MPRI SECURE: Proofs of Security Protocols

2. The CCSA Logic

Adrien Koutsos, Inria Paris 2025/2026

Outline

The CCSA Logic

Proof System

Structuring Rules

Basic Single-Step Reasoning Rules

Implementation Rules

Cryptographic Rules

The CCSA Logic

The CCSA Logic

We now present a logic, to state (and later prove) **properties** about **bitstring distributions**.

This is a first-order logic with a predicate \sim^1 representing computational indistinguishability.

$$\Phi := \tilde{\top} \mid \tilde{\bot}
 \mid \Phi \tilde{\wedge} \Phi \mid \Phi \tilde{\vee} \Phi \mid \Phi \tilde{\rightarrow} \Phi \mid \tilde{\neg} \Phi
 \mid \tilde{\forall} x. \Phi \mid \tilde{\exists} x. \Phi
 \mid t_1, \dots, t_n \sim_n t_{n+1}, \dots, t_{2n}$$

$$(x \in \mathcal{X})$$

$$(t_1, \dots, t_{2n} \in \mathcal{T}(\mathcal{S}))$$

Remark: we use $\tilde{\wedge}, \tilde{\vee}, \tilde{\rightarrow}, \ldots$ for the logical *connectives*, to avoid confusion with the boolean *function symbols* $\wedge, \vee, \rightarrow, \ldots$ in terms.

¹Actually, one predicate \sim_n of arity 2n for every $n \in \mathbb{N}$.

Semantics of the Logic

The logic has a standard FO semantics, using \mathcal{D} as interpretation domain and interpreting \sim as computational indistinguishability.

The satisfaction $\mathbb{M} \models \Phi$ of Φ in \mathbb{M} is as expected for boolean connective and FO quantifiers. E.g.:

$$\mathbb{M} \models \tilde{\mathsf{T}} \qquad \mathbb{M} \models \Phi \tilde{\wedge} \Psi \quad \text{if } \mathbb{M} \models \Phi \text{ and } \mathbb{M} \models \Psi$$

$$\mathbb{M} \models \tilde{\neg} \Phi \quad \text{if not } \mathbb{M} \models \Phi \qquad \mathbb{M} \models \tilde{\forall} \mathsf{x}.\Phi \quad \text{if } \forall m \in \mathcal{D}, \ \mathbb{M}[\mathsf{x} \mapsto m] \models \Phi$$

Semantics of the Logic

Finally, \sim_n is interpreted as computational indistinguishability.

$$\mathbb{M} \models t_1, \ldots, t_n \sim_n s_1, \ldots, s_n$$

if, for every PPTM ${\cal A}$ with a n+1 input (and working) tapes, and a single random tape:

$$\begin{vmatrix} \operatorname{Pr}_{\rho} \left(\mathcal{A}(1^{\eta}, (\llbracket t_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho})_{1 \leq i \leq n}, \rho_{\mathsf{a}}) = 1 \right) \\ - \operatorname{Pr}_{\rho} \left(\mathcal{A}(1^{\eta}, (\llbracket s_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho})_{1 \leq i \leq n}, \rho_{\mathsf{a}}) = 1 \right) \end{vmatrix}$$
 (*)

is a **negligible** function of η .

The quantity in (\star) is called the **advantage** of A against the left/right game $t_1, \ldots, t_n \sim_n s_1, \ldots, s_n$

Negligible Functions

A function $f(\eta)$ is **negligible**, which we write $f \in \text{negl}(\eta)$, if it is asymptotically smaller than the inverse of any polynomial, i.e.:

$$\forall c \in \mathbb{N}, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, f(n) \leq \frac{1}{n^c}$$

Example

Let f be the function defined by:

$$f(\eta) \stackrel{\mathsf{def}}{=} \mathsf{Pr}_{\rho} \big(\llbracket \mathsf{n}_0 \rrbracket^{\eta, \rho} = \llbracket \mathsf{n}_1 \rrbracket^{\eta, \rho} \big)$$

If $n_0 \not\equiv n_1$, then $f(\eta) = \frac{1}{2^{\eta}}$, and f is negligible.

6

Satisfiability and Validity

A formula Φ is satisfied by a model M when $M \models \Phi$.

- Φ is valid, denoted by $\models \Phi$, if it is satisfied by every model.
- Φ is \mathcal{C} -valid if it is satisfied by every model $\mathbb{M} \in \mathcal{C}$.

Protocol Indistinguishability

 \mathcal{P} and \mathcal{Q} are indistinguishable, written $\mathcal{P} \approx \mathcal{Q}$, if for any τ :

$$\models \mathsf{frame}(\mathcal{P}, \tau) \sim \mathsf{frame}(\mathcal{Q}, \tau)$$

Remark

While there are countably many observable traces τ , the set of foldings of a protocol P is always finite:²

$$\left|\left\{\mathsf{frame}(\mathcal{P},\tau)\mid\tau\right\}\right|<+\infty$$

²If we remove trailing sequences of error terms.

Exercise: Negligibility

Exercise

Show the following properties:

- If $f \in \text{negl}(\eta)$ and $g \in \text{negl}(\eta)$ then $f + g \in \text{negl}(\eta)$.
- Idem, but for max(f,g) and min(f,g).
- Take a polynomial P. If, for every $1 \le i \le P(\eta)$, $f_i \in \text{negl}(\eta)$, then $\sum_{1 \le i \le P(\eta)} f_i$ is not necessarily negligible.
- Show that $\sum_{1 \leq i \leq P(\eta)} f_i$ is negligible if there exists $f \in \text{negl}(\eta)$ uniformly bounding the f_i 's, i.e. s.t. $f_i(\eta) \leq f(\eta)$ for every i, η .

