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Example of a Security Proof



Protocol Branching

We consider a more useful version of PA in which S checks whether it is
talking to I or not.

The PA Protocol, v2

1 : I → S : ν nI. out(I, {⟨pkI , nI⟩}pkS
)

2 : S → I : ν nS. in(S, x). out(S, if π1(d) = pkI

then {⟨π2(d) , nS⟩}pkI

else {0}pkI

)

where d ≡ dec(x, skS).

� The encryption of 0 in the else branch is here to hide to the adversary
which branch was taken.
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Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

• IX is the initiator with identity X;

• SX is the server, accepting messages from X.

The adversary must not be able to distinguish IA | SA from IC | SA.

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX
then {⟨π2(d) , nS⟩}r0

pkX
else {0}r0

pkX

)

We assume the encryption is IND-CCA1 and KP-CCA1.
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Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the plain-text.
Hence, since len(⟨nI , nS⟩) ̸= len(0), there is an attack:

̸|= {⟨nI , nS⟩}r0
pkA

∼ {0}r0
pkC

even if the encryption is IND-CCA1 and KP-CCA1.
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Private Authentication: Anonymity

We fix the protocol by:

• adding a length check;

• using a decoy message of the correct length.

The PA Protocol, v3

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)
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Private Authentication: Anonymity

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

To prove IA | SA ≈ IC | SA, we have several traces:

in(S), out(I), out(S) in(S), out(S), out(I) out(I), in(S), out(S)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].
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Private Authentication: Anonymity

Goal:
out{r:S;c:A}

1 , out{r:A;c:A}
2 [out{r:S;c:A}

1 ]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1 ]

(IA | SA ≈ IC | SA)

where: (notation: out{r:recipient;c:content}i )

out{r:S;c:X}
1 ≡ {⟨pkX , nI⟩}r

pkS

out{r:Y;c:X}
2 [M] ≡ if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then {⟨π2(d [M]) , nS⟩}r0
pkY

else {⟨nS , nS⟩}r0
pkY

d [M] ≡ dec(att0(M), skS)

Proof strategy: we only reason on the right terms:

1. Push encryption below branching

2. KP-CCA1:
out{r:A;c:A}

2 ⇒ out{r:C;c:A}
2

3. IND-CCA1:
out{r:C;c:A}

2 ⇒ out{r:C;c:C}2

4. Conclude by α-renaming
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Private Authentication: Anonymity

First, we push the branching under the encryption:

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1 ]

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1 ]

R

where:

out{r:Y;c:X}
2 [M] ≡


if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then ⟨π2(d [M]) , nS⟩
else ⟨nS , nS⟩


r0

pkY

We let mX[M] be the content of the encryption above.
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Private Authentication: Anonymity

Then, we use KP-CCA1 to change the encryption key:

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r: C ;c:A}
2 [out{r:S;c:C}1 ]

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r: A ;c:A}
2 [out{r:S;c:C}1 ]

Trans + kp-cca1

since:

• the encryption randomness r0 is correctly used;

• the key randomness nA and nC appear only in pk(·) and dec(_, sk(·))
positions.
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Private Authentication: Anonymity

Then, we use IND-CCA1 to change the encryption content:

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r:C;c: C }
2 [out{r:S;c:C}1 ]

Π1

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r:C;c: A }
2 [out{r:S;c:C}1 ]

Trans + ind-cca1

since:

• the encryption randomness r0 is correctly used;

• the key randomness nC appear only in pk(·) and dec(_, sk(·)) positions.

And where Π1 must be a proof of:[
len(mC[out{r:S;c:C}1 ]) = len(mA[out{r:S;c:C}1 ])

]
.
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Private Authentication: Anonymity

Recall that:
mX[M] ≡ if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then ⟨π2(d [M]) , nS⟩
else ⟨nS , nS⟩

Then:

Ath ⊢Gen len(mC[out{r:S;c:C}1 ]) = len(mA[out{r:S;c:C}1 ])[
len(mC[out{r:S;c:C}1 ]) = len(mA[out{r:S;c:C}1 ])

] gen

if Ath contains the axiom1:

∀x , y .len(⟨x , y⟩) = len(x) + len(y) + c

where c is some constant left unspecified.

