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Limitations

Limitations of the framework:

• No built-in support for an arbitrary number of sessions.
We use an ambient-level induction.

• No systematic and user-friendly encoding of protocols.
We manually defined out@τ , in@τ , etc at ambient level.

• Similarly, temporal aspects are handled at the ambient level.

All the above are obstacles to mechanizing the logic.
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HO Indistinguishability Logic

Solution
A higher-order indistinguishability logic:

• Supports induction at the logical level.

• User-defined mutually-recursive probabilistic procedures:
execution model (i.e. out@τ , in@τ , etc) can be internalized.

• Temporal reasoning can be internalized.

• Bonus: Support generic higher-order reasonings.

⇒ suitable for mechanized interactive proofs.
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A Higher-Order
Indistinguishability Logic



HO Indistinguishability Logic: Types

We assume a set B of base-types (e.g. bool, message).

Types are defined by
τ := τb | τ → τ (τb ∈ B)

The interpretation JτKηM of a type τ w.r.t. a model M and η ∈ N:

JτbK
η
M

def
= Mτb(η) Jτ1 → τ2K

η
M

def
= Jτ1K

η
M → Jτ2K

η
M

Details
• M must interpret all base-types as non-empty sets.
• There must exists an injection from Mτb(η) to bit-strings.

(used later to send base values to the adversary)

• Built-in types interpretations are fixed.
Example: JboolKηM = {0, 1} for every η
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HO Indistinguishability Logic: Symbols

We still have a set of symbols S = N ⊎ X ⊎ F ⊎ G.

We require that:

• the set of names N is such that any name n ∈ N has a type of the
form τ0 → τ1 with τ0 finite.
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HO Indistinguishability Logic: Terms

Terms are defined by:

t := s | (t t) | λ(x : τ). t | ∀(x : τ). t (s ∈ S, x ∈ X )

(as usual, terms are taken modulo α-renaming)

Terms are taken in an environment E :

E := ∅ | (s : τ); E
(declaration)

| (s : τ = t); E
(definition)

(we require that environments do not bind the same variable twice)

We require that terms and environments are well-typed. We write E(s)
the type of s in E .
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A Higher-Order Indistinguishability Logic: Typing

Term typing judgements

Ty.Decl

E ⊢ s : E(s)

Ty.Fun-App
E ⊢ t1 : τ0 → τ1 E ⊢ t2 : τ0

E ⊢ t1 t2 : τ1

Ty.Lambda
E , x : τ0 ⊢ t : τ1

E ⊢ λ(x : τ0). t : τ0 → τ1

Ty.ForAll
E , x : τ ⊢ t : bool

E ⊢ ∀(x : τ). t : bool

Environment typing

Ty-Env.ϵ

⊢ ϵ

Ty-Env.Decl
⊢ E

⊢ E , (s : τ)

Ty-Env.Def
⊢ E E ⊢ t : τ
x ̸∈ (N ∪ F ∪ G)
⊢ E ,

(
x : τ = t

)
Remark: names, builtins and adversarial symbols can only be declared.
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HO Indistinguishability Logic: Probability Space

Change w.r.t. the FO logic.
Terms are interpreted as arbitrary random variables, not necessarily
PPTMs.

JtKM : η-indexed families of random variables

using probability space TM,η = T a
M,η × T h

M,η.
(T a

M,η, T
h
M,η use the uniform prob. measure.)

Examples:

• ∀x : message. len(att(x)) ≤ 42

• ∀e : int. dlog(ge) = e

• ∀ϕ : τ → bool.
(
∀x . (∀y . y < x → ϕ y )→ ϕ x

)
→ (∀x . ϕ x )
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HO Indistinguishability Logic: Term Semantics

Let RVM(τ) be the set
∏

n∈N(TM,η → JτKηM).