Exercise: Validity

Exercise

Which of the formulas below are valid? Which are not?

true
$$\sim$$
 false $n_0 \sim n_0$ $n_0 \sim n_1$ $n_0 = n_1 \sim$ false
$$n_0, n_0 \sim n_0, n_1 \qquad \qquad f(n_0) \sim f(n_1) \ \text{where} \ f \in \mathcal{F} \cup \mathcal{G}$$

$$\pi_1(\langle n_0 \,,\, n_1 \rangle) = n_0 \sim \text{true}$$

Exercise: Validity

Exercise

Which of the formulas below are valid? Which are not?

$$\label{eq:state_equation} \begin{split} \not\models \mathsf{true} \sim \mathsf{false} & \models \mathsf{n}_0 \sim \mathsf{n}_0 & \models \mathsf{n}_0 \sim \mathsf{n}_1 & \models \mathsf{n}_0 = \mathsf{n}_1 \sim \mathsf{false} \\ & \not\models \mathsf{n}_0, \mathsf{n}_0 \sim \mathsf{n}_0, \mathsf{n}_1 & \models f(\mathsf{n}_0) \sim f(\mathsf{n}_1) \text{ where } f \in \mathcal{F} \cup \mathcal{G} \\ & \not\models \pi_1(\langle \mathsf{n}_0 \,,\, \mathsf{n}_1 \rangle) = \mathsf{n}_0 \sim \mathsf{true} \end{split}$$

Exercise: Protocol Indistinguishability

Exercise

Informally, determine which of the following protocols indistinguishabilities hold, and under what assumptions:

$$\mathbf{out}(\mathtt{c},t_1) pprox \mathbf{out}(\mathtt{c},t_2) \qquad \mathbf{out}(\mathtt{c},t) pprox \mathbf{null} \qquad \mathbf{in}(\mathtt{c},\mathtt{x}) pprox \mathbf{null}$$

$$\mathbf{out}(\mathtt{c},t) pprox \mathrm{if} \ b \ \mathrm{then} \ \mathbf{out}(\mathtt{c},t_1) \ \mathrm{else} \ \mathbf{out}(\mathtt{c},t_2)$$

Proof System

Cryptographic Arguments

High-level structure of a game-hopping proof:

$$\mathcal{G}_0 \sim_{\epsilon_1} \dots \sim_{\epsilon_n} \mathcal{G}_n \quad \Rightarrow \quad \mathcal{G}_0 \sim_{\epsilon_1 + \dots + \epsilon_n} \mathcal{G}_n$$

where each game-hop $G_i \sim_{\epsilon_{i+1}} G_{i+1}$ is justified by:

- bridging steps showing that $\mathcal{G} \sim_0 \mathcal{G}'$.
- up-to-bad argument $|\Pr(\mathcal{G}) \Pr(\mathcal{G}')| \leq \Pr(\mathsf{bad})$.
 - ▶ $Pr(bad) \le \epsilon$ through a **probabilistic argument** (e.g. collision probability).
 - ▶ ...
- a cryptographic reduction to some hardness assumption.
- ...

⇒ how to capture these arguments in the logic?

Soundness

A rule:

$$\frac{\phi_1 \quad \dots \quad \phi_n}{\phi}$$

is sound if ϕ is valid whenever ϕ_1, \ldots, ϕ_n are valid.

Example

$$\frac{y \sim x}{x \sim y}$$
 is sound

These are typically structural rules, which are valid in all models.

Other rules, e.g. rules relying on cryptographic hardness assumptions, which only hold in a subset of all models.

Proof System

Structuring Rules

Structuring rules allow to:

- capture the high-level structure of a cryptographic proof;
- handle low-level manipulation of the proof-goal (bookkeeping).

Computational indistinguishability is an equivalence relation:

$$\frac{1}{\vec{u} \sim \vec{u}}$$
 Refl

$$\frac{\vec{v} \sim \vec{u}}{\vec{u} \sim \vec{v}}$$
 Sym

$$\frac{\vec{u} \sim \vec{u}}{\vec{u} \sim \vec{u}}$$
 Refl $\frac{\vec{v} \sim \vec{u}}{\vec{u} \sim \vec{v}}$ Sym $\frac{\vec{u} \sim \vec{w}}{\vec{u} \sim \vec{v}}$ Trans

Alpha-renaming.

$$\frac{1}{\vec{u} \sim \vec{u} \alpha} \alpha$$
-EQU

when α is an injective renaming of names in \mathcal{N} .

Proofs. Basic properties of indistinguishability.

Permutation. If π is a permutation of $\{1, \ldots, n\}$ then:

$$\frac{u_{\pi(1)},\ldots,u_{\pi(n)} \sim v_{\pi(1)},\ldots,v_{\pi(n)}}{u_1,\ldots,u_n \sim v_1,\ldots,v_n} \text{ Perm}$$

Restriction. The adversary can throw away some values:

$$\frac{\vec{u}, s \sim \vec{v}, t}{\vec{u} \sim \vec{v}} \text{ Restr}$$

Duplication. Giving twice the same value to the adversary is useless:

$$\frac{\vec{u}, s \sim \vec{v}, t}{\vec{u}, s, s \sim \vec{v}, t, t} \text{ DUP}$$

Function application. If the arguments of a function are indistinguishable, so is the image:

$$\frac{\vec{u}_1, \vec{v}_1 \sim \vec{u}_2, \vec{v}_2}{f(\vec{u}_1), \vec{v}_1 \sim f(\vec{u}_2), \vec{v}_2} \ \mathrm{FA}$$

where $f \in \mathcal{F} \cup \mathcal{G}$.

Proofs. These last four rules are proved by cryptographic reductions.

