MPRI 2.30: Proofs of Security Protocols

4. A Higher-Order Logic for Mechanization

Adrien Koutsos, Inria Paris
2024/2025

Limitations of the framework:

e No built-in support for an arbitrary number of sessions.
We use an ambient-level induction.

e No systematic and user-friendly encoding of protocols.
We manually defined out@t, in@t, etc at ambient level.

e Similarly, temporal aspects are handled at the ambient level.

All the above are obstacles to mechanizing the logic.

HO Indistinguishability Logic

Solution
A higher-order indistinguishability logic:

Supports induction at the logical level.

User-defined mutually-recursive probabilistic procedures:
execution model (i.e. out@r, in@7, etc) can be internalized.

Temporal reasoning can be internalized.

Bonus: Support generic higher-order reasonings.

= suitable for mechanized interactive proofs.

A Higher-Order
Indistinguishability Logic

HO Indistinguishability Logic: Types

We assume a set B of base-types (e.g. bool, message).

Types are defined by
T =Tp|T—>T (7p € B)

The interpretation [7]); of a type 7 w.r.t. a model M and € N:
def def
[l = Ma(n) [—nly = [nlj — [0

Details
e M must interpret all base-types as non-empty sets.

e There must exists an injection from M, (7) to bit-strings.
(used later to send base values to the adversary)

e Built-in types interpretations are fixed.
Example: [bool]{; = {0, 1} for every 7

HO Indistinguishability Logic: Symbols

We still have a set of symbols S= N WX W FWG.

We require that:

e the set of names)V is such that any name n € V' has a type of the
form 19 — 7 with 79 finite.

HO Indistinguishability Logic: Terms

Terms are defined by:

ti=s|(tt) | A(x:7).t|V(x:7).t (seS xeX)
(as usual, terms are taken modulo a-renaming)

Terms are taken in an environment &:
E=0] (s:7);, & |(s:7=1t); &
(declaration) (definition)

(we require that environments do not bind the same variable twice)

We require that terms and environments are well-typed. We write £(s)
the type of sin £.

A Higher-Order Indistinguishability Logic: Typing

Term typing judgements

Ty DECL TvY.FUN-APP
’ 5"t1:7’0—>7’1 5}—t2:7'0
5'—515(5) EFtitr: 7
Tvy.LAMBDA TyY.FORALL
Ex:mobt:m E,x:7kFt:bool
EFAx:m0).t:10 =7 EFVY(x:7).t:bool
Envi t typi
nvironment typing T T T
Tv-ENv Ty-ENv.DECL FE EFt:iT
TR HeE x& (NUFUG)
Fe F& (s:7) FE (x:T=t1)

Remark: names, builtins and adversarial symbols can only be declared.

HO Indistinguishability Logic: Probability Space

Change w.r.t. the FO logic.

Terms are interpreted as arbitrary random variables, not necessarily
PPTMs.

[t]y : m-indexed families of random variables

using probability space Ty, = Tg n X T&')H .
(—[ﬂ'i\.uf -[rh

w,; use the uniform prob. measure.)

HO Indistinguishability Logic: Probability Space

Change w.r.t. the FO logic.

Terms are interpreted as arbitrary random variables, not necessarily
PPTMs.

[t]y : m-indexed families of random variables

using probability space Ty, = Tg n X T&')H .
(—[ﬂ'i\.uf -[rh

w,; use the uniform prob. measure.)

Examples:
e Vx : message.len(att(x)) < 42

e Ve :int.dlog(g) =e

HO Indistinguishability Logic: Probability Space

Change w.r.t. the FO logic.

Terms are interpreted as arbitrary random variables, not necessarily
PPTMs.

[t]y : m-indexed families of random variables

using probability space Ty, = Tg n X T&')H .
(—[ﬂ'i\.uf -[rh

w,; use the uniform prob. measure.)