A model M w.r.t. E , written M : E , interprets any declaration (s : τ) ∈ E
as a random variable:

M(s) ∈ RVM(τ)

with some restrictions:

• names are PTIME-computable (in η) random samplings using only
randomness in T h

M,η (details later);

• builtins F must be PTIME-computable deterministic functions;

• adversarial functions G must be PTIME-computable functions
using only randomness in T a

M,η.

Remark: M(s)(η)(ρ) ∈ JτKηM.
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HO Indistinguishability Logic: Term Semantics

The semantics JtKη,ρM of t w.r.t. M and η ∈ N is a value in JτKηM:

JsKη,ρM

def
= M(s)(η)(ρ) (decl., (s : τ) ∈ E)

JxKη,ρM

def
= JtKη,ρM (def., (x : τ = t) ∈ E)

Jt t′Kη,ρM

def
= JtKη,ρM (Jt′Kη,ρM )

Jλ(x : τ). tKη,ρM

def
=

(
a ∈ JτKηM 7→ JtKη,ρ

M[x7→1
η
a ]

)
J∀(x : τ). tKη,ρM

def
= 1 iff. JtKη,ρ

M[x7→1
η
a ]
= 1 for any a ∈ JτKηM

where 1
η
a is the indexed family of functions such that:

• 1
η
a(η)(ρ) = a for all ρ ∈ TM,η;

• 1
η
a(η′)(ρ′) is some arbitrary value in JτKη

′

M for any η′ ̸= η.
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HO Indistinguishability Logic: Term Semantics

The semantics JtKη,ρM of t w.r.t. M and η ∈ N is a value in JτKηM:

JsKη,ρM

def
= M(s)(η)(ρ) (decl., (s : τ) ∈ E)

JxKη,ρM

def
= JtKη,ρM (def., (x : τ = t) ∈ E)

Jt t′Kη,ρM

def
= JtKη,ρM (Jt′Kη,ρM )

Jλ(x : τ). tKη,ρM

def
=

(
a ∈ JτKηM 7→ JtKη,ρ

M[x7→1
η
a ]

)
J∀(x : τ). tKη,ρM

def
= 1 iff. JtKη,ρ

M[x7→1
η
a ]
= 1 for any a ∈ JτKηM

where 1
η
a is the indexed family of functions such that:

• 1
η
a(η)(ρ) = a for all ρ ∈ TM,η;

• 1
η
a(η′)(ρ′) is some arbitrary value in JτKη

′

M for any η′ ̸= η.

10



HO Indistinguishability Logic: Name Semantics

A name n ∈ N interpretation must be such that

Jn tKη,(ρa,ρh)
M = LnMM(η, JtK

η,ρ
M )(ρh)

where LnMM is a PTIME computation w.r.t. η.

Moreover, ρh 7→ Ln0MM(η, a)(ρh) and ρh 7→ Ln1MM(η, a′)(ρh)

• are independent random samplings when (n0, a) ̸= (n1, a
′).

They must extract ̸= random bits from ρh.

• have the same distribution when n0 and n1 have the same output
type (i.e. E(n0) = _ → τ and E(n1) = _ → τ).
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HO Indistinguishability Logic: Name Semantics

Remarks
• E contains a finite number of names.

• names have type τ0 → τ1 where τ0 is finite.

• LnMM uses a finite number of bits from ρh (since PTIME in η).

⇒ compatible with requirement that T h
M,η is a set of finite tapes.
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HO Indistinguishability Logic: Local Satisfiability and Validity

Definitions

• Satisfiability: when E ⊢ ϕ : bool, we write M : E |= ϕ if

Prρ(JϕKη,ρM = 1) ∈ o.w.(η).

• Validity: E |= ϕ if M : E |= ϕ for every M : E .

Local Sequents

• Syntax: E ; Γ ⊢ ϕ
• Semantics: E |= (∧Γ)→ ϕ
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HO Indistinguishability Logic: Term Semantics

Summary:
A model M for E comprises:

• The interpretation domains of base types B.
⇒ yields a type semantics J · KηM.