Proof of Function Application

$$\frac{\vec{u}_1, \vec{v}_1 \sim \vec{u}_2, \vec{v}_2}{f(\vec{u}_1), \vec{v}_1 \sim f(\vec{u}_2), \vec{v}_2} \ \mathrm{FA}$$

Proof. Assume $f \in \mathcal{F}$ (the case $f \in \mathcal{G}$ is similar). The proof is by contrapositive. Let \mathbb{M} and \mathcal{A} s.t. its advantage against:

$$f(\vec{u}_1), \vec{v}_1 \sim f(\vec{u}_2), \vec{v}_2$$
 (†)

is not negligible. Let $\mathcal B$ be the *distinguisher* defined by, for any bitstrings $\vec w_u, \vec w_v$ and tape ρ_a :

$$\mathcal{B}(1^{\eta}, \vec{w}_{u}, \vec{w}_{v}, \rho_{a}) \stackrel{\mathsf{def}}{=} \mathcal{A}(1^{\eta}, \langle f \rangle_{\mathbb{M}}(1^{\eta}, \vec{w}_{u}), \vec{w}_{v}, \rho_{a})$$

 $\mathcal B$ is a PPTM since $\mathcal A$ is and $(f)_{\mathbb M}$ can be evaluated in pol. time. Then:

$$\mathcal{B}(1^{\eta}, \llbracket \vec{u_i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket \vec{v_i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\boldsymbol{a}})$$

$$= \mathcal{A}(1^{\eta}, \llbracket f(\vec{u_i}) \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket \vec{v_i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\boldsymbol{a}})$$

$$(i \in \{1, 2\})$$

Hence the advantage of \mathcal{B} in distinguishing $\vec{u}_1, \vec{v}_1 \sim \vec{u}_1, \vec{v}_2$ is exactly the advantage of \mathcal{A} in distinguishing (†).

Case Study. We can do case disjunction over branching terms:

$$\frac{\vec{w}_0,\,b_0,\,u_0\sim\vec{w}_1,\,b_1,\,u_1}{\vec{w}_0,\,\text{if }b_0\text{ then }u_0\text{ else }v_0\sim\vec{w}_1,\,\text{if }b_1\text{ then }u_1\text{ else }v_1}\ \mathrm{CS}$$

Proof of Case Study

$$\frac{b_0, u_0 \sim b_1, u_1 \qquad b_0, v_0 \sim b_1, v_1}{\mathbf{t_0} \equiv \text{if } b_0 \text{ then } u_0 \text{ else } v_0 \sim \mathbf{t_1} \equiv \text{if } b_1 \text{ then } u_1 \text{ else } v_1} \text{ CS}$$

Proof. (by contrapositive) Assume \mathbb{M} and \mathcal{A} s.t. its advantage against:

if
$$b_0$$
 then u_0 else $v_0 \sim$ if b_1 then u_1 else v_1

is non-negligible. Let \mathcal{B}_{\top} be the distinguisher:

$$\mathcal{B}_{\top}(1^{\eta}, w_b, w, \rho_a) \stackrel{\mathsf{def}}{=} \begin{cases} \mathcal{A}(1^{\eta}, w, \rho_a) & \text{ if } w_b = 1\\ 0 & \text{ otherwise} \end{cases}$$

 \mathcal{B}_{\top} is trivially a PPTM. Moreover, for any $i \in \{1,2\}$:

$$\begin{aligned} & \mathsf{Pr}_{\rho}\Big(\mathcal{B}_{\top}(1^{\eta}, \llbracket b_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket u_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathfrak{d}}) = 1\Big) \\ & = & \mathsf{Pr}_{\rho}\Big(\mathcal{A}(1^{\eta}, \llbracket t_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathfrak{d}}) = 1 \wedge \llbracket b_{i} \rrbracket_{\mathbb{M}}^{\eta, \rho} = 1\Big)\Big\} \, \rho_{\top, i} \end{aligned}$$

 (\dagger)

Proof of Case Study (continued)

Hence the advantage of \mathcal{B}_{\top} against $b_0, u_0 \sim b_1, u_1$ is $|\mathbf{p}_{\top,1} - \mathbf{p}_{\top,0}|$. Similarly, let \mathcal{B}_{\perp} be the distinguisher:

$$\mathcal{B}_{\perp}(1^{\eta}, w_b, w, \rho_a) \stackrel{\text{def}}{=} \begin{cases} \mathcal{A}(1^{\eta}, w, \rho_a) & \text{if } w_b \neq 1\\ 0 & \text{otherwise} \end{cases}$$

By an identical reasoning, we get that the advantage of \mathcal{B}_{\perp} against $b_0, v_0 \sim b_1, v_1$ is $|\mathbf{p}_{\perp,1} - \mathbf{p}_{\perp,0}|$, where $\mathbf{p}_{\perp,i}$ is:

$$\mathsf{Pr}_{\rho}\Big(\mathcal{A}(1^{\eta},\llbracket \boldsymbol{t_i}\rrbracket_{\mathbb{M}}^{\eta,\rho},\rho_{\boldsymbol{a}})=1\wedge\llbracket b_i\rrbracket_{\mathbb{M}}^{\eta,\rho}\neq 1\Big)$$

Proof of Case Study (continued)

The advantage of \mathcal{A} against $t_0 \sim t_1$ is, by partitioning and triangular inequality:

$$|(p_{\top,1}+p_{\bot,1})-(p_{\top,0}+p_{\bot,1})|\leq |p_{\top,1}-p_{\top,0}|+|p_{\bot,1}-p_{\bot,1}|$$

Since \mathcal{A} 's advantage is non-negligible, at least one of the two quantity above is non-negligible. Hence either \mathcal{B}_{\top} or \mathcal{B}_{\perp} has a non-negligible advantage against a premise of the CS rule.