Examples:
e Vx : message.len(att(x)) < 42
e Ve :int.dlog(g) =e
e V¢ : 71— bool. (Vx.(Vy.y <x—dy)—¢dx)—(Vx.¢x)

HO Indistinguishability Logic: Term Semantics

Let RVy(7) be the set TT,.n(Tu,, — [71%)-

A model M w.r.t. £, written M : £, interprets any declaration (s: 7) € £
as a random variable:
M(s) € RVy(7)

HO Indistinguishability Logic: Term Semantics

Let RVy(7) be the set TT,.n(Tu,, — [71%)-

A model M w.r.t. £, written M : £, interprets any declaration (s: 7) € £
as a random variable:
M(s) € RVy(7)

with some restrictions:

e names are PTIME-computable (in) random samplings using only
randomness in Wm (details later);

e builtins F must be PTIME-computable deterministic functions;

e adversarial functions G must be PTIME-computable functions

using only randomness in Tg , .

Remark: M(s)(n)(p) € [

HO Indistinguishability Logic: Term Semantics

The semantics [t]{ of t w.r.t. M and € N is a value in [7]{;:

7.
[sT5 < M(s)(m) (o) (decl., (s : 7) € &)
K L e (def., (x: 7 =1t) € £)

[t VI < 0T

10

HO Indistinguishability Logic: Term Semantics

The semantics [t]{ of t w.r.t. M and € N is a value in [7]{;:

7.
[sT5 < M(s)(m) (o) (decl., (s : 7) € &)
K L e (def., (x: 7 =1t) € £)

[t VI < 0T

A7)t < (a € I = T o)
IV(x: 7). el = 1 i [. =1 for any a € [},

where 17 is the indexed family of functions such that:
e 11(n)(p) = a for all p € Ty,
e 12(n")(p') is some arbitrary value in [[Tm for any 0/ # .

10

HO Indistinguishability Logic: Name Semantics

A name n €)V interpretation must be such that

[n t155>#") = (nDua(m, [ED3”) (om)

where (n)y is a PTIME computation w.r.t. 7.

11

HO Indistinguishability Logic: Name Semantics

A name n €)V interpretation must be such that

O R CVON G HTEN
where (n)y is a PTIME computation w.r.t. 7.
Moreover, ph — (no)u(n, a)(pn) and pn = (n1Dua(n, a')(pn)

e are independent random samplings when (ng, a) # (n1, @).
They must extract # random bits from py,.

e have the same distribution when ng and n; have the same output
type (i.e. E(ng) = —7and E(n1) = — 7).

11

HO Indistinguishability Logic: Name Semantics

Remarks
e & contains a finite number of names.

e names have type 79 — 71 where g is finite.

e (n)m uses a finite number of bits from py, (since PTIME in 7).

— compatible with requirement that Ty} , 1S a set of finite tapes.

12

HO Indistinguishability Logic: Local Satisfiability and Validity

Definitions

o Satisfiability: when £ ¢ : bool, we write M : £ = ¢ if

Pro([81" = 1) € o.w.(n).

e Validity: EE ¢ if M: & = ¢ for every M : £.

13

HO Indistinguishability Logic: Local Satisfiability and Validity

Definitions

o Satisfiability: when £ ¢ : bool, we write M : £ = ¢ if
Pro([41 = 1) € o.w.(1).

e Validity: EE ¢ if M: & = ¢ for every M : £.

Local Sequents
e Syntax: £;TF ¢
e Semantics: £ E (Al) — ¢

13

HO Indistinguishability Logic: Term Semantics

Summary:
A model M for £ comprises:
e The interpretation domains of base types B.
= vyields a type semantics [- ;.
e The probability space Ty, = Ty, X 'I]',{,‘ﬂm.
e The interpretations of declared variables of £.
Defined variables are interpreted by their definitions.
= vyields a term semantics [- [’

Remarks
We restrict possible models in several ways (more to come):
e finiteness required of some types (e.g. to index names).

e constraints on name and built-ins interpretations.

14

HO Indistinguishability Logic: Term Semantics

Key ingredients:

e terms are interpreted as arbitrary random variables, not necessarily
PPTMs.
= support probabilistic user-defined functions (e.g. in@r).
= support uncomputable functions.
= support quantifiers V, 3 over arbitrary types.

e the probability space is finite.
= ensures that (p — [t]{;’) is a random variable.

O indeed, any function X : S1 — Sy (where Sy is a finite probability
space and Sy is a measurable space) is a measurable function.

15

Encoding Protocols

HO Indistinguishability Logic: Protocols

Encode protocol executions as (mutually) recursive computations.