• The probability space TM,η = T a
M,η × T h

M,η.
• The interpretations of declared variables of E .

Defined variables are interpreted by their definitions.
⇒ yields a term semantics J · Kη,ρM .

Remarks
We restrict possible models in several ways (more to come):

• finiteness required of some types (e.g. to index names).
• constraints on name and built-ins interpretations.
• . . .
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HO Indistinguishability Logic: Term Semantics

Key ingredients:

• terms are interpreted as arbitrary random variables, not necessarily
PPTMs.
⇒ support probabilistic user-defined functions (e.g. in@τ).
⇒ support uncomputable functions.
⇒ support quantifiers ∀, ∃ over arbitrary types.

• the probability space is finite.
⇒ ensures that (ρ 7→ JtKη,ρM ) is a random variable.

� indeed, any function X : S1 7→ S2 (where S1 is a finite probability
space and S2 is a measurable space) is a measurable function.
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Encoding Protocols



HO Indistinguishability Logic: Protocols

Encode protocol executions as (mutually) recursive computations.

Example: encoding of Hash-Lock

in@t = match t with init → d

| _ → att(frame@pred t)

frame@t = match t with init → d

| _ → ⟨frame@pred t, out@t⟩

out@t = match t with init → d

| T(A, i) → ⟨nT(A, i), h(⟨in@t, nT(A, i)⟩, k A)⟩
| R1(j) → nR j

| R2(j) → . . .

⇒ need support for recursive definitions f : τ = t where f ∈ st(t).
16



HO Indistinguishability Logic: Recursive Definitions

We first extend the HO logic to allow recursive definitions.

Any type τ and order <∈ F with type τ → τ → bool can be tagged as
wf(τ,<).
⇒ only consider models s.t. (JτKηM, J<KηM) is well-founded.

We allow well-founded recursion over such types.

Details
• we assume a fixed set of type tags Swf.

• we assume a fixed set Sax of terms of type bool (axioms).

• we require that any model M is such that M |= Sax and

(JτKηM, J<KηM) is well-founded (for any wf(τ,<) ∈ Swf)
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HO Indistinguishability Logic: Recursive Definitions

We add a typing rule for recursive definitions:
Ty-Env.Rec-Def
⊢ E E , f : τ ⊢ λx. t : τ wf f ,xτ,<(t) f ∈ X

⊢ E ,
(
f : τ = λx. t

)
where wf f ,xτ,<(t) is any syntactic condition which checks that

• f is used in η-long form in t.
• recursive calls to f are well-founded, i.e. on arguments t0 smaller

than x:

E |= [ ∀ α⃗. ϕ→ t0 < x] (for any (α⃗, ϕ, f t0) ∈ ST (t))

where ST (t) are the conditioned subterms of t (see next slide).

Example
ℓ = λ(i : int). if i = 0 then empty else ⟨n i , ℓ (pred i)⟩

with wf(int, <) and the axiom ∀(i : int). i ̸= 0 → pred i < i . 18



HO Indistinguishability Logic: Conditioned Subterms

We let ST (t) be the subterms of t, decorated the (typed) bound
variables and the conditions holding at each position.

ST (t) def
= {(ϵ, true, t)}∪

∅ if t = x ∈ X
(x : τ).ST (t0) if t = Q(x : τ).t0, Q ∈ {λ,∀}
ST (ϕ) ∪ [ϕ]ST (t1) ∪ [¬ϕ]ST (t0) if t = if ϕ then t1 else t0
ST (t0) ∪ ST (t1) if t = (t0 t1)

where x is taken fresh in the λ and ∀ cases, and where

[ϕ]S
def
= {(α⃗, ψ ∧ ϕ, t) | (α⃗, ψ, t) ∈ S}

(x : τ).S
def
= {((α⃗, x : τ), ψ, t) | (α⃗, ψ, t) ∈ S}
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HO Indistinguishability Logic: Conditioned Subterms