1This axiom must be satisfied by the protocol implementation for the proof to apply.
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Private Authentication: Anonymity

Then, we α-rename the key randomness nC, rewrite back the encryption, and
conclude.

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1 ]

∼ out{r:S;c:C}1 , out{r:C;c:C}2 [out{r:S;c:C}1 ]

α-equ + R + Refl
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Unlinkability



Privacy

We proved anonymity of the Private Authentication protocol, which we
defined as:

IA | SA ≈ IC | SA

But does this really guarantees that this protocol protects the privacy of
its users?
⇒ No, because of linkability attacks
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Linkability Attacks

Consider the following authentication protocol, called KCL, between a
reader R and a tag TX with identity X:

R : ν nR. out(R, nR)

TX : ν nT. in(T, x). out(T, ⟨X ⊕ nT , nT ⊕ H(x, kX)⟩)

Assuming H is a PRF (Pseudo-Random Function), and ⊕ is the
exclusive-or, we can prove that KCL provides anonymity.

TA | R ≈ TB | R
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Linkability Attacks

But there are privacy attacks against KCL, using two sessions:

1 : E →TA : nR E →TA : nR

2 : TA →E : ⟨A ⊕ nT , nT ⊕ H(nR , kA)⟩ TA →E : ⟨A ⊕ nT , nT ⊕ H(nR , kA)⟩

3 : E →TA : nR E →TB : nR

4 : TA →E : ⟨A ⊕ n′
T , n′

T ⊕ H(nR, kA)⟩ TB →E : ⟨B ⊕ n′
T , n′

T ⊕ H(nR, kB)⟩

Let t2 and t4 be the outputs of T. Then, on the left scenario:

π2(t2)⊕ π2(t4) =
(
nT ⊕ H(nR , kA)

)
⊕
(
n′T ⊕ H(nR, kA)

)
= nT ⊕ n′T
= π1(t2)⊕ π1(t4)

The same equality check will almost never hold on the right, under
reasonable assumption on H.
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Linkability Attacks

We just saw an attack against:(
TA | R

)
|
(
TA | R

)
≈
(
TA | R

)
|
(
TB | R

)
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Unlinkability

To prevent such attacks, we need to prove a stronger property, called
unlinkability. It requires to prove the equivalence between:

• a real-world, where each agent can run many sessions:

ν k⃗0, . . . , k⃗N . !id≤N !sid≤M P (⃗kid)

• and an ideal-world, where each agent run at most a single session:

ν k⃗0,0, . . . , k⃗N,M . !id≤N !sid≤M P (⃗kid,sid)

Notation: !x≤N P(x) is the replication of the process P, and is syntactic
sugar for P(0), . . . ,P(N).

Remark
The processes above are parameterized by N,M ∈ N. Unlinkability holds
if the equivalence holds for any N,M.

For the sack of simplicity, we omit channel names.
18



Unlinkability

Example An unlinkability scenario.

F

A

A

B

B

A

C

B

D

B

E

B

F

∼
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Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any
information on identities.
⇒ hence no link can be efficiently found in the real word.
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Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.
The processes P(s⃗, k⃗U) and S (⃗kS, k⃗U) are parameterized by:

• global key material s⃗;

• and user-specific key material k⃗U.

Then, we require that:

ν s⃗. ν k⃗0, . . . , k⃗N . !id≤N !sid≤M

(
P(s⃗, k⃗id) | S(s⃗, k⃗id)

)
≈ ν s⃗. ν k⃗0,0, . . . , k⃗N,M . !id≤N !sid≤M

(
P(s⃗, k⃗id,sid) | S(s⃗, k⃗id,sid)

)
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Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process P(s⃗, k⃗U).
The server S(s⃗, k⃗0, . . . , k⃗M) is parameterized by:

• some global key material s⃗;

• all users key material k⃗0, . . . , k⃗M .

Then we require that:

ν s⃗. ν k⃗0, . . . , k⃗N .
(
!id≤N !sid≤M P(s⃗, k⃗id)

)
|(

!≤L S(s⃗, k⃗0, . . . , k⃗N)
)

≈ ν s⃗. ν k⃗0,0, . . . , k⃗N,M .
(
!id≤N !sid≤M P(s⃗, k⃗id,sid)

)
|(

!≤L S(s⃗, k⃗0,0, . . . , k⃗N,M)
)
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Unlinkability: Remark

Note that user-specific unlinkability is a very strong property that does
not often hold.