Counter-Examples

Remark that b is necessary in CS

$$\frac{\vec{w}_0,\,b_0,\,u_0\sim\vec{w}_1,\,b_1,\,u_1\quad \vec{w}_0,\,b_0,\,v_0\sim\vec{w}_1,\,b_1,\,v_1}{\vec{w}_0,\,\text{if }b_0\text{ then }u_0\text{ else }v_0\sim\vec{w}_1,\,\text{if }b_1\text{ then }u_1\text{ else }v_1}\ \mathrm{CS}$$

We have:

$$\models \langle 0\,,\, n_0 \rangle \sim \langle 0\,,\, n_0 \rangle \qquad \models \langle 1\,,\, n_0 \rangle \sim \langle 1\,,\, n_0 \rangle \qquad \models \mathtt{even}(n_0) \sim \mathtt{odd}(n_0)$$

But:

$$\not\models \quad \text{if even}(n_0) \text{ then } \langle 0 \,,\, n_0 \rangle \text{ else } \langle 1 \,,\, n_0 \rangle \\ \sim \text{if } \quad \text{odd}(n_0) \text{ then } \langle 0 \,,\, n_0 \rangle \text{ else } \langle 1 \,,\, n_0 \rangle$$

Why is the later formula not valid?

Proof System

Basic Single-Step Reasoning Rules

If \models (s = t) \sim true, then s and t are equal with overwhelming probability. Hence we can safely replace s by t in any context.

If ϕ is a term of type bool, let $[\phi] \stackrel{\text{def}}{=} \phi \sim$ true. \Rightarrow i.e. ϕ is overwhelmingly true (equivalently, $\neg \phi$ is negligible).

Then the following rule is sound:

$$\frac{\vec{u}, t \sim \vec{v} \quad [s=t]}{\vec{u}, s \sim \vec{v}}$$
 R

Proof

First, for any model M, we have:

$$\mathbb{M} \models [\phi] \text{ iff. } \mathsf{Pr}_{\rho} \left(\llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho} \right) \text{ is overwhelming.}$$

• Left-to-right:

$$\begin{split} & \mathbb{M} \models \llbracket \phi \rrbracket \\ & \Rightarrow \ \forall A \in \mathcal{D}. \ \left| \mathsf{Pr}_{\rho} \left(\mathcal{A} (1^{\eta}, \llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{a}) \right) - \mathsf{Pr}_{\rho} \left(\mathcal{A} (1^{\eta}, \llbracket \mathsf{true} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{a}) \right) \right| \in \mathsf{negl}(\eta) \\ & \Rightarrow \ \left| \mathsf{Pr}_{\rho} \left(\llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho} \right) - 1 \right| \in \mathsf{negl}(\eta) \\ & \Rightarrow \ \mathsf{Pr}_{\rho} \left(\llbracket \phi \rrbracket_{\mathbb{M}}^{\eta, \rho} \right) \in \mathsf{o.w.}(\eta) \end{split}$$

• Right-to-left, assume $\Pr_{\rho}\left(\llbracket\phi\rrbracket_{\mathbb{M}}^{\eta,\rho}\right)\in \text{o.w.}(\eta)$ and take $\mathcal{A}\in\mathcal{D}$: $\left|\Pr_{\rho}\left(\mathcal{A}(1^{\eta},\llbracket\phi\rrbracket_{\mathbb{M}}^{\eta,\rho},\rho_{a})\right)-\Pr_{\rho}\left(\mathcal{A}(1^{\eta},\llbracket\text{true}\rrbracket_{\mathbb{M}}^{\eta,\rho},\rho_{a})\right)\right|$ $\leq \Pr_{\rho}\left(\neg\llbracket\phi\rrbracket_{\mathbb{M}}^{\eta,\rho}\right) \qquad \qquad \text{(up-to-bad)}$ $\in \operatorname{negl}(\eta)$

This allows to conclude immediately since:

$$\begin{aligned} &| \mathsf{Pr}(\mathcal{A}(\llbracket \vec{v}, t \rrbracket)) - \mathsf{Pr}(\mathcal{A}(\llbracket \vec{v} \rrbracket)) | \\ &\leq &| \mathsf{Pr}(\mathcal{A}(\llbracket \vec{u}, s \rrbracket)) - \mathsf{Pr}(\mathcal{A}(\llbracket \vec{v} \rrbracket)) | + \mathsf{Pr}(\llbracket s \rrbracket \neq \llbracket t \rrbracket) \end{aligned} \tag{up-to-bad}$$

Reminder: up-to-bad argument

If B, E, E' are events such that:

$$(E \wedge \neg B) \Leftrightarrow (E' \wedge \neg B), \tag{\diamond}$$

then
$$|\Pr(E) - \Pr(E')| \leq \Pr(B)$$
.

Indeed, by triangular inequality and total probabilities:

$$|\Pr(E) - \Pr(E')| \le |\Pr(E \land B) - \Pr(E' \land B)| + |\Pr(E \land \neg B) - \Pr(E' \land \neg B)|$$

We conclude by observing that:

- $|\Pr(E \wedge \neg B) \Pr(E' \wedge \neg B)| = 0$ by (\diamond) ;
- $|\Pr(E \land B) \Pr(E' \land B)| \le \max(\Pr(E \land B), \Pr(E' \land B)) \le \Pr(B)$.

Generic Equality Reasoning

To prove $\models [s = t]$ (or more generally $\models [\phi]$), we use the rule:

$$\frac{\mathcal{A}_{\mathsf{th}} \vdash_{\mathsf{GEN}} \phi}{[\phi]} \mathsf{GEN}$$

where \vdash_{GEN} is any sound proof system for generic mathematical reasoning (e.g. higher-order logic).

This allows exact (i.e. non-probabilistic) mathematical reasoning.

We allow additional axioms using A_{th} (e.g. for if \cdot then \cdot else \cdot).

