotheses.

The validity of these rules will be established through a cryptographic
reduction.

• Asymmetric encryption: indistinguishability (IND-CCA1) and
key-privacy (KP-CCA1);

• Hash function: collision-resistance (CR-HK);

• MAC: unforgeability (EUF-CMA).

37

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

• public and private key generation functions pk(_), sk(_);

• randomized3 encryption function {_}_
_;

• a decryption function dec(_,_)

It must satisfies the functional equality:

dec({x}zpk(y), sk(y)) = x

3The role of the randomization will become clear later.

38

IND-CCA1 Security

An encryption scheme is indistinguishable against chosen cipher-text
attacks (IND-CCA1) iff. for every PPTM A with access to:

• a left-right oracle Ob,n
LR (·, ·):

Ob,n
LR (m0,m1)

def
=

{mb}r
pk(n) if len(m1) = len(m2) (r fresh)

0 otherwise

• and a decryption oracle On
dec(·),

where A can call OLR once, and cannot call Odec after OLR, then:∣∣ Prn
(
AO1,n

LR ,On
dec (1η, pk(n)) = 1

)
− Prn

(
AO0,n

LR ,On
dec (1η, pk(n)) = 1

) ∣∣
is negligible in η, where n is drawn uniformly in {0, 1}η.

39

IND-CCA1 Security: Exercise

Exercise
Show that if the encryption ignore its randomness, i.e. there exists
aenc(_,_) s.t. for all x , y , r :

{x}ry = aenc(x , y)

then the encryption does not satisfy IND-CCA1.

40

IND-CCA1 Rule

Indistinguishability Against Chosen Ciphertexts Attacks
If the encryption scheme is IND-CCA1, then the ground rule:

[len(t0) = len(t1)]
u⃗, {t0}r

pk(n) ∼ u⃗, {t1}r
pk(n)

ind-cca1

is sound, when:

• r does not appear in u⃗, t0, t1, i.e. r ̸∈ st(u⃗, t0, t1);

• n appears only in pk(·) or dec(_, sk(·)) positions in u⃗, t0, t1, which
we write:

n ⊑pk(·),dec(_,sk(·)) u⃗, t0, t1

41

IND-CCA1 Rule: Conditions

Definition: Positions
We write pos(t) ∈ {ϵ} ∪ N (·N)∗ the set of positions of t and t|p the
sub-term of t at position p.

Example
if t ≡ f (g(a, b), h(c)) then pos(t) = {ϵ, 0, 1, 0 · 0, 0 · 1, 1, 1 · 0} and:

t|ϵ ≡ t t|0 ≡ g(a, b) t|0·0 ≡ a t|0·1 ≡ b t|1 ≡ h(c)

t|1·0 ≡ c

42

IND-CCA1 Rule: Conditions

Definition: CCA1 Side-Condition
(n ⊑pk(·),dec(_,sk(·)) u) iff. for any p ∈ pos(u), if t|p ≡ n, either:

• p = p0 · 0 and t|p0 ≡ pk(n);

• or p = p0 · 1 · 0 and t|p0 ≡ dec(s, sk(n)).

Examples (writing ⊑ instead of ⊑pk(·),dec(_,sk(·)))

n ̸⊑ n n ⊑ pk(pk(n)) n ⊑ dec(pk(n), sk(n))

n ̸⊑ dec(sk(n), sk(n)) n ⊑ t if n ̸∈ st(t)

43

IND-CCA1 Rule: Proof

Proof sketch
Proof by contrapositive. Let M be a model, A an adversary and u⃗, t0, t1 ground
terms such that: ∣∣∣ Prρ(A(1η, Ju⃗ Kη,ρM , J{t0}r

pk(n)K
η,ρ
M , ρa)

− Prρ(A(1η, Ju⃗ Kη,ρM , J{t1}r
pk(n)K

η,ρ
M , ρa)

∣∣∣
is not negligible, and M |= [len(t0) = len(t1)].

We must build a PPTM B s.t. B wins the IND-CCA1 security game.

44

IND-CCA1 Rule: Proof

Let BOb,n
LR ,On

dec(1η, Jpk(n)Kη,ρM) be the following program:

i) lazily4 samples the random tapes (ρa, ρ
′
h) where:

ρ′h := ρh[n 7→ 0, r 7→ 0]

ii) compute5:
wu⃗,wt0 ,wt1 := Ju⃗ , t0, t1K

η,ρ
M

using (ρa, ρ
′
h), Jpk(n)Kη,ρM and calls to On

dec.

iii) return 0 if len(t0) ̸= len(t1).

iii) otherwise, compute:

wlr := Ob,n
LR (wt0 ,wt1) = J{tb}r

pk(n)K
η,ρ
M

iv) return A(1η,wu⃗ ,wlr , ρa).
4Why do we need this?
5We describe how later.

