MPRI
SECURE: Proofs of Security Protocols

2. The CCSA Logic

Adrien Koutsos, Inria Paris
2025/2026

The CCSA Logic

Proof System
Structuring Rules
Basic Single-Step Reasoning Rules
Implementation Rules

Cryptographic Rules

The CCSA Logic

The CCSA Logic

We now present a logic, to state (and later prove) properties about
bitstring distributions.

This is a first-order logic with a predicate ~! representing
computational indistinguishability.

=T | I
|OAD|[PdVD | OS50
| ¥x.® | Ix.® (x € X)
| t1,. .y tn ~n thtl, ..., t2n (t1,..., tan € T(S))
Remark: we use A,V, =, ... for the logical connectives, to avoid
confusion with the boolean function symbols A,V,—, ... in terms.

! Actually, one predicate ~, of arity 2n for every n € N.

Semantics of the Logic

The logic has a standard FO semantics, using D as interpretation
domain and interpreting ~ as computational indistinguishability.

The satisfaction M = ® of ® in M is as expected for boolean
connective and FO quantifiers. E.g.:

MET ME®AV ifME®andMEV

ME=d if not M @ M W& if Yme D, M[x— m] = &

Semantics of the Logic

Finally, ~, is interpreted as computational indistinguishability.
M ‘: t1,...,th ~n S1,...,5n

if, for every PPTM A with a n+ 1 input (and working) tapes, and a
single random tape:

Pry (A7, ([ti]3")1<i<n, pa) = 1)
— Pro (A", ([silii")1<i<n, pa) = 1)
is a negligible function of 7.

The quantity in (x) is called the advantage of A against the left/right

game ty,..., th ~pS1,...,Sp

Negligible Functions

A function f(n) is negligible, which we write f € negl(n), if it is
asymptotically smaller than the inverse of any polynomial, i.e.:

1

nC

Ve e N,IN eNs.t. Vn> N, f(n) <

Example
Let f be the function defined by:

f(m) < Pry ([no] ™ = [m]™)

If ng % n1, then f(n) = 5, and f is negligible.

Satisfiability and Validity

A formula ¢ is satisfied by a model M when M = .
® is valid, denoted by = , if it is satisfied by every model.

® is C-valid if it is satisfied by every model M € C.

Protocol Indistinguishability

P and Q are indistinguishable, written P =~ Q, if for any 7:
= frame(P, 1) ~ frame(Q, 7)
Remark

While there are countably many observable traces 7, the set of foldings
of a protocol P is always finite:?

Hframe(P,T) | T}‘ < 40

2|f we remove trailing sequences of error terms.

Exercise: Negligibility

Exercise
Show the following properties:

e If f € negl(n) and g € negl(n) then f + g € negl(n).

e Idem, but for max(f, g) and min(f, g).

e Take a polynomial P. If, for every 1 < i < P(n), f; € negl(n), then
ZlgigP(n) f; is not necessarily negligible.

e Show that Zlgigp(n) fi is negligible if there exists f € negl(n)
uniformly bounding the fi's, i.e. s.t. fi(n) < f(n) for every i,n.

Exercise: Validity

Exercise
Which of the formulas below are valid? Which are not?

true ~ false Ng ~ Ng ng ~ Nni ng = n1 ~ false
ng, Ng ~ Ng, Ny f(no) ~ f(n1) where f € FUG

7Tl(<n0, n1>) = ng ~ true

10

Exercise: Validity

Exercise
Which of the formulas below are valid? Which are not?

