
MPRI
SECURE: Proofs of Security Protocols

3. Security Proofs, Authentication

Adrien Koutsos, Inria Paris

2025/2026

Outline

Example of a Security Proof

Unlinkability

Authentication Protocols

Execution Traces

Macro Terms

Local Proof System

Cryptographic Rule: Collision Resistance

Cryptographic Rule: Message Authentication Code

Authentication of the Hash-Lock Protocol

Beyond Authentication

2

Example of a Security Proof

Protocol Branching

We consider a more useful version of PA in which S checks whether it is
talking to I or not.

The PA Protocol, v2

1 : I → S : ν nI. out(I, {⟨pkI , nI⟩}pkS
)

2 : S → I : ν nS. in(S, x). out(S, if π1(d) = pkI

then {⟨π2(d) , nS⟩}pkI

else {0}pkI

)

where d ≡ dec(x, skS).

� The encryption of 0 in the else branch is here to hide to the adversary
which branch was taken.

3

Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

• IX is the initiator with identity X;

• SX is the server, accepting messages from X.

The adversary must not be able to distinguish IA | SA from IC | SA.

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX
then {⟨π2(d) , nS⟩}r0

pkX
else {0}r0

pkX

)

We assume the encryption is IND-CCA1 and KP-CCA1.

4

Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the plain-text.
Hence, since len(⟨nI , nS⟩) ̸= len(0), there is an attack:

̸|= {⟨nI , nS⟩}r0
pkA

∼ {0}r0
pkC

even if the encryption is IND-CCA1 and KP-CCA1.

5

Private Authentication: Anonymity

We fix the protocol by:

• adding a length check;

• using a decoy message of the correct length.

The PA Protocol, v3

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

6

Private Authentication: Anonymity

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

To prove IA | SA ≈ IC | SA, we have several traces:

in(S), out(I), out(S) in(S), out(S), out(I) out(I), in(S), out(S)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

7

Private Authentication: Anonymity

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

To prove IA | SA ≈ IC | SA, we have several traces:

in(S), out(I), out(S) in(S), out(S), out(I) out(I), in(S), out(S)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

7

Private Authentication: Anonymity

IX : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

SX : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

To prove IA | SA ≈ IC | SA, we have several traces:

in(S), out(I), out(S) in(S), out(S), out(I) out(I), in(S), out(S)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

7

Private Authentication: Anonymity

Goal:
out{r:S;c:A}

1 , out{r:A;c:A}
2 [out{r:S;c:A}

1]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1]

(IA | SA ≈ IC | SA)

where: (notation: out{r:recipient;c:content}i)

out{r:S;c:X}
1 ≡ {⟨pkX , nI⟩}r

pkS

out{r:Y;c:X}
2 [M] ≡ if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then {⟨π2(d [M]) , nS⟩}r0
pkY

else {⟨nS , nS⟩}r0
pkY

d [M] ≡ dec(att0(M), skS)

Proof strategy: we only reason on the right terms:

1. Push encryption below branching

2. KP-CCA1:
out{r:A;c:A}

2 ⇒ out{r:C;c:A}
2

3. IND-CCA1:
out{r:C;c:A}

2 ⇒ out{r:C;c:C}2

4. Conclude by α-renaming

8

Private Authentication: Anonymity

Goal:
out{r:S;c:A}

1 , out{r:A;c:A}
2 [out{r:S;c:A}

1]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1]

(IA | SA ≈ IC | SA)

where: (notation: out{r:recipient;c:content}i)

out{r:S;c:X}
1 ≡ {⟨pkX , nI⟩}r

pkS

out{r:Y;c:X}
2 [M] ≡ if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then {⟨π2(d [M]) , nS⟩}r0
pkY

else {⟨nS , nS⟩}r0
pkY

d [M] ≡ dec(att0(M), skS)

Proof strategy: we only reason on the right terms:

1. Push encryption below branching

2. KP-CCA1:
out{r:A;c:A}

2 ⇒ out{r:C;c:A}
2

3. IND-CCA1:
out{r:C;c:A}

2 ⇒ out{r:C;c:C}2

4. Conclude by α-renaming
8

Private Authentication: Anonymity

First, we push the branching under the encryption:

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1]

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r:A;c:A}
2 [out{r:S;c:C}1]

R

where:

out{r:Y;c:X}
2 [M] ≡


if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then ⟨π2(d [M]) , nS⟩
else ⟨nS , nS⟩


r0

pkY

We let mX[M] be the content of the encryption above.

9

Private Authentication: Anonymity

Then, we use KP-CCA1 to change the encryption key:

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r: C ;c:A}
2 [out{r:S;c:C}1]

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r: A ;c:A}
2 [out{r:S;c:C}1]

Trans + kp-cca1

since:

• the encryption randomness r0 is correctly used;

• the key randomness nA and nC appear only in pk(·) and dec(_, sk(·))
positions.

10

Private Authentication: Anonymity

Then, we use IND-CCA1 to change the encryption content:

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r:C;c: C }
2 [out{r:S;c:C}1]

Π1

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r:C;c: A }
2 [out{r:S;c:C}1]

Trans + ind-cca1

since:

• the encryption randomness r0 is correctly used;

• the key randomness nC appear only in pk(·) and dec(_, sk(·)) positions.

And where Π1 must be a proof of:[
len(mC[out{r:S;c:C}1]) = len(mA[out{r:S;c:C}1])

]
.