45

IND-CCA1 Rule: Proof

Then:

Adv(A) ≤ Adv(A ∧ len(t0) = len(t1)) + Pr(len(t0) ̸= len(t1)) (up-to-bad)

= Adv(B ∧ len(t0) = len(t1)) + Pr(len(t0) ̸= len(t1))

= Adv(B) + Pr(len(t0) ̸= len(t1))

Hence B’s advantage against IND-CCA1 is at least A’s advantage against:

u⃗, {t0}r
pk(n) ∼ u⃗, {t1}r

pk(n) (†)

up-to a negligible quantity (the probability that len(t0) ̸= len(t1)).

Since (†) is assumed non-negligible, so is B’s advantage.

46

IND-CCA1 Rule: Proof

It only remains to explain how to do step ii) in polynomial time.

We prove by structural induction that for any subterm s of u⃗ , t0, t1:

• either s is a forbidden subterm r, n, or sk(n);

• or B can compute ws := JsKη,ρM in polynomial time.

Assuming this holds, we conclude by observing that ind-cca1 side conditions
guarantees that u⃗ , t0, t1 are not forbidden subterms.

47

IND-CCA1 Rule: Proof

Induction. We are in one of the following cases:

• s ∈ X is not possible, since u⃗, t0, t1 are ground.

• s ∈ {r, n} are forbidden, hence the induction hypothesis holds.

• s ∈ N\{r, n}, then B computes s directly from ρ′h = ρh[n 7→ 0, r 7→ 0].

• s ≡ f (t1, . . . , tn) and t1, . . . , tn are not forbidden. Then, by induction
hypothesis, B can compute wi := JtiK

η,ρ
M for any 1 ≤ i ≤ n. Then B simply

computes:

ws :=

{
Lf MM(1η,w1, . . . ,wn) if f ∈ F
Lf MM(1η,w1, . . . ,wn, ρa) if f ∈ G

48

IND-CCA1 Rule: Proof

case disjunction (continued):

• s ≡ f (t1, . . . , tn) and at least one of the ti is forbidden.

Using ind-cca1 side conditions, either s is either pk(n) or dec(m, sk(n)).

The first case is immediate since B receives Jpk(n)Kη,ρM as argument.

For the second case, from ind-cca1 side conditions, we know that m ̸= n
and m ̸= sk(n). Hence, by induction hypothesis, B can compute
wm = JmKη,ρM . We conclude using:

ws := On
dec(wm) □

49

IND-CCA1 Rule: Exercise

Exercise
Which of the following formulas can be proven using ind-cca1?

pk(n), {0}r
pk(n) ∼ pk(n), {1}r

pk(n)

pk(n), {0}r
pk(n), {0}

r0
pk(n) ∼ pk(n), {1}r

pk(n), {0}
r0
pk(n)

pk(n), {0}r
pk(n), {0}

r
pk(n) ∼ pk(n), {0}r

pk(n), {1}
r
pk(n)

pk(n), {0}r
pk(n) ∼ pk(n), {sk(n)}r

pk(n)

50

IND-CCA1 Rule: Exercise

Exercise (Hybrid Argument)
Prove the following formula using ind-cca1:

{0}r0
pk(n), {1}

r1
pk(n), . . . , {n}

rn
pk(n) ∼ {0}r0

pk(n), {0}
r1
pk(n), . . . , {0}

rn
pk(n)

Note: we assume that all plain-texts above have the same length (e.g.
they are all represented over L bits, for L large enough)

51

KP-CCA1 Security

A scheme provides key privacy against chosen cipher-text attacks
(KP-CCA1) iff for every PPTM A with access to:

• a left-right encryption oracle Ob,n0,n1
LR (·):

Ob,n0,n1
LR (m)

def
= {m}r

pk(nb)
(r fresh)

• and two decryption oracles On0
dec(·) and On1

dec(·),

where A can call OLR once, and cannot call the decryption oracles after
OLR, then:∣∣∣∣∣∣ Prn0,n1

(
AO1,n0,n1

LR ,On0
dec,O

n1
dec (1η, pk(n0), pk(n1)) = 1

)
− Prn0,n1

(
AO0,n0,n1

LR ,On0
dec,O

n1
dec (1η, pk(n0), pk(n1)) = 1

)
∣∣∣∣∣∣

is negligible in η, where n0, n1 are drawn in {0, 1}η.

52

Security Notions: Exercise

Exercise
Show that IND-CCA1 ̸⇒ KP-CCA1 and KP-CCA1 ̸⇒ IND-CCA1.

53

KP-CCA1 Rule

Key Privacy Against Chosen Ciphertexts Attacks
If the encryption scheme is KP-CCA1, then the ground rule:

u⃗ , {t}r
pk(n0)

∼ u⃗ , {t}r
pk(n1)

kp-cca1

is sound, when:

• r does not appear in u⃗ , t;

• n0, n1 appear only in pk(·) or dec(_, sk(·)) positions in u⃗ , t.

The proof is similar to the ind-cca1 soundness proof. We omit it.

54

	The CCSA Logic
	Proof System
	Structuring Rules
	Basic Single-Step Reasoning Rules
	Implementation Rules
	Cryptographic Rules