Example

$$\mathcal{A}_{\mathsf{th}} \vdash_{\mathsf{GEN}} v = w \to \begin{pmatrix} \mathsf{if} \ u = v \ \mathsf{then} \ u \ \mathsf{else} \ t \end{pmatrix}$$

Up-to-bad arguments (game-hop style)

Two games $\mathcal{G}, \mathcal{G}'$ such that:

$$Pr(\mathcal{G} \wedge \neg bad) = Pr(\mathcal{G}' \wedge \neg bad).$$

Then
$$|\Pr(\mathcal{G}) - \Pr(\mathcal{G}')| \leq \Pr(\mathsf{bad})$$
.

In the CCSA logic:

$$\frac{[\neg \phi_{\mathsf{bad}}] \qquad [\neg \phi_{\mathsf{bad}} \to u = v]}{u \sim v} \text{ U2B}$$

Proof. Rewriting rule + some basic reasoning.

Up-to-bad arguments (game-hop style)

Two games $\mathcal{G}, \mathcal{G}'$ such that:

$$Pr(\mathcal{G} \wedge \neg bad) = Pr(\mathcal{G}' \wedge \neg bad).$$

Then
$$|\Pr(\mathcal{G}) - \Pr(\mathcal{G}')| \leq \Pr(\mathsf{bad})$$
.

In the CCSA logic:

$$\frac{[\neg \phi_{\mathsf{bad}}] \qquad [\neg \phi_{\mathsf{bad}} \to u = v]}{u \sim v} \text{ U2B}$$

Proof. Rewriting rule + some basic reasoning.

Other direction $[\cdot] \Rightarrow (\cdot \sim \cdot)$ also exists:

$$\frac{[\psi] \qquad \phi \sim \psi}{[\phi]} \text{ Rewrite-Equiv}$$

enables back-and-forth between both predicates.

Probabilistic Independence

Two rules exploiting the **independence** of bitstring distributions:

$$\begin{array}{c} \overline{[t \neq n]} = \text{-}\mathrm{IND} & \text{when } n \not \in \mathsf{st}(t) \\ \\ \frac{\vec{u} \sim \vec{v}}{\vec{u}, \mathsf{n}_0 \sim \vec{v}, \mathsf{n}_1} \text{ Fresh} & \text{when } \mathsf{n}_0 \not \in \mathsf{st}(\vec{u}) \text{ and } \mathsf{n}_1 \not \in \mathsf{st}(\vec{v}) \end{array}$$

Remark

To check that the rules side-conditions hold, we require that they do not contain free variables. Hence we actually have a countable, recursive, set of **ground rules** (i.e. rule **schemata**).

Probability Independence

We give the proof of the first rule:

$$\frac{}{[t \neq n]} = -IND \quad \text{when } n \not\in st(t)$$

Proof. For any model M (we omit it below):

$$\begin{split} & \text{Pr}_{\rho}(\llbracket t = \mathbf{n} \rrbracket^{\eta,\rho}) \\ &= \text{Pr}_{\rho}(\llbracket t \rrbracket^{\eta,\rho} = \llbracket \mathbf{n} \rrbracket^{\eta,\rho}) \\ &= \sum_{w \in \{0,1\}^*} \text{Pr}_{\rho}(\llbracket t \rrbracket^{\eta,\rho} = w \wedge \llbracket \mathbf{n} \rrbracket^{\eta,\rho} = w) \\ &= \sum_{w \in \{0,1\}^*} \text{Pr}_{\rho}(\llbracket t \rrbracket^{\eta,\rho} = w) \cdot \text{Pr}_{\rho}(\llbracket \mathbf{n} \rrbracket^{\eta,\rho} = w) \\ &= \frac{1}{2^{\eta}} \cdot \sum_{w \in \{0,1\}^{\eta}} \text{Pr}_{\rho}(\llbracket t \rrbracket^{\eta,\rho} = w) \\ &= \frac{1}{2^{\eta}} \end{split}$$

30

Exercise

Exercise

Give a derivation of the following formula:

 $n_0 \sim \text{if } b \text{ then } n_0 \text{ else } n_1 \pmod{n_0, n_1 \notin \operatorname{st}(b)}$

Proof System

Implementation Rules

Rules: Soundness

A rule is C-sound if ϕ is C-valid whenever ϕ_1, \ldots, ϕ_n are C-valid.

Example

$$\overline{[\pi_1\langle x\,,\,y\rangle=x]}$$

is **not** sound, because we do not require anything on the interpretation of π_1 and the pair.

Obviously, it is \mathcal{C}_{π} -sound, where \mathcal{C}_{π} is the set of model where π_1 computes the first projection of the pair $\langle _, _ \rangle$.

Implementation Assumptions

The **general philosophy** of the CCSA approach is to make the minimum number of assumptions possible on the interpretations of function symbols in a model.

Any additional necessary assumption is added through rules, which restrict the set of model for which the formula holds (hence limit the scope of the final security result).

Typically, this is used for:

- functional properties, which must be satisfied by the protocol functions (e.g. the projection/pair rule).
- cryptographic hardness assumptions, which must be satisfied by the cryptographic primitives (e.g. IND-CCA).

Functional Properties

Example. Equational theories for protocol functions:

•
$$\pi_i(\langle x_1, x_2 \rangle) = x_i$$

$$i \in \{1, 2\}$$

•
$$\operatorname{dec}(\{x\}_{\operatorname{pk}(y)}^{z},\operatorname{sk}(y))=x$$

•
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

• ..

Proof System

Cryptographic Rules

Cryptographic Reduction

Cryptographic reductions are the main tool used in proofs of computational security.

Cryptographic Reduction $S \leq_{\mathsf{red}} \mathcal{H}$

If you can break the **cryptographic design** S, then you can break the **hardness assumption** \mathcal{H} using roughly the same **time**.

- ullet We assume that ${\cal H}$ cannot be broken in a reasonable time:
 - ► Low-level assumptions: D-Log, DDH, ...
 - ► Higher-level assumptions: IND-CCA, EUF-MAC, PRF, ...
- Hence, S cannot be broken in a reasonable time.