Example
Assume S leaks whether it succeeded or not. This models the fact
that the adversary can distinguish success from failure:

• e.g. because a door opens, which can be observed;

• or because success is followed by further communication, while
failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:(
P (⃗k) | S (⃗k)

)
|
(
P (⃗k) | S (⃗k)

)
̸≈
(
P (⃗k0) | S (⃗k0)

)
|
(
P (⃗k1) | S (⃗k1)

)
✓ ✗
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Private Authentication: Unlinkability

Private Authentication
We parameterize the initiator and server in PA by the key material:

I(kS, kX) : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

S(kS, kX) : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

where skX ≡ sk(kX), pkX ≡ pk(kX) and d ≡ dec(x , skS).
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Private Authentication: Unlinkability

Theorem
Private Authentication, v3 satisfies the unlinkability property (with
user-specific server). I.e., for all N,M ∈ N:

ν kS. ν k0, . . . , kN . !id≤N !sid≤M

(
I (kS, kid) | S(kS, kid)

)
≈ ν kS. ν k0,0, . . . , kN,M . !id≤N !sid≤M

(
I (kS, kid,sid) | S(kS, kid,sid)

)

Proof sketch
For all N,M, for all trace of observables tr, we show that:

|= frame(PL, tr) ∼ frame(PR, tr)

by induction over tr, where PL and PR are, resp., the left and right protocols
in the theorem above.
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Authentication Protocols



Authentication Protocol

We now focus on another class of security properties: correspondance
properties (e.g. authentication)

These are properties on a single protocol, often expressed as a temporal
property on events of the protocol. E.g.

If Alice accepts Bob at time τ then Bob must have initiated a
session with Alice at time τ ′ < τ .

To formalize the cryptographic arguments proving such properties, we
will design a specialized framework and proof system.
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Hash-Lock

The Hash-Lock Protocol
Let I be a finite set of identities.

T(A, i) : ν nA,i. in(Ai, x). out(Ai, ⟨nA,i , H(⟨x , nA,i⟩, kA)⟩)
R(j) : ν nR,j. in(R1j,_). out(R1j, nR,j).

in(R2j, y).

out(R2j, if
∨

A∈I π2(y) = H(⟨nR,j , π1(y)⟩, kA)

then ok
else ko

)

H
as

h-
Lo

ck

We consider N sessions of each tag, and M sessions of the reader:

ν (kA)A∈I .
(
!A∈I !i<N T(A, i)

)
|
(
!j<M R(j)

)
Remark: we abuse notations and write Rij to denote the i-th usage of
channel Rj in a process. 27



Authentication

Examples of scenarios:

R1j

R2j

Ai

✓

R1j

R2j

✗

R1j

R2j

Ai

✗

• Middle scenario: impossible thanks to unforgeability of the hash.

• Right scenario: impossible thanks to freshness of R’s name nR.
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Authentication

Definition(informal)
If the j-th session of R accepts believing it talked to tag A, then:

• there exists a session i of tag A properly interleaved with the j-th
session of R;

• messages have been properly forwarded between the i-th session
of tag A and the j-th session of R.

� The second condition is often relaxed to require only a partial correspondence

between messages.

Next slides: a framework to express such temporal properties.
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Authentication

Security Property
Anticipating, authentication will be captured by a formula that roughly
looks like:

∀j. acceptA@R2j ⇒ ∃i.


R1j < Ai < R2j ∧

out@R1j = in@Ai ∧
out@Ai = in@R2j




R1j

R2j

Ai

✓
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Proving Correspondance Security Properties

Outline

• Capturing temporal properties as logical formulas [ · ].
• Dedicated proof-system for [ · ]:

▶ Generic mathematical reasoning.
▶ Cryptographic reasoning (CR, EUF).