% true ~ false ‘: Ngp ~ Ng): ng ~ Nj): Nng =njg ~ false
[~ no, no ~ ng, ng = f(ng) ~ f(n1) where f € FUG

P& 771(<n0, n1>) =ng ~ true

10

Exercise: Protocol Indistinguishability

Exercise
Informally, determine which of the following protocols
indistinguishabilities hold, and under what assumptions:

out(c, t1) ~ out(c, tp) out(c, t) ~ null in(c,x) ~ null

out(c, t) ~ if b then out(c, t;) else out(c, t»)

11

Proof System

Cryptographic Arguments

High-level structure of a game-hopping proof:
Go~e -oo~e,Gn =

G0 ~ert-ten In
where each game-hop G; ~... . Gi11 is justified by:

€i+1

bridging steps showing that G ~¢ G'.
up-to-bad argument | Pr(G) — Pr(G’)| < Pr(bad).
> Pr(bad) < e through a probabilistic argument (e.g. collision

probability).
> ...

a cryptographic reduction to some hardness assumption.

— how to capture these arguments in the logic?

12

Soundness

A rule:
1 ... On
¢
is sound if ¢ is valid whenever ¢1, ..., ¢, are valid.
Example
y~x
X~y s sound

These are typically structural rules, which are valid in all models.

Other rules, e.g. rules relying on cryptographic hardness assumptions,

which only hold in a subset of all models.

13

Proof System

Structuring Rules

Structuring Rules

Structuring rules allow to:

e capture the high-level structure of a cryptographic proof;

e handle low-level manipulation of the proof-goal (bookkeeping).

14

Structuring Rules

Computational indistinguishability is an equivalence relation:

— —

Vo~ 0~ w ~ Vv
7~ REFL ——— SyM —— TRANS
b~V 0~ v
Alpha-renaming.
———=— @-EQU
U~ o

when « is an injective renaming of names in V.

Proofs. Basic properties of indistinguishability.

15

Structuring Rules

Permutation. If 7 is a permutation of {1,..., n} then:
Ur(1)s -+ 5 Un(n) ~ Vr(1)s - -5 Vr(n)
Ui, ..., Uy~ Vi,...,V, PERM

Restriction. The adversary can throw away some values:

—

u,

~

,t
RESTR

<U <y

s
u

~

16

Structuring Rules

Duplication. Giving twice the same value to the adversary is useless:

Y

t
Dupr
o U (&

~

,s ~
7,5,5

<l <!

u,s,

Function application. If the arguments of a function are
indistinguishable, so is the image:
U1, Vi ~ U, Vo
(i), ~ (i), v

FA

where f € FUGQG.

Proofs. These last four rules are proved by cryptographic reductions.

17

Proof of Function Application

U1,V ~ U, Vo

=N o — - FA
f(ul), 4 f(UQ), Vo

Proof. Assume f € F (the case f € G is similar). The proof is by
contrapositive. Let M and A s.t. its advantage against:
(i), v ~ f(i22), v (1)
is not negligible. Let BB be the distinguisher defined by, for any bitstrings w,, w,
and tape p,:
B, W, Wy, pa) & ALY, (Fhua(17, W), Wo, po)
B is a PPTM since A is and (f]),, can be evaluated in pol. time. Then:
B, [@]y", 1", pa)
= AQ" T (a@)]w", 11" pa)
Hence the advantage of B in distinguishing iy, V4 ~ 1, V5 is exactly the
advantage of A in distinguishing (1). Og

(ie{1,2})

Structuring Rules

Case Study. We can do case disjunction over branching terms:

M_;OabOauON V'_;lyblaul V‘_;OabOaVON VVl,bl,Vl

p— — CS
Wo, if by then ug else vg ~ wy,if by then uy else vy

19

Proof of Case Study

bo, up ~ b1, u; bo,vo ~ b1, v1

to = if by then ug else vo ~ t; = if by then uy else vq
Proof. (by contrapositive) Assume M and A s.t. its advantage against:
if by then wug else vy ~ if by then uy else v; (1)

is non-negligible. Let Bt be the distinguisher:

o | AL, w, p, if wp=1
Br (17, w,y w, pg) 2 § AL W2 0a) ’
0 otherwise

B is trivially a PPTM. Moreover, for any i € {1,2}:
Pr (Br(”, 605", [Ty’ p2) = 1)