Cryptographic Reduction

Cryptographic Reduction $S \leq_{red} \mathcal{H}$

 ${\cal S}$ reduces to a hardness hypothesis ${\cal H}$ (e.g. IND-CCA, DDH) if:

$$\forall \mathcal{A}. \exists \mathcal{B}. \ \mathsf{Adv}^\eta_\mathcal{S}(\mathcal{A}) \leq P(\mathsf{Adv}^\eta_\mathcal{H}(\mathcal{B}), \eta)$$

where ${\cal A}$ and ${\cal B}$ are taken among PPTMs and ${\cal P}$ is a polynomial.

Cryptographic Rules

We are now going to give rules which capture some cryptographic hardness hypotheses.

The validity of these rules will be established through a **cryptographic** reduction.

- Asymmetric encryption: indistinguishability (IND-CCA₁) and key-privacy (KP-CCA₁);
- Hash function: collision-resistance (CR-HK);
- MAC: unforgeability (EUF-CMA).

Asymmetric Encryption Scheme

An asymmetric encryption scheme contains:

- public and private key generation functions pk(_), sk(_);
- randomized³ encryption function {_}-;
- ullet a decryption function $\operatorname{dec}(_,_)$

It must satisfies the functional equality:

$$dec(\lbrace x\rbrace_{\mathsf{pk}(y)}^z,\mathsf{sk}(y))=x$$

³The role of the randomization will become clear later.

IND-CCA₁ Security

An encryption scheme is indistinguishable against chosen cipher-text attacks (IND-CCA₁) iff. for every PPTM \mathcal{A} with access to:

• a left-right oracle $\mathcal{O}_{LR}^{b,n}(\cdot,\cdot)$:

$$\mathcal{O}_{LR}^{b,n}(m_0, m_1) \stackrel{\text{def}}{=} \begin{cases} \{m_b\}_{pk(n)}^r & \text{if } len(m_1) = len(m_2) \quad (r \text{ } \textit{fresh}) \\ 0 & \text{otherwise} \end{cases}$$

 \bullet and a decryption oracle $\mathcal{O}^n_{\text{dec}}(\cdot),$

where ${\cal A}$ can call ${\cal O}_{LR}$ once, and cannot call ${\cal O}_{dec}$ after ${\cal O}_{LR}$, then:

$$\big| \; \mathsf{Pr}_{\mathsf{n}} \left(\mathcal{A}^{\mathcal{O}^{\mathsf{1},\mathsf{n}}_{\mathsf{LR}},\mathcal{O}^{\mathsf{n}}_{\mathsf{dec}}} \left(1^{\eta},\mathsf{pk}(\mathsf{n}) \right) = 1 \right) - \; \mathsf{Pr}_{\mathsf{n}} \left(\mathcal{A}^{\mathcal{O}^{\mathsf{0},\mathsf{n}}_{\mathsf{LR}},\mathcal{O}^{\mathsf{n}}_{\mathsf{dec}}} \left(1^{\eta},\mathsf{pk}(\mathsf{n}) \right) = 1 \right) \, \big| \,$$

is negligible in η , where n is drawn uniformly in $\{0,1\}^{\eta}$.

IND-CCA₁ Security: Exercise

Exercise

Show that if the encryption **ignore its randomness**, i.e. there exists $aenc(_,_)$ s.t. for all x,y,r:

$$\{x\}_y^r = \operatorname{aenc}(x, y)$$

then the encryption does not satisfy $IND-CCA_1$.

IND-CCA₁ Rule

Indistinguishability Against Chosen Ciphertexts Attacks

If the encryption scheme is IND-CCA₁, then the *ground* rule:

$$\frac{[\operatorname{len}(t_0) = \operatorname{len}(t_1)]}{\vec{u}, \{t_0\}_{\mathsf{pk}(\mathsf{n})}^{\mathsf{r}} \sim \vec{u}, \{t_1\}_{\mathsf{pk}(\mathsf{n})}^{\mathsf{r}}} \text{ IND-CCA}_1$$

is sound, when:

- r does not appear in \vec{u} , t_0 , t_1 , i.e. $r \notin st(\vec{u}, t_0, t_1)$;
- n appears only in $pk(\cdot)$ or $dec(_, sk(\cdot))$ positions in \vec{u}, t_0, t_1 , which we write:

$$n \sqsubseteq_{\mathsf{pk}(\cdot),\mathsf{dec}(_,\mathsf{sk}(\cdot))} \vec{u}, t_0, t_1$$

IND-CCA₁ Rule: Conditions

Definition: Positions

We write $pos(t) \in \{\epsilon\} \cup \mathbb{N} (\cdot \mathbb{N})^*$ the set of *positions* of t and $t_{|p}$ the sub-term of t at position p.

Example

if
$$t \equiv f(g(a,b),h(c))$$
 then $pos(t) = \{\epsilon,0,1,0\cdot 0,0\cdot 1,1,1\cdot 0\}$ and:

$$t_{|\epsilon}\equiv t$$
 $t_{|0}\equiv g(a,b)$ $t_{|0\cdot 0}\equiv a$ $t_{|0\cdot 1}\equiv b$ $t_{|1}\equiv h(c)$ $t_{|1\cdot 0}\equiv c$

IND-CCA₁ Rule: Conditions

Definition: CCA₁ Side-Condition

 $(n \sqsubseteq_{pk(\cdot),dec(_,sk(\cdot))} u)$ iff. for any $p \in pos(u)$, if $t_{|p} \equiv n$, either:

- $p = p_0 \cdot 0$ and $t_{|p_0|} \equiv pk(n)$;
- or $p = p_0 \cdot 1 \cdot 0$ and $t_{|p_0} \equiv \operatorname{dec}(s, \operatorname{sk}(n))$.