Example

ST (⟨x , λ(x0, x1 : τ). if x0 < x1 then x0 else x1⟩) =

{(ϵ, true, ⟨x , λ(x0, x1 : τ). if x0 < x1 then x0 else x1⟩)}
∪ {(ϵ, true, x), (ϵ, true, λ(x0, x1 : τ). if x0 < x1 then x0 else x1)}
∪ {(x0, true, λ(x1 : τ). if x0 < x1 then x0 else x1)}
∪ {((x0, x1), true, if x0 < x1 then x0 else x1)}
∪ {((x0, x1), true, x0 < x1)}
∪ {((x0, x1), true ∧ x0 < x1, x0)}
∪ {((x0, x1), true ∧ ¬(x0 < x1), x1)}
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Formulas



HO Indistinguishability Logic: Formulas

Formulas do not change, except that we use higher-order terms.

Φ := ⊤̃ | ⊥̃
| Φ ∧̃ Φ | Φ ∨̃ Φ | Φ →̃ Φ | ¬̃Φ

| ∀̃(x : τ).Φ | ∃̃(x : τ).Φ (x ∈ X )

| t1, . . . , tn ∼n tn+1, . . . , t2n (t1, . . . , t2n higher-order terms)
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HO Indistinguishability Logic: Formula Semantics

Standard FO semantics with η-indexed sequences of random
variables interpretation domains.

The satisfaction M : E |= Φ of Φ in M is as expected for boolean
connective and FO quantifiers. E.g.:

M : E |= ⊤̃ M : E |= Φ ∧̃Ψ if M : E |= Φ and M : E |= Ψ

M : E |= ¬̃Φ if not M : E |= Φ

M : E |= ∀̃x : τ.Φ if ∀A ∈ RVM(τ),M[x 7→ A] : (E , x : τ) |= Φ
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HO Indistinguishability Logic: Formula Semantics

∼ is still interpreted as computational indistinguishability.

M |= t⃗1 ∼ t⃗2 iff. ∀ PPTM A, AdvηM:E(A : t⃗1 ∼ t⃗2) is negligible.

Execution Model

• Values in JτbK
η
M are encoded as bitstrings and sent to A.

• Higher-order terms given to A are oracles, which A can query on
any inputs it can compute, any number of times.

• We require that terms in t⃗1 and t⃗2 have types τ0
b → ...→ τnb (i.e. no

higher-order arguments).
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HO Indistinguishability Logic: Proof System

Our rules still apply, though with minor adaptations.

Example: function application requires an additional check:

FA
u⃗1, t1 ∼ u⃗2, t2

[len(t1) ≤ P(η) ∧ len(t2) ≤ P(η)]

u⃗1, f t1 ∼ u⃗2, f t2

where f ∈ F ∪ G, and P is a polynomial.
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HO Indistinguishability Logic: Proof System

New rule for induction:

u⃗(0) ∼ v⃗(0)
∀̃(N : int). u⃗(N) ∼ v⃗(N) →̃ u⃗(N + 1) ∼ v⃗(N + 1)

∀̃(N : int). u⃗(N) ∼ v⃗(N)

Only for a constant number of steps N.
Same reason as for hybrid arguments:

u⃗(0) ∼ . . . ∼ u⃗(N) =⇒ u⃗(0) ∼f1(η) . . . ∼fN(η) u⃗(N) ((fi )i negligible)

=⇒ u⃗(0) ∼∑
i≤N fi (η) u⃗(N)∑

i≤N fi (η) may not be negligible if N polynomial in η.
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HO Indistinguishability Logic: Proof System
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HO Indistinguishability Logic: Formula and Term Quantifiers

We have two kind of quantifiers: term ∀ and formula ∀̃.

But we have only one kind of variable! Why?