= Pr, (A [657.p2) = LA [BTG" = 1) f o

20

Proof of Case Study (continued)

Hence the advantage of Bt against by, ug ~ by, u1 is |pT1 — pTol-

Similarly, let 3, be the distinguisher:

Bi(lna Wba w, pa) =
0 otherwise

def {A(l”., w,ps) ifwy #1
By an identical reasoning, we get that the advantage of B, against

bo, vo ~ b1, v1 is |p11 — pio|, where py ;is:

Pr, (AL, [6135°, ps) = 1 A [BTG # 1)

21

Proof of Case Study (continued)

The advantage of A against ty ~ t7 is, by partitioning and triangular
inequality:

(pr1+pi1)—(pro+pLa) <|pr1—prol+1PL1—pLal

Since A's advantage is non-negligible, at least one of the two quantity
above is non-negligible. Hence either B+ or 3, has a non-negligible
advantage against a premise of the CS rule. .

22

Counter-Examples

Remark that b is necessary in CS

Wo, bo, ug ~ Wi, b1, ur Wp, bo, vo ~ Wy, by, vq
Wo, if bg then ug else vg ~ wy,if by then uy else vq

We have:

E (0, ng) ~ (0, ng) E (1, no) ~ (1, no) = even(ng) ~ odd(ng)
But:
if even(np) then (0, ng) else (1, ng)
~ if odd(ng) then (0, ng) else (1, ng)

Why is the later formula not valid?

23

Proof System

Basic Single-Step Reasoning Rules

Equality Reasoning

If = (s =1t) ~ true, then s and t are equal with overwhelming

probability. Hence we can safely replace s by t in any context.

If ¢ is a term of type bool, let [¢@] d:efgzb ~ true.

= i.e. ¢ is overwhelmingly true (equivalently, —¢ is negligible).

Then the following rule is sound:

u,tw_’\7 _[s:t] -
u,s~v

24

Equality Reasoning

Proof

First, for any model M, we have:

M = [¢] iff. Pr, ([¢]{") is overwhelming.

o Left-to-right:

M = [4]
= VAeD. ‘P"p (17, [9l%", a)) — Pr, (A(1"~ [[true]mﬁp:/)a))‘ € negl(n)
!Prp ([[(Dﬂn /)) 1’ € negl(n) (taking A(1", w, p,) = w)

= Pr, ([#13;") € o.w.(n)

e Right-to-left, assume Prp ([¢1%”) € o.w.(n) and take A € D:
[Pro (A7, I8, 2)) — Pr, (AQL", [trueli”, pa) |
< Pr, (-[4%°) (up-to-bad)

€ negl(n)

25

Equality Reasoning

This allows to conclude immediately since:

Pr(A([z, 1)) — Pr(A(Iv]))l
< |Pr(A([g; s])) — Pr(A(IVI))| + Pr ([s] # [t]) (up-to-bad)

Reminder: up-to-bad argument
If B, E, E’ are events such that:

(EA-B) <= (E' A=B), ()
then |Pr(E) — Pr(E’)| < Pr(B).
Indeed, by triangular inequality and total probabilities:
|Pr(E) — Pr(E")| < |Pr(E A B) — Pr(E' A B)| + |Pr(E A =B) — Pr(E’ A =B)|
We conclude by observing that:
e |Pr(EA—-B)—Pr(E' A—B)| =0 by (¢);

e |Pr(EAB)—Pr(E' AB)| < max(Pr(E A B),Pr(E’ A B)) < Pr(B). 2

Generic Equality Reasoning

To prove |= [s = t] (or more generally = [¢]), we use the rule:

-Ath }_GEN Qb
[¢]

GEN

where gy is any sound proof system for generic mathematical
reasoning (e.g. higher-order logic).

This allows exact (i.e. non-probabilistic) mathematical reasoning.
We allow additional axioms using A, (e.g. for if - then - else:).