Examples (writing \sqsubseteq instead of $\sqsubseteq_{pk(\cdot),dec(_,sk(\cdot))}$)

$$n \not\sqsubseteq n$$
 $n \sqsubseteq pk(pk(n))$ $n \sqsubseteq dec(pk(n), sk(n))$ $n \not\sqsubseteq dec(sk(n), sk(n))$ $n \sqsubseteq t \text{ if } n \not\in st(t)$

Proof sketch

Proof by contrapositive. Let $\mathbb M$ be a model, $\mathcal A$ an adversary and $\vec u, t_0, t_1$ ground terms such that:

$$\left| \begin{array}{c} \mathsf{Pr}_{\rho}(\mathcal{A}(1^{\eta}, \llbracket \vec{u} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket \{t_{0}\}_{\mathsf{pk}(\mathsf{n})}^{\mathsf{r}} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathsf{a}}) \\ \\ - \mathsf{Pr}_{\rho}(\mathcal{A}(1^{\eta}, \llbracket \vec{u} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \llbracket \{t_{1}\}_{\mathsf{pk}(\mathsf{n})}^{\mathsf{r}} \rrbracket_{\mathbb{M}}^{\eta, \rho}, \rho_{\mathsf{a}}) \end{array} \right|$$

is not negligible, and $\mathbb{M} \models [\operatorname{len}(t_0) = \operatorname{len}(t_1)].$

We must build a PPTM \mathcal{B} s.t. \mathcal{B} wins the IND-CCA₁ security game.

Let $\mathcal{B}^{\mathcal{O}^{b,n}_{LR},\mathcal{O}^n_{dec}}(1^{\eta},[\![pk(n)]\!]^{\eta,\rho}_{\mathbb{M}})$ be the following program:

i) lazily 4 samples the random tapes $(
ho_{\rm a},
ho_{\rm h}')$ where:

$$\rho_{\mathsf{h}}' := \rho_{\mathsf{h}}[\mathsf{n} \mapsto \mathsf{0}, \mathsf{r} \mapsto \mathsf{0}]$$

ii) compute⁵:

$$w_{ec{u}}, w_{t_0}, w_{t_1} := \llbracket ec{u}, t_0, t_1 \rrbracket_{\mathbb{M}}^{\eta, \rho}$$
 using (ρ_a, ρ_b') , $\llbracket \mathsf{pk}(\mathsf{n}) \rrbracket_{\mathbb{M}}^{\eta, \rho}$ and calls to $\mathcal{O}_{\mathsf{der}}^{\mathsf{n}}$.

- iii) return 0 if $len(t_0) \neq len(t_1)$.
- iii) otherwise, compute:

$$w_{lr} := \mathcal{O}_{\mathsf{LR}}^{\boldsymbol{b},\mathsf{n}}(w_{t_0},w_{t_1}) = [\![\{t_{\boldsymbol{b}}\}_{\mathsf{pk}(\mathsf{n})}^r]\!]_{\mathbb{M}}^{\eta,\rho}$$

iv) return $\mathcal{A}(1^{\eta}, w_{\vec{u}}, w_{lr}, \rho_{a})$.

⁴Why do we need this?

⁵We describe how later.

Then:

$$\begin{split} \mathsf{Adv}(\mathcal{A}) &\leq \mathsf{Adv}(\mathcal{A} \wedge \mathsf{len}(t_0) = \mathsf{len}(t_1)) + \mathsf{Pr}(\mathsf{len}(t_0) \neq \mathsf{len}(t_1)) & \quad \mathsf{(up\text{-to-bad})} \\ &= \mathsf{Adv}(\mathcal{B} \wedge \mathsf{len}(t_0) = \mathsf{len}(t_1)) + \mathsf{Pr}(\mathsf{len}(t_0) \neq \mathsf{len}(t_1)) \\ &= \mathsf{Adv}(\mathcal{B}) + \mathsf{Pr}(\mathsf{len}(t_0) \neq \mathsf{len}(t_1)) \end{split}$$

Hence \mathcal{B} 's advantage against IND-CCA₁ is at least \mathcal{A} 's advantage against:

$$\vec{u}, \{t_0\}_{\mathsf{pk(n)}}^{\mathsf{r}} \sim \vec{u}, \{t_1\}_{\mathsf{pk(n)}}^{\mathsf{r}} \tag{\dagger}$$

up-to a negligible quantity (the probability that $\operatorname{len}(t_0) \neq \operatorname{len}(t_1)$).

Since (\dagger) is assumed non-negligible, so is \mathcal{B} 's advantage.

It only remains to explain how to do step ii) in polynomial time.

We prove by **structural induction** that for any subterm s of \vec{u} , t_0 , t_1 :

- either s is a forbidden subterm r, n, or sk(n);
- or \mathcal{B} can compute $w_s := \llbracket s \rrbracket_{\mathbb{M}}^{\eta,\rho}$ in polynomial time.

Assuming this holds, we conclude by observing that IND-CCA₁ side conditions guarantees that \vec{u} , t_0 , t_1 are not forbidden subterms.

Induction. We are in one of the following cases:

- $s \in \mathcal{X}$ is not possible, since \vec{u}, t_0, t_1 are ground.
- $s \in \{r, n\}$ are forbidden, hence the induction hypothesis holds.
- $\bullet \ \ s \in \mathcal{N} \backslash \{r,n\} \text{, then } \mathcal{B} \text{ computes } s \text{ directly from } \rho_h' = \rho_h[n \mapsto 0, r \mapsto 0].$
- $s \equiv f(t_1, \ldots, t_n)$ and t_1, \ldots, t_n are not forbidden. Then, by induction hypothesis, \mathcal{B} can compute $w_i := \llbracket t_i \rrbracket_{\mathbb{M}}^{\eta, \rho}$ for any $1 \leq i \leq n$. Then \mathcal{B} simply computes:

$$w_{s} := \begin{cases} (f)_{\mathbb{M}}(1^{\eta}, w_{1}, \dots, w_{n}) & \text{if } f \in \mathcal{F} \\ (f)_{\mathbb{M}}(1^{\eta}, w_{1}, \dots, w_{n}, \rho_{a}) & \text{if } f \in \mathcal{G} \end{cases}$$

case disjunction (continued):

s = f(t₁,...,t_n) and at least one of the t_i is forbidden.
 Using IND-CCA₁ side conditions, either s is either pk(n) or dec(m, sk(n)).