Example: encoding of Hash-Lock
in@t = match t with init — d
| — att(frame@pred t)
frame@t = match t with init — d
| — (frame@pred t, out@t)
out@t = match t with init — d
| T(A,i) = (nr(A, i), h((in@t, nt(A,i)), k A))
| R1(j) = nr j
| R2(j) — - ..

= need support for recursive definitions f : 7 = t where f € st(t).
16

HO Indistinguishability Logic: Recursive Definitions

We first extend the HO logic to allow recursive definitions.

Any type 7 and order <€ F with type 7 — 7 — bool can be tagged as
wi(T, <).
= only consider models s.t. ([7], [<]{;) is well-founded.

We allow well-founded recursion over such types.

Details
e we assume a fixed set of type tags S.r.

e we assume a fixed set S,x of terms of type bool (axioms).

e we require that any model M is such that M = S, and

([715%, [<Iiy) is well-founded (for any wf(7, <) € Swf)

17

HO Indistinguishability Logic: Recursive Definitions

We add a typing rule for recursive definitions:

Ty-ENV.REC-DEF
FE & fiTthXaxtiT wilX(t) fex

FE(F:7= 1)

where wf:”é(t) is any syntactic condition which checks that
e f is used in n-long form in t.
e recursive calls to f are well-founded, i.e. on arguments ty smaller
than x:

EE[Va.¢—to <X (for any (@, ¢, f to) € ST(t))
where ST (t) are the conditioned subterms of t (see next slide).

Example
€= X\(i:int).if i =0 then empty else (n i, ¢ (pred i))

with wf(int, <) and the axiom V(i : int). i # 0 — pred i < i. 18

HO Indistinguishability Logic: Conditioned Subterms

We let ST (t) be the subterms of t, decorated the (typed) bound
variables and the conditions holding at each position.

ST(t) {(e true, t) U

0 ift=xeX

(x:7).S8T(to) ift=0(x:7)ty, Q€ {\V}
ST(p) U [@]ST (t1) U [p]ST (to) if t =if ¢ then t; else to

ST (to) UST(t1) if t = (to t1)

where x is taken fresh in the X\ and V cases, and where

[61S & {(@ ¢ A1) | (@ ¢,t) € S}
(x:7):S € {(@x:7),9,t) | (@ ,t) € S}

19

HO Indistinguishability Logic: Conditioned Subterms

Example

ST({x, A(x0,x1 : 7).if xg < x1 then xq else x1)) =

{(e, true, {(x, A(xo,x1 : 7). if xo < x1 then xq else x1))}

U {(e, true, x), (e, true, A\(xo, x1 : 7).if xo < x1 then xq else x1)}
X0, true, A(xq : 7).if X < xq then xq else x;1)}

(x0,%1), true, if xo < x1 then xq else x1)}

(x0,%1), true,xo < x1)}
(X05%1),

(x0,x1)

Xp, X1), true A _'(Xo < Xl),Xl)}

true A xg < X1,%0)}

(
(
(
U {(
(
(
(

20

Formulas

HO Indistinguishability Logic: Formulas

Formulas do not change, except that we use higher-order terms.

d:=T|1
|OAD [OV |[D S| 5D
| Y(x:7).® | 3(x: 7). (xe X)
| t1,. . th ~ntat1,- .-, ton (t1,...,ton higher-order terms)

21

HO Indistinguishability Logic: Formula Semantics

Standard FO semantics with 7-indexed sequences of random
variables interpretation domains.

The satisfaction M : € = ® of ® in M is as expected for boolean
connective and FO quantifiers. E.g.:

M:EET M:EEQAV ifM:EEdandM:E =V
M:EE=® ifnotM:E=®

M:EEYx:m.d if YAe RVy(r),Mx— A]: (E,x:7) = o

22

HO Indistinguishability Logic: Formula Semantics

~ is still interpreted as computational indistinguishability.

M 1 ~ b iff. V PPTM A, Advy (A : &1 ~ B) is negligible.

Execution Model
e Values in [7,]{; are encoded as bitstrings and sent to A.

e Higher-order terms given to A are oracles, which A can query on
any inputs it can compute, any number of times.

e We require that terms in t; and & have types Tg — ... =7 (i.e. no
higher-order arguments).