Example

fu=vthenuvelset =
Ath '_GEN V=w —

if u=v then w else t

27

Equality Reasoning

Up-to-bad arguments (game-hop style)
Two games G, G’ such that:
Pr(G A —bad) = Pr(G’ A —bad).
Then | Pr(G) — Pr(G’)| < Pr(bad).
In the CCSA logic:
[®bad] ["Pbad = u = V]

un~ v

U2B

Proof. Rewriting rule + some basic reasoning.

28

Equality Reasoning

Up-to-bad arguments (game-hop style)
Two games G, G’ such that:
Pr(G A —bad) = Pr(G’ A —bad).
Then | Pr(G) — Pr(G’)| < Pr(bad).
In the CCSA logic:
[®bad] ["Pbad = u = V]

un~ v

U2B

Proof. Rewriting rule + some basic reasoning.

Other direction [-] = (- ~ -) also exists:
[b] ¢~
[0]

— enables back-and-forth between both predicates. 28

REWRITE-EQUIV

Probabilistic Independence

Two rules exploiting the independence of bitstring distributions:

[t # n] =D \vhen n ¢ st(t)

FRESH when ng & st(&) and ny ¢ st(V)

<
K
S S

Remark
To check that the rules side-conditions hold, we require that they do not

contain free variables. Hence we actually have a countable, recursive, set

of ground rules (i.e. rule schemata).

29

Probability Independence

We give the proof of the first rule:
[t # n] =D \then n ¢ st(t)

Proof. For any model M (we omit it below):

Pr ([t = n]™")
= Pr,([d" = [n]™)
- ZWE{O,l}* Pr,([e]"* = w A [n]"" = w)
= Suepy: P[] = w) - Pry([n]"” = w)

= 27" Lweqoay Pro(lt]™ = w)
1
21

30

Exercise

Exercise

Give a derivation of the following formula:

no ~ if b then ng else n; (when ng, n; ¢ st(b))

31

Proof System

Implementation Rules

Rules: Soundness

A rule is if ¢ is C-valid whenever ¢+, ..., ¢, are C-valid.
Example

[771 <X7 y> = X]
is not , because we do not require anything on the interpretation

of 71 and the pair.

Obviously, it is , Where C, is the set of model where 71
computes the first projection of the pair { |).

32

Implementation Assumptions

The general philosophy of the CCSA approach is to make the minimum
number of assumptions possible on the interpretations of function

symbols in a model.

Any additional necessary assumption is added through rules, which
restrict the set of model for which the formula holds (hence limit the
scope of the final security result).

Typically, this is used for:

e functional properties, which must be satisfied by the protocol
functions (e.g. the projection/pair rule).

e cryptographic hardness assumptions, which must be satisfied by
the cryptographic primitives (e.g. IND-CCA).

33

Functional Properties

Example. Equational theories for protocol functions:

i ((x1,%2)) = Xi i€{1,2}
dec({x};k(y),sk(y)) = X
xey)ez=xo(yo?2)

34

Proof System

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of
computational security.

Cryptographic Reduction § <,.q H

If you can break the cryptographic design S, then you can break the
hardness assumption H using roughly the same time.

e \We assume that H cannot be broken in a reasonable time:

» Low-level assumptions: D-Log, DDH, ...
» Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...

e Hence, S cannot be broken in a reasonable time.

35

Cryptographic Reduction

S reduces to a hardness hypothesis # (e.g. IND-CCA, DDH) if:
VA.3B. Advii(A) < P(AdV],(B),n)

where A and B are taken among PPTMs and P is a polynomial.

36

Cryptographic Rules

We are now going to give rules which capture some cryptographic
hardness hypotheses.

The validity of these rules will be established through a cryptographic
reduction.

e Asymmetric encryption: indistinguishability (IND-CCA;) and
key-privacy (KP-CCA;);
e Hash function: collision-resistance (CR-HK);

e MAC: unforgeability (EUF-CMA).