• Example: authentication of Basic Hash.
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Authentication Protocols

Execution Traces



Notations

• we let ≤ be the prefix relation over observable traces:

tr0 ≤ tr1 iff. ∃tr′. tr1 = tr0; tr′

• tr : c states that tr ends with an output on c:

tr : c iff. ∃tr′. tr = tr′; out(c)

• tr : cn means that tr : c and tr contains n outputs on c:

tr : cn iff.


true if n = 0

∃tr0, tr1. tr = tr0, tr1 ∧
tr0 : cn−1 ∧
tr1 : c1

otherwise

Notation: tr : cn ≤ tr ′ means tr : cn ∧ tr ≤ tr ′.
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POR Result (Assumed)

We let Tio be the set of observable traces where all outputs are always
directly preceded by an input on the same channel, i.e.:

tr ∈ Tio iff. ∀tr′ : c ≤ tr. ∃tr′′. tr′ = tr′′; in(c); out(c)

Assumption: POR
We admit that to analyze the Hash-Lock protocol, it is sufficient to
consider only observables traces in Tio.
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Authentication of the Hash-Lock Protocol

For any tr : R2j ∈ Tio, we let acceptA@tr be a term (defined later) stating
that the reader accepts the tag A at the end of the trace tr.
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Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all tr ∈ Tio, tr1 : R1j
and tr3 : R2j such that:

tr1 < tr3 ≤ tr and acceptA@tr3

there must exists tr2 : Ai such that tr1 ≤ tr2 ≤ tr3 and:

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

Graphically:

•
tr1 : R1j

•
tr2 : Ai

•
tr3 : R2j

acceptA@tr3

out@tr1 = in@tr2 out@tr2 = in@tr3
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Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the
Hash-Lock protocol?

• define the (generic) terms representing the output, input and
acceptance, which we need to state the property;

• have a set of rules for [ · ] that can capture the security proof.

36



Authentication Protocols

Macro Terms



Notations: Predecessor

For any observable trace tr and channel c, we let:

pred(tr; in(c), out(c)) def
= tr
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Macro Terms: Graphical Representation

in(cn) out(cn)

αn

in(c1) out(c1)

α1 · · ·

out@tr1 out@trn· · · defined with

in@trn
= attn−1(frame@trn−1)

= attn−1(out@tr1, . . . , out@trn−1)

frame@tr

tr1

trn ...

38



Macro Terms

We now define some generic terms and sequences of terms by induction
of the observable trace tr ∈ Tio.

Let tr ∈ Tio with n inputs. If frame(P, tr) = t1, . . . , tn then we let:

outP@tr
def
=

{
tn if ∃c. tr : c
empty otherwise

frameP@tr
def
=

{
frameP@pred(tr), outP@tr if |tr| > 1

ϵ otherwise

inP@tr
def
=

{
attn−1(frameP@pred(tr)) if |tr| > 1

empty otherwise

Remark: we omit P when it is clear from context.

� The restriction to traces in Tio simplifies the definition of inP@tr.

� frameP@tr is an alternative name for frame(P, tr).
39



Hash-Lock: Accept

T(A, i) : ν nA,i. in(Ai, x). out(Ai, ⟨nA,i , H(⟨x , nA,i⟩, kA)⟩)

R(j) : ν nR,j. in(R1j,_). out(R1j, nR,j).

in(R2j, y).

out(R2j, if
∨

A∈I π2(y) = H(⟨nR,j , π1(y)⟩, kA)

then ok
else ko

)

H
as

h-
Lo

ck

To be able to state some authentication property of Hash-Lock, we need
an additional macro. For all tr : R2j ∈ Tio, we let:

acceptA@tr def
= π2(in@tr) = H(⟨nR,j , π1(in@tr)⟩, kA)

� We made sure that all names in the protocol are unique, so that they
don’t have to be renamed before the symbolic execution.
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Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides authentication:

∀A ∈ I. ∀tr ∈ Tio. ∀tr1 : R1j, tr3 : R2j s.t. tr1 < tr3 ≤ tr,acceptA@tr3 →
∨

tr2:Ai
tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧
out@tr2 = in@tr3


This kind of one-sided properties are called correspondance properties.
Proving their validity will require additional rules, to allow for
propositional reasoning.
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Authentication Protocols

Local Proof System



Local Judgements

We define a judgment dedicated to correspondance properties.

Definition
A local judgement Γ ⊢ ϕ comprises a sequence of boolean terms
Γ = ϕ1, . . . , ϕn and a boolean term ϕ.