Proposition
For every model M of E , we have:

M : E |= ∀̃(x : τ). [ϕ] iff. M : E |= [ ∀ (x : τ). ϕ]
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HO Indistinguishability Logic: Formula and Term Quantifiers

Proof of the Proposition
⇒ case. Assume the following:

M : E |= [ ∀ (x : τ). ϕ] (⋆)

Let A ∈
(
JτKηM

)
η∈N

be a sequence of random variables. We must show

Pr
(
JϕKη,ρ

M[x 7→A]

)
∈ o.w.(η)

where the probability is over ρ ∈ TM,η.

Pr
(
JϕKη,ρ

M[x 7→A]

)
= Pr

(
JϕKη,ρ

M[x 7→1
η
A(η)(ρ)

]

)
≥ Pr

(⋂
a∈JτKηM

JϕKη,ρ
M[x 7→1

η
a ]

)
= Pr

(
J∀(x : τ). ϕKη,ρM

)
∈ o.w.(η) (using (⋆))
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HO Indistinguishability Logic: Formula and Term Quantifiers

⇐ case. Assume that
M : E |= ∀̃(x : τ). [ϕ] (†)

We need to show that Pr
(
J∀(x : τ). ϕKη,ρM

)
∈ o.w.(η).

Let A be the family of functions choosing, for any η and ρ, a value a ∈ JτKηM
making ϕ false when evaluated on tape ρ

A(η)(ρ)
def
=

choose
{
a ∈ JτKηM | J¬ϕKη,ρ

M[x 7→1
η
a ]
} if non-empty

awitness otherwise

where awitness is an arbitrary value in JτKηM (recall that JτKηM ̸= ∅), and choose(S)
is an arbitrary choice function for set S.

Since all functions from TM,η to {0, 1} are random variables (thanks to TM,η’s
finitness), we get that, by applying (†) to A

Pr
(
JϕKη,ρ

M[x 7→A]

)
∈ o.w.(η) (‡)
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HO Indistinguishability Logic: Formula and Term Quantifiers

Then:

Pr
(
JϕKη,ρ

M[x 7→A]

)
= Pr

(
JϕKη,ρ

M[x 7→1
η
A(η)(ρ)

]

)
= Pr

(⋂
a∈JτKηM

JϕKη,ρ
M[x 7→1

η
a ]

)
= Pr

(
J∀(x : τ). ϕKη,ρM

)
∈ o.w.(η) (using (‡))
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HO Indistinguishability Logic: Reachability Proof System

Our local proof system hence supports the usual rules for arbitrary
term quantifiers, e.g.

E , x : τ ; Γ ⊢ ϕ

E ; Γ ⊢ ∀(x : τ). ϕ

⇒ Allow for generic higher-order reasoning in terms.

30



Freshness and Cryptographic Rules



HO Indistinguishability Logic: Name Collision

How to adapt the rule exploiting probabilistic independence?

Base Logic Rule

[t ̸= n] when n ̸∈ st(t)

where t is a ground low-order term.

Rule for Name Collision (first tentative)
t, t0 well-typed in E where E has no variable declarations.
(I.e. t0, t1 ground-terms.)

[t ̸= n t0]

when n ̸∈ st(t, t0) and all definitions in E .
⇒ not very useful!
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HO Indistinguishability Logic: Name Collision

How to do better? Lets see on an example.

E a ground environment with a single inductive definition:

ℓ = λ(i : bint). if i = 0 then empty else ⟨n i , ℓ (pred i)⟩

where n : bint → message and JbintKηM = {0, . . . , η} for any η.

Rule (special case)
Terms t, t0 well-typed in E that do not use ℓ and n:

[
(
att(ℓ t) = n t0

)
→ t0 ≤ t]

Indeed, att(ℓ t) only depends on the random samplings n 1, . . . , n t,
which are independent from n t0 when t < t0.
⇒ requires in-depth analysis of recursive definitions.
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HO Indistinguishability Logic: Name Collision

Key ideas to find a condition under which the rule below is sound

[t = n t0 →¬ϕfresh]

• Collect all occurrences at which name n is sampled in t, t0,
including in recursive calls.
⇒ use the set of generalized subterms ST rec

E (·).
(ST rec

E (t) can be infinite)

• ϕfresh must ensure independence w.r.t. (n t0), i.e. that all
generalized occurrences (n s) in ST rec

E (t, t0) are s.t. s ̸= t0.
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HO Indistinguishability Logic: Generalized Subterms

ST rec
E (t) are the generalized subterms of t.