37

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

e public and private key generation functions pk(_),sk(_);
e randomized® encryption function { }-;

e a decryption function dec(,)

It must satisfies the functional equality:

dec({x}Zy(,: k(1)) = x

3The role of the randomization will become clear later.

38

IND-CCA; Security

An encryption scheme is indistinguishable against chosen cipher-text
attacks (IND-CCA;) iff. for every PPTM A with access to:

o a left-right oracle O (-, -):

Oll_)’F?(mo, my) def {mb};k(n) if len(my1) = len(my) (r fresh)
0 otherwise

e and a decryption oracle Oy (-),

where A can call O_r once, and cannot call Oy, after O g, then:
‘ Pl (Aoii?n’ogec (17, pk(n)) = 1) — Pr, (,AOEQ’OS“ (17, pk(n)) = 1) |

is negligible in 7, where n is drawn uniformly in {0,1}".

39

IND-CCA; Security: Exercise

Exercise
Show that if the encryption ignore its randomness, i.e. there exists

aenc(_,)s.t. forall x,y,r:
{x}}, = aenc(x,y)

then the encryption does not satisfy IND-CCA;.

40

IND-CCA; Rule

Indistinguishability Against Chosen Ciphertexts Attacks
If the encryption scheme is IND-CCA1, then the ground rule:

[len(to) = len(t1)]
u, {to};,k(n) o Jv{tl};k(n)

IND-CCA1

is sound, when:

e r does not appear in 1, to, t1, i.e. r & st(d, to, t1);

e n appears only in pk(-) or dec(_,sk(-)) positions in i, to, t, which
we write:

N Cok(),dec(_sk(-)) s to, t1

41

IND-CCA; Rule: Conditions

Definition: Positions
We write pos(t) € {e} UN(-N)* the set of positions of t and ¢, the
sub-term of t at position p.

Example
if t = f(g(a, b), h(c)) then pos(t) ={¢0,1,0-0,0-1,1,1-0} and:

t‘e =t t|0 = g(a, b) t|0,0 = a t|0,1 =b t|]_ = h(C)

f1o=¢

42

IND-CCA; Rule: Conditions

Definition: CCA; Side-Condition
(N Cpk(-)dec(_sk())) iff. for any p € pos(u), if ¢, = n, either:

e p=pp-0and tipo = pk(n);

e or p=po-1-0and t),, =dec(s,sk(n)).

Examples (writing C instead of Cpy(.) dec(,sk(-)))

nZn n C pk(pk(n)) n C dec(pk(n), sk(n))
n £ dec(sk(n),sk(n)) nC tifn¢st(t)

43

IND-CCA; Rule: Proof

Proof sketch
Proof by contrapositive. Let M be a model, A an adversary and &, ty, t; ground

terms such that:

Pro (A, [15. [{to} oy I 2)

— Pro(AQ", [aTy", [[{tl}{,k(n)]]&%”-, Pa)

is not negligible, and M = [len(tp) = len(t1)].
We must build a PPTM B s.t. B wins the IND-CCA; security game.

44

IND-CCA; Rule: Proof

Let BO’L"FZ'«OLC(W’ [pk(n)]i%?) be the following program:
i) lazily* samples the random tapes (pa, p},) where:
ph = pn[n > 0,r — 0]
ii) compute®:
lea Wtoa Wt1 = [[LT* t07 thI/u"p
using (pa, o), [pk(n)]i;” and calls to O .
i) return 0 if len(tg) # len(t1).

iii) otherwise, compute:
b, “
wir = OfR (Weo, Wy) = [{tb},;k(n)mp

iv) return A(17, wz, Wi, pa).

*Why do we need this?
5We describe how later.