Γ ⊢ ϕ is valid if and only if the following formula is valid:[
ϕ1 → · · · → ϕn → ϕ

]
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Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the local and
equivalence levels!

Exercise
Determine which directions are correct.

[ϕ ∧ ψ] ?⇔ [ϕ] ∧̃ [ψ]

[ϕ ∨ ψ] ?⇔ [ϕ] ∨̃ [ψ]

[ϕ→ ψ]
?⇔ [ϕ] →̃ [ψ]

The second relation works both ways when ϕ or ψ is a constant formula.
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Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the local and
equivalence levels!

Exercise
Determine which directions are correct.

[ϕ ∧ ψ] ⇔ [ϕ] ∧̃ [ψ]

[ϕ ∨ ψ] ⇐ [ϕ] ∨̃ [ψ]

[ϕ→ ψ] ⇒ [ϕ] →̃ [ψ]

The second relation works both ways when ϕ or ψ is a constant formula.
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Local Proof System

Our local judgement can be trivially equipped with a sequent calculus
that behaves as a standard FO sequent calculus.

Γ, ϕ ⊢ ϕ
Γ ⊢ ψ Γ, ψ ⊢ ϕ

Γ ⊢ ϕ

Γ ⊢ ψ Γ ⊢ ϕ
Γ ⊢ ψ ∧ ϕ

Γ, ψ, ϕ ⊢ θ
Γ, ψ ∧ ϕ ⊢ θ

Γ ⊢ ϕ
Γ ⊢ ψ ∨ ϕ

Γ ⊢ ψ
Γ ⊢ ψ ∨ ϕ

Γ, ψ ⊢ θ Γ, ϕ ⊢ θ
Γ, ψ ∨ ϕ ⊢ θ

Γ ⊢ ψ Γ, ϕ ⊢ θ
Γ, ψ→ ϕ ⊢ θ

Γ, ψ ⊢ ϕ
Γ ⊢ ψ→ ϕ

44



Local Proof System (cont.)

Γ, ϕ ⊢ ⊥
Γ ⊢ ¬ϕ Γ,⊥ ⊢ ϕ

Γ1, ϕ, ψ, Γ2 ⊢ θ
Γ1, ψ, ϕ, Γ2 ⊢ θ

Γ, ψ, ψ ⊢ ϕ
Γ, ψ ⊢ ϕ

Γ ⊢ θ
Γ, ϕ ⊢ θ
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Local Proof System: Soundness

The local proof system is sound.

Proof
First, recall that for any Γ and θ:

Γ ⊢ θ is valid iff. Prρ
(
J(∧Γ) ∧ ¬ϕKη,ρM

)
is negligible. (†)
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Local Proof System: Soundness

We will only detail one rule, say:

Γ, ψ ⊢ θ Γ, ϕ ⊢ θ
Γ, ψ ∨ ϕ ⊢ θ.

By the previous remark (†), since (Γ, ψ ⊢ θ) and (Γ, ϕ ⊢ θ) are valid:

• Prρ
(
J(∧Γ) ∧ ψ ∧ ¬θKη,ρM

)
is negligible.

• Prρ
(
J(∧Γ) ∧ ϕ ∧ ¬θKη,ρM

)
is negligible.

Since the union of two negligible (η-indexed families of) events is a negligible
(η-indexed families of) events,

Prρ
(
J
(
(∧Γ) ∧ ψ ∧ ¬θ

)
∨
(
(∧Γ) ∧ ϕ ∧ ¬θ

)
Kη,ρM

)
is negligible

⇔ Prρ
(
J(∧Γ) ∧ (ψ ∨ ϕ) ∧ ¬θKη,ρM

)
is negligible

Hence using (†) again, Γ, ψ ∨ ϕ ⊢ θ is valid.
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Cryptographic Hash

A keyed cryptographic hash H(_,_) is computationally collision
resistant if no PPTM adversary can built collisions, even when it has
access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks
(CR-HK) iff for every PPTM A, the following quantity:

Prk
(
AOH(·,k)(1η) = ⟨m1 , m2⟩,m1 ̸= m2 and H(m1, k) = H(m2, k)