23

HO Indistinguishability Logic: Proof System

Our rules still apply, though with minor adaptations.

Example: function application requires an additional check:

FA
Jla t] ~ L727 to
[len(t1) < P(n) Alen(t2) < P(n)]

LTl,f t1 ~ L72,f to

where f € FUG, and P is a polynomial.

24

HO Indistinguishability Logic: Proof System

New rule for induction:

Y(N : int). G(N) ~ V(N)

25

HO Indistinguishability Logic: Proof System

New rule for induction:
d(0) ~ Vi
V(N : int). d(N) ~ ¥(N) = d(N +1) ~ ¢(N +1)
Y(N : int). d(N) ~ V(N)

(0)

Only for a constant number of steps N.
Same reason as for hybrid arguments:

(O) ~han) o Y u(n) LT(N) ((f,), negligible)

— u(0) 2 ien fi(n) i(N)

y
<
¢
¢
o
=
I
5

>_i<n fi(n) may not be negligible if N polynomial in 7.
25

HO Indistinguishability Logic: Proof System

New rule for induction:
i(0) ~ v(0)
Y(N : int). (const(N) A G(N) ~ v(N)) = d(N + 1) ~ (N + 1)
) =

Y(N : int). const(N) = @(N) ~ V(N)

Only for a constant number of steps N.
Same reason as for hybrid arguments:

(O) ~ham) s Y u(n) LT(N) ((f,), negligible)

— u(0) 2 ien fi(n) (N)

5y
<
¢
¢
o
=
I
5

>_i<n fi(n) may not be negligible if N polynomial in 7.
25

HO Indistinguishability Logic: Formula and Term Quantifiers

We have two kind of quantifiers: term V and formula V.

But we have only one kind of variable! Why?

Proposition

For every model M of £, we have:

M:EEY(x:7).[¢] iff. M:EE[Y(x:7).4]

26

HO Indistinguishability Logic: Formula and Term Quantifiers

Proof of the Proposition
= case. Assume the following:

M:EE[V(x:7).d] (%)

Let A€ ([[T]]g/ﬂ)neN be a sequence of random variables. We must show

Pr ([[qﬁﬂ&{;HA]) € o.w.(n)
where the probability is over p € Ty, ;.
Pr (HOH&[Z»—)A])
- ([OHM[XHHA(7 M])
Pr (ﬂae[[r]]" [G)HM[M—HV?])
= Pr ([[V(x 7). Al ’))
w.(n) (using (+))

Y]

m

27

HO Indistinguishability Logic: Formula and Term Quantifiers

< case. Assume that
M € b= 7). [4] (1
We need to show that Pr ([V(x : 7). ¢]{") € o.w.(n).

Let A be the family of functions choosing, for any 7 and p, a value a € [7]{;
making ¢ false when evaluated on tape p

def choose{a € [7]} | H_‘d’m’[};h,ng]} if non-empty

A(n)(p)

dwitness otherwise

where ayitness is an arbitrary value in [7]{; (recall that [7]{;, # 0), and choose(S)
is an arbitrary choice function for set S.

Since all functions from Ty, to {0,1} are random variables (thanks to Ty ,'s
finitness), we get that, by applying () to A

Pr (60 a) € 0-w-(n) #)

28

HO Indistinguishability Logic: Formula and Term Quantifiers

Then:

Pr (1413

- Pr(ﬂoﬂ'@”{iH”A(nm])

= Pr (ﬂaeufn"[(/’mfwng])
Pr ([V(x : 7). #]3i")

€ o.w.(n)

(using (1))

29

HO Indistinguishability Logic: Reachability Proof System

Our local proof system hence supports the usual rules for arbitrary

term quantifiers, e.g.
Ex:m;TkH¢

ETHEY(x:7).¢

= Allow for generic higher-order reasoning in terms.

30

Freshness and Cryptographic Rules

HO Indistinguishability Logic: Name Collision

How to adapt the rule exploiting probabilistic independence?

Base Logic Rule
[t #n] when n ¢ st(t)

where t is a ground low-order term.

31

HO Indistinguishability Logic: Name Collision

How to adapt the rule exploiting probabilistic independence?