45

IND-CCA; Rule: Proof

Then:

Adv(A) < Adv(A A len(ty) = len(t1)) + Pr(len(to) # len(t1)) (up-to-bad)
= Adv(B Alen(ty) = len(t1)) + Pr(len(to) # len(t1))
= Adv(B) + Pr(len(to) # len(t1))

Hence B's advantage against IND-CCA; is at least A's advantage against:

J-,{to};k(n) ~ Ja{tl};k(n) (T)
up-to a negligible quantity (the probability that len(ty) # len(t1)).

Since (1) is assumed non-negligible, so is B's advantage.

46

IND-CCA; Rule: Proof

It only remains to explain how to do step ii) in polynomial time.

We prove by structural induction that for any subterm s of &/, tg, t1:

e either s is a forbidden subterm r, n, or sk(n);

e or 3 can compute ws := [s]{;” in polynomial time.

Assuming this holds, we conclude by observing that IND-CCA; side conditions
guarantees that i, to, t; are not forbidden subterms.

a7

IND-CCA; Rule: Proof

Induction. We are in one of the following cases:

e s € X is not possible, since u, ty, t; are ground.
e s € {r,n} are forbidden, hence the induction hypothesis holds.

e s c N\{r,n}, then B computes s directly from p{, = pn[n — 0,r — 0].

hypothesis, B can compute w; := [t;];” for any 1 <i < n. Then B simply
computes:
{afDM(lmwl,...,wn) iffeF
Ws 1=

(17w, ... wh,pa) ifFEG

48

IND-CCA; Rule: Proof

case disjunction (continued):

Using IND-CCA; side conditions, either s is either pk(n) or dec(m,sk(n)).
The first case is immediate since B receives [pk(n)]{;” as argument.

For the second case, from IND-CCA; side conditions, we know that m # n
and m # sk(n). Hence, by induction hypothesis, 5 can compute
Wm = [m]{;”. We conclude using:

ws := Ogo(Wm) O

49

IND-CCA; Rule: Exercise

Exercise
Which of the following formulas can be proven using IND-CCA17?

pk(1), {0}y ~ PR {1
pk(n), {O}:)k(n)v {O}Lok(n) ~ pk(n), {1}rpk(n)7 {O}:)ok(n)
k(). {0}y 10y ~ PR {0y {1k

k(). {055y ~ PR(n), {sk(m)} o)

50

IND-CCA; Rule: Exercise

Exercise (Hybrid Argument)
Prove the following formula using IND-CCA;:

{015 oy A1 iy LMYy ~ 10F 5y H0 iy -+ {0 oy

Note: we assume that all plain-texts above have the same length (e.g.
they are all represented over L bits, for L large enough)

51

KP-CCA; Security

A scheme provides key privacy against chosen cipher-text attacks
(KP-CCA;) iff for every PPTM A with access to:

e a left-right encryption oracle Ob N OF

OLR* "™ (m) € {m}iy .,y (r fresh)
e and two decryption oracles Oy (-) and Oy’ (-),

where A can call O g once, and cannot call the decryption oracles after
O\R., then:

Prno ni (./401 RO Odeoc’odec (177 pk(no) pk(nl)) = 1)
— Pry,. nl(AOO DO @) @ (17, pk(no), pk(n1)) = 1)
is negligible in 1, where ng, n; are drawn in {0, 1}".

52

Security Notions: Exercise

Exercise
Show that IND-CCA; A KP-CCA; and KP-CCA; # IND-CCA;.

53

KP-CCA; Rule

Key Privacy Against Chosen Ciphertexts Attacks
If the encryption scheme is KP-CCA;, then the ground rule:

KP-CCA1

a, {t};k(no) ~ U, {t};k(nl)
is sound, when:

e r does not appear in 7, t;

e np,n; appear only in pk(-) or dec(_,sk(+)) positions in &, t.

The proof is similar to the IND-cCA; soundness proof. We omit it.

54

	The CCSA Logic
	Proof System
	Structuring Rules
	Basic Single-Step Reasoning Rules
	Implementation Rules
	Cryptographic Rules