ST rec
E (s)

def
= {(ϵ, true, s)} if (s : τ) ∈ E or s ̸∈ E

ST rec
E (x) def

= ST rec
E (t0) if (x : τ = t0) ∈ E

ST rec
E (x t) def

= ST rec
E (t0{y 7→ t}) if (x : τ = λy . t0) ∈ E

ST rec
E (Q(x : τ).t0)

def
= (x : τ).ST rec

E (t0) Q ∈ {λ, ∀}

ST rec
E (if ϕ then t1 else t0)

def
= ST rec

E (ϕ) ∪ [ϕ]ST rec
E (t1) ∪ [¬ϕ]ST rec

E (t0)

ST rec
E (t t0)

def
= {(ϵ, true, t t0)}∪

ST rec
E (t) ∪ ST rec

E (t0)

if no other case applies

where y is taken fresh in the λ case and

[ϕ]S
def
= {(α⃗, ψ ∧ ϕ, t) | (α⃗, ψ, t) ∈ S}

(x : τ).S
def
= {((α⃗, x : τ), ψ, t) | (α⃗, ψ, t) ∈ S}

� ST rec
E (·) ignores variable that can be unfolded into their definitions. 34



HO Indistinguishability Logic: Freshness Condition

Rule for Name Collision
E a ground, t, t0 well-typed in E .

[t = n t0 →¬ϕfresh]

if t, t0 are in eta-long form and if for M : E , η ∈ N and ρ:

JϕfreshK
η,ρ
M = 1 implies JϕKη,ρM = 1 for every ϕ ∈ S

where S is a (possibly infinite) set formulas stating that n t0 is not
sampled in t, t0.

S
def
=

{
(∀α⃗.ψ ⇒ s ̸= t0) | (α⃗, ψ, n s) ∈ ST rec

E (t, t0)
}

Proof: On the blackboard, using the Proposition shown later.
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HO Indistinguishability Logic: Name Collision

Example
Assume t, t0 do not use n nor ℓ.

[
(
att(ℓ t) = n t0

)
→ t0 ≤ t]

All occurrences of name n in ST rec
E (att(ℓ t)) are of the form

(ϵ, t ̸= 0 ∧ pred t ̸= 0 ∧ · · · ∧ pred j t ̸= 0, n (pred j t))

for j ∈ N (there are infinitely many occurrences).

All of these are guaranteed fresh by the formula t < t0:

(t < t0)→ (pred j t ̸= t0)

Hence t < t0 is a suitable candidate for ϕfresh, yielding the rule

[
(
att(ℓ t) = n t0

)
→¬(t < t0)]

⇔ [
(
att(ℓ t) = n t0

)
→ t0 ≤ t] 36



HO Indistinguishability Logic: Name Collision

The semantics of a term t w.r.t. a model M : E and two different tapes
ρ1 and ρ2 is identical, if the interpretation of declared variables by M

coincides on ρ1 and ρ2.

Proposition
Let t well-typed in E in eta-long form. Then JtKη,ρ1

M = JtKη,ρ2
M if

M(x)(η)(ρ1)(a) = M(x)(η)(ρ2)(a) with a
def
= Ju⃗ Kη,ρ1

M′

for all (α⃗, ϕ, (x u⃗)) ∈ ST rec
E (t) such that:

• x is a variable declaration bound in E (not in α⃗)
• M′ extends M into a model of (E , α⃗)
• JϕKη,ρ1

M′ = 1

Proof Sketch: induction over the generalized subterms of t involved in
JtKη,ρ1

M .
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