Base Logic Rule
[t #n] when n ¢ st(t)

where t is a ground low-order term.

Rule for Name Collision (first tentative)
t, to well-typed in £ where £ has no variable declarations.
(l.e. to, t1 ground-terms.)

[t # n to]

when n ¢ st(t, to) and all definitions in &.
= not very useful!

31

HO Indistinguishability Logic: Name Collision

How to do better? Lets see on an example.

& a ground environment with a single inductive definition:
¢ = X(i : bint).if i =0 then empty else (n i, ¢ (pred i))
where n : bint — message and [bint]{; = {0,...,n} for any n.

Rule (special case)
Terms t,to well-typed in £ that do not use ¢ and n:

[(att(£ t) =n to) — to < t]

Indeed, att(¢ t) only depends on the random samplings n 1,...,n t,
which are independent from n tg when t < tg.
= requires in-depth analysis of recursive definitions.

32

HO Indistinguishability Logic: Name Collision

Key ideas to find a condition under which the rule below is sound

[t =ntyg— _‘Qbfresh]

e Collect all occurrences at which name n is sampled in t, to,
including in recursive calls.
= use the set of generalized subterms ST/*().
(STFE(t) can be infinite)

® Ofesh Must ensure independence w.r.t. (n to), i.e. that all
generalized occurrences (n s) in STg(t, tg) are s.t. s # to.

33

HO Indistinguishability Logic: Generalized Subterms

STZ(t) are the generalized subterms of t.

ST(s & {(e, true,s)} if (

s:t)efors¢gé
87‘£"rec(x

if(x:7=1t9) €&

if (x:7=Ay.t9) €&
= (x:7).STF(to) Qe {\V}

= STE*(¢) U [9IS T (t1) U [~4ISTE*(to)

= {(e true, t to) }U

7’5feC()USTYGC()
where y is taken fresh in the \ case and

Q.
1LY

STreC(() tO
STZ(if ¢ then ty else tg

o
-

o

)
)
STE(xt) & S%'EC(to{y - t})
)
)
)

TreC(t tO

if no other case applies

[0S & (@ ¢ A1) | (d@,9,1) € S}
(x:7).S & (((@x:1),9,t) | (@) €S}

9 STZe(") ignores variable that can be unfolded into their definitions. 34

HO Indistinguishability Logic: Freshness Condition

Rule for Name Collision
£ a ground, t, tg well-typed in £.

[t =nty— _‘Qbfresh]
if t,to are in eta-long form and if for M : £, n € N and p:
[dsresh]iy” = 1 implies [@]{i” = 1 for every p € S

where S is a (possibly infinite) set formulas stating that n tg is not

sampled in t, tg.

SE{(Vay = s #£to) | (@ ¢,n s) € STE(t,10)}

Proof: On the blackboard, using the Proposition shown later.

35

HO Indistinguishability Logic: Name Collision

Example
Assume t, tg do not use n nor £.

[(att(£ t) =n to) — to < t]
All occurrences of name n in ST (att (¢ t)) are of the form
(e,t;«é0/\predt750/\-~/\predjt7£0,n (predj t))
for j € N (there are infinitely many occurrences).
All of these are guaranteed fresh by the formula t < tg:
(t < to) — (pred t # to)

Hence t < tg is a suitable candidate for ¢fesp, yielding the rule

[(att(t) =n to) = —(t < to)]

= [(att(é t) =n to) —t < t] 36

HO Indistinguishability Logic: Name Collision

The semantics of a term t w.r.t. a model M : £ and two different tapes
p1 and p; is identical, if the interpretation of declared variables by M
coincides on p; and p».

Proposition

Let t well-typed in & in eta-long form. Then [t]* = [¢]{h7? if

M(x)(n)(p1)(3) = M(x)(n)(p2)(a) with a &[]
for all (&, ¢, (x) € STZ*(t) such that:

e x is a variable declaration bound in £ (not in &)
e M’ extends M into a model of (€, @)

[] [[qs]]g/ﬁ,pl = 1
Proof Sketch: induction over the generalized subterms of t involved in
[

37

	A Higher-Order Indistinguishability Logic
	Encoding Protocols
	Formulas
	Freshness and Cryptographic Rules