)
is negligible, where k is drawn uniformly in {0, 1}η.
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CR Rule

Collision Resistance
If H is a CR-HK function, then the ground rule:

H(m1, k) = H(m2, k) ⊢ m1 =m2
cr

is sound, when k appears only in H key positions in m1,m2.
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Message Authentication Code

A message authentication code is a symmetric cryptographic schema
which:

• create message authentication codes using mac·(·)
• verifies mac using verify·(·, ·)

It must satisfies the functional equality:

verifyk(mack(m),m) = true
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MAC Security

A MAC must be computationally unforgeable, even when the adversary
has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for
every PPTM A, the following quantity:

Prk

(
AOmack (·),Overifyk (·,·)(1η) = ⟨m , σ⟩, m not queried to Omack (·)

and verifyk(σ,m) = 1

)

is negligible, where k is drawn uniformly in {0, 1}η.
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EUF-MAC Rule

Take two messages s,m and a key k ∈ N such that:

• s and m are ground;

• k ∈ N appears only in mac or verify key positions in s,m.

Key Idea
To build a rule for EUF-CMA, we proceed as follow:

• compute Js,mK bottum-up, calling Omack (·) and Overifyk (·,·) if
necessary;

• log all sub-terms Smac(s,m) sent to Omack (·).

⇒ If verifyk(s,m) then m = u for some u ∈ Smac(s,m).

� Smac(s,m) are the calls to Omack (·) needed to compute s,m.
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EUF-MAC Rule

Smac(·) defined by induction on ground terms:

Smac(n)
def
= ∅

Smac(verifyk(u1, u2))
def
= Smac(u1) ∪ Smac(u2)

Smac(mack(u))
def
= {u} ∪ Smac(u)

Smac(f (u1, . . . , un))
def
=

⋃
1≤i≤n

Smac(ui ) (for other cases)
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EUF-MAC Rule

Message Authentication Code Unforgeability
If mac is an EUF-CMA function, then the ground rule:

verifyk(s,m) ⊢
∨

u∈S m = u
euf-mac

is sound, when:

• S = Smac(s,m);
• k ∈ N appears only in mac or verify key positions in s,m.

Example
If t1 t2 and t3 are terms which do not contain k, then:

Φ ≡ mack(t1),mack(t2),mack0(t3)[
verifyk(g(Φ), n) →

(
n = t1 ∨ n = t2

)]
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EUF-MAC Rule: Exercise

Exercise
Assume mac is EUF-CMA. Show that the following rule is sound:

verifyk(if b then s0 else s1,m) ⊢
∨

u∈S1∪S2
m = u

when b, s0, s1,m are ground terms, and:

• Si = {u | mack(u) ∈ Smac(si ,m)}, for i ∈ {0, 1};
• k appears only in mac or verify key positions in s0, s1,m.

Remark: we do not make any assumption on b, except that it is ground.
E.g., we can have b ≡ (att(k) = mack(0)).
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Authentication: Hash-Lock

Theorem
Assuming that the hash function is EUF-CMA2, the Hash-Lock protocol
provides authentication, i.e. for any identity A ∈ I, for any tr ∈ Tio,
tr1 : R1j and tr3 : R2j s.t.:

tr1 < tr3 ≤ tr

the following formula is valid:

acceptA@tr3 ⊢
∨

tr2:Ai
tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧
out@tr2 = in@tr3

2Taking verifyk(s,m)
def
= s = H(m, k).
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Authentication: Hash-Lock

Proof. Let a ∈ I, and let tr ∈ Tio, tr1 : R1j and tr3 : R2j be s.t.:

tr1 < tr3 ≤ tr

We let:

ϕconc
def
=

∨
tr2:Ai

tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

We must prove that the following local judgement is valid:

acceptA@tr3 ⊢ ϕconc

i.e. that:
π2(in@tr3) = H(⟨nR,j , π1(in@tr3)⟩, kA) ⊢ ϕconc

57



Authentication: Hash-Lock

We use the euf-mac rule on the equality:

π2(in@tr3) = H(⟨nR,j , π1(in@tr3)⟩, kA) (†)

The terms above are ground, and the key kA is correctly used in them.
Moreover, the set of honest hashes using key kA appearing in (†), excluding the
top-level hash, is:

Smac(π2(in@tr3), ⟨nR,j , π1(in@tr3)⟩)
= Smac(in@tr3)

= {H(⟨in@tr2 , nA,i⟩, kA) | tr2 : Ai < tr3}

� The hashes in the reader’s outputs can be seen as verify checks, and can
therefore be ignored.
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Authentication: Hash-Lock

Hence using euf-mac plus some basic reasoning, we have:

acceptA@tr3,
⟨in@tr2 , nA,i⟩ =
⟨nR,j , π1(in@tr3)⟩

⊢ ϕconc for every tr2 : Ai < tr3

acceptA@tr3,
∨

tr2:Ai<tr3

⟨in@tr2 , nA,i⟩ =
⟨nR,j , π1(in@tr3)⟩

⊢ ϕconc

acceptA@tr3 ⊢ ϕconc
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Authentication: Hash-Lock

We only have to show that for every tr2 : Ai < tr3:

acceptA@tr3, in@tr2 = nR,j, nA,i = π1(in@tr3)︸ ︷︷ ︸
Γ

⊢ ϕconc.

After some basic equality reasoning (+ minor assumptions), we have:

Γ ⊢ out@tr1 = in@tr2 ∧ out@tr2 = in@tr3 (‡)
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Authentication: Hash-Lock

Recall that:

ϕconc
def
=

∨
tr2:Ai

tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

and we must show that Γ ⊢ ϕconc. Hence, using (‡), it only remains to prove
that whenever tr2 < tr1, we have:

Γ, out@tr1 = in@tr2, out@tr2 = in@tr3 ⊢ ⊥

This follows from the independence rule:

[t ̸= n]
=-ind when t is ground and n ̸∈ st(t)

using the fact that:
out@tr1

def
= nR,j

and that if tr2 < tr1 then nR,j ̸∈ st(in@tr2).
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Authentication: Hash-Lock

Proof of (‡)
Since tr1 : R1j < tr3 we know that:

out@tr1
def
= nR,j

Moreover:
out@tr2

def
= ⟨nA,i , H(⟨in@tr2 , nA,i⟩, kA)⟩

Hence:
Γ ⊢ π1(out@tr2) = π1(in@tr3) (⋄)

Similarly:

Γ ⊢ π2(out@tr2) = H(⟨in@tr2 , nA,i⟩, kA)

= H(⟨nR,j , π1(in@tr3)⟩, kA)

= π2(in@tr3)

Consequently:
Γ ⊢ π2(out@tr2) = π2(in@tr3) (⋆)
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Authentication: Hash-Lock

Proof of (‡) (cont.)
Assuming that the pair and projections satisfy the property:[

(π1 x = π1 y)→ (π2 x = π2 y)→ x = y
]

We deduce from (⋆) and (⋄) that:

Γ ⊢ out@tr2 = in@tr3

Putting everything together, we get:

Γ ⊢ out@tr1 = in@tr2 ∧ out@tr2 = in@tr3 (‡)
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Beyond Authentication

Authentication, which states that we must have:
∀trR : R. ∃trT : T.

•
trT : T

•
trR : R

accept@trR

does not exclude the scenario:

•
trT : T

•
trR : cR1

accept@trR

•
tr′R : c

R
2

accept@tr′R
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Replay Attack

This is a replay attack: the same message (or partial transcript), when
replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a door at
will once it eavesdropped one honest interaction.

Example
The following protocol, called Basic Hash, suffer from such attacks:

T(A, i) : ν nA,i. out(Ai, ⟨nA,i , H(nA,i, kA)⟩)
R(j) : in(R2j, y). out(R2j, if

∨
A∈I π2(y) = H(π1(y), kA)

then ok
else ko

)
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Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a
stronger property, injective authentication.
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Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides injective authentication:
∀A ∈ I. ∀tr ∈ Tio. ∀tr1 : R1j, tr3 : R2j s.t. tr1 < tr3 ≤ tracceptA@tr3 →

∨
tr2:Ai

tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧
out@tr2 = in@tr3


∧̃

 ∧
tr′3:R

2
j’≤tr

acceptA@tr3 ∧ acceptA@tr′3→
π1(in@tr3) = π1(in@tr′3)→ j = j ′


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