The first case is immediate since \mathcal{B} receives $[pk(n)]_{\mathbb{M}}^{\eta,\rho}$ as argument.

For the second case, from IND-CCA₁ side conditions, we know that $m \neq n$ and $m \neq sk(n)$. Hence, by **induction hypothesis**, \mathcal{B} can compute $w_m = [\![m]\!]_{\mathbb{M}}^{\eta,\rho}$. We conclude using:

$$w_s := \mathcal{O}_{\operatorname{dec}}^{\operatorname{n}}(w_m)$$

IND-CCA₁ Rule: Exercise

Exercise

Which of the following formulas can be proven using IND-CCA1?

$$\begin{split} pk(n), \{0\}_{pk(n)}^{r} &\sim pk(n), \{1\}_{pk(n)}^{r} \\ pk(n), \{0\}_{pk(n)}^{r}, \{0\}_{pk(n)}^{r_0} &\sim pk(n), \{1\}_{pk(n)}^{r}, \{0\}_{pk(n)}^{r_0} \\ pk(n), \{0\}_{pk(n)}^{r}, \{0\}_{pk(n)}^{r} &\sim pk(n), \{0\}_{pk(n)}^{r}, \{1\}_{pk(n)}^{r} \\ pk(n), \{0\}_{pk(n)}^{r} &\sim pk(n), \{sk(n)\}_{pk(n)}^{r} \end{split}$$

IND-CCA₁ Rule: Exercise

Exercise (Hybrid Argument)

Prove the following formula using IND-CCA₁:

$$\{0\}_{pk(n)}^{r_0}, \{1\}_{pk(n)}^{r_1}, \ldots, \{n\}_{pk(n)}^{r_n} \sim \{0\}_{pk(n)}^{r_0}, \{0\}_{pk(n)}^{r_1}, \ldots, \{0\}_{pk(n)}^{r_n}$$

Note: we assume that all plain-texts above have the same length (e.g. they are all represented over L bits, for L large enough)

KP-CCA₁ Security

A scheme provides key privacy against chosen cipher-text attacks (KP-CCA₁) iff for every PPTM \mathcal{A} with access to:

• a left-right encryption oracle $\mathcal{O}_{LR}^{b,n_0,n_1}(\cdot)$:

$$\mathcal{O}_{\mathsf{LR}}^{b,\mathsf{n}_0,\mathsf{n}_1}(m) \stackrel{\mathsf{def}}{=} \{m\}_{\mathsf{pk}(\mathsf{n}_b)}^{\mathsf{r}} \qquad \qquad (\mathsf{r} \; \mathit{fresh})$$

• and two decryption oracles $\mathcal{O}_{\mathsf{dec}}^{n_0}(\cdot)$ and $\mathcal{O}_{\mathsf{dec}}^{n_1}(\cdot),$

where ${\cal A}$ can call ${\cal O}_{LR}$ once, and cannot call the decryption oracles after ${\cal O}_{LR}$, then:

$$\left| \begin{array}{c} \mathsf{Pr}_{\mathsf{n}_0,\mathsf{n}_1} \big(\mathcal{A}^{\mathcal{O}_{\mathsf{LR}}^{\bm{1},\mathsf{n}_0,\mathsf{n}_1},\mathcal{O}_{\mathsf{dec}}^{\mathsf{n}_0},\mathcal{O}_{\mathsf{dec}}^{\mathsf{n}_1}} \left(1^{\eta},\mathsf{pk}(\mathsf{n}_0),\mathsf{pk}(\mathsf{n}_1) \right) = 1 \right) \\ - \mathsf{Pr}_{\mathsf{n}_0,\mathsf{n}_1} \big(\mathcal{A}^{\mathcal{O}_{\mathsf{LR}}^{\bm{0},\mathsf{n}_0,\mathsf{n}_1},\mathcal{O}_{\mathsf{dec}}^{\mathsf{n}_0},\mathcal{O}_{\mathsf{dec}}^{\mathsf{n}_1}} \left(1^{\eta},\mathsf{pk}(\mathsf{n}_0),\mathsf{pk}(\mathsf{n}_1) \right) = 1 \right) \end{array} \right|$$

is negligible in η , where n_0, n_1 are drawn in $\{0, 1\}^{\eta}$.

Security Notions: Exercise

Exercise

Show that IND-CCA₁ \neq KP-CCA₁ and KP-CCA₁ \neq IND-CCA₁.

KP-CCA₁ Rule

Key Privacy Against Chosen Ciphertexts Attacks

If the encryption scheme is KP-CCA₁, then the *ground* rule:

$$\overline{\vec{u}, \{t\}_{\mathsf{pk}(\mathsf{n}_0)}^{\mathsf{r}} \sim \vec{u}, \{t\}_{\mathsf{pk}(\mathsf{n}_1)}^{\mathsf{r}}} \text{ KP-CCA}_1$$

is sound, when:

- r does not appear in \vec{u} , t;
- n_0, n_1 appear only in $pk(\cdot)$ or $dec(_, sk(\cdot))$ positions in \vec{u}, t .

The **proof** is similar to the IND-CCA₁ soundness proof. We omit it.