11

Private Authentication: Anonymity

Recall that:
mX[M] ≡ if π1(d [M]) = pkX ∧ len(π2(d [M])) = len(nS)

then ⟨π2(d [M]) , nS⟩
else ⟨nS , nS⟩

Then:

Ath ⊢Gen len(mC[out{r:S;c:C}1]) = len(mA[out{r:S;c:C}1])[
len(mC[out{r:S;c:C}1]) = len(mA[out{r:S;c:C}1])

] gen

if Ath contains the axiom1:

∀x , y .len(⟨x , y⟩) = len(x) + len(y) + c

where c is some constant left unspecified.

1This axiom must be satisfied by the protocol implementation for the proof to apply.

12

Private Authentication: Anonymity

Then, we α-rename the key randomness nC, rewrite back the encryption, and
conclude.

out{r:S;c:A}
1 , out{r:A;c:A}

2 [out{r:S;c:A}
1]

∼ out{r:S;c:C}1 , out{r:C;c:C}2 [out{r:S;c:C}1]

α-equ + R + Refl

13

Unlinkability

Privacy

We proved anonymity of the Private Authentication protocol, which we
defined as:

IA | SA ≈ IC | SA

But does this really guarantees that this protocol protects the privacy of
its users?
⇒ No, because of linkability attacks

14

Linkability Attacks

Consider the following authentication protocol, called KCL, between a
reader R and a tag TX with identity X:

R : ν nR. out(R, nR)

TX : ν nT. in(T, x). out(T, ⟨X ⊕ nT , nT ⊕ H(x, kX)⟩)

Assuming H is a PRF (Pseudo-Random Function), and ⊕ is the
exclusive-or, we can prove that KCL provides anonymity.

TA | R ≈ TB | R

15

Linkability Attacks

But there are privacy attacks against KCL, using two sessions:

1 : E →TA : nR E →TA : nR

2 : TA →E : ⟨A ⊕ nT , nT ⊕ H(nR , kA)⟩ TA →E : ⟨A ⊕ nT , nT ⊕ H(nR , kA)⟩

3 : E →TA : nR E →TB : nR

4 : TA →E : ⟨A ⊕ n′
T , n′

T ⊕ H(nR, kA)⟩ TB →E : ⟨B ⊕ n′
T , n′

T ⊕ H(nR, kB)⟩

Let t2 and t4 be the outputs of T. Then, on the left scenario:

π2(t2)⊕ π2(t4) =
(
nT ⊕ H(nR , kA)

)
⊕
(
n′T ⊕ H(nR, kA)

)
= nT ⊕ n′T
= π1(t2)⊕ π1(t4)

The same equality check will almost never hold on the right, under
reasonable assumption on H.

16

Linkability Attacks

We just saw an attack against:(
TA | R

)
|
(
TA | R

)
≈
(
TA | R

)
|
(
TB | R

)

17

Unlinkability

To prevent such attacks, we need to prove a stronger property, called
unlinkability. It requires to prove the equivalence between:

• a real-world, where each agent can run many sessions:

ν k⃗0, . . . , k⃗N . !id≤N !sid≤M P (⃗kid)

• and an ideal-world, where each agent run at most a single session:

ν k⃗0,0, . . . , k⃗N,M . !id≤N !sid≤M P (⃗kid,sid)

Notation: !x≤N P(x) is the replication of the process P, and is syntactic
sugar for P(0), . . . ,P(N).

Remark
The processes above are parameterized by N,M ∈ N. Unlinkability holds
if the equivalence holds for any N,M.

For the sack of simplicity, we omit channel names.
18

Unlinkability

Example An unlinkability scenario.

F

A

A

B

B

A

C

B

D

B

E

B

F

∼

19

Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any
information on identities.
⇒ hence no link can be efficiently found in the real word.

20

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.
The processes P(s⃗, k⃗U) and S (⃗kS, k⃗U) are parameterized by:

• global key material s⃗;

• and user-specific key material k⃗U.

Then, we require that:

ν s⃗. ν k⃗0, . . . , k⃗N . !id≤N !sid≤M

(
P(s⃗, k⃗id) | S(s⃗, k⃗id)

)
≈ ν s⃗. ν k⃗0,0, . . . , k⃗N,M . !id≤N !sid≤M

(
P(s⃗, k⃗id,sid) | S(s⃗, k⃗id,sid)

)

21

Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process P(s⃗, k⃗U).
The server S(s⃗, k⃗0, . . . , k⃗M) is parameterized by:

• some global key material s⃗;

• all users key material k⃗0, . . . , k⃗M .

Then we require that:

ν s⃗. ν k⃗0, . . . , k⃗N .
(
!id≤N !sid≤M P(s⃗, k⃗id)

)
|(

!≤L S(s⃗, k⃗0, . . . , k⃗N)
)

≈ ν s⃗. ν k⃗0,0, . . . , k⃗N,M .
(
!id≤N !sid≤M P(s⃗, k⃗id,sid)

)
|(

!≤L S(s⃗, k⃗0,0, . . . , k⃗N,M)
)

22

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property that does
not often hold.

Example
Assume S leaks whether it succeeded or not. This models the fact
that the adversary can distinguish success from failure:

• e.g. because a door opens, which can be observed;

• or because success is followed by further communication, while
failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:(
P (⃗k) | S (⃗k)

)
|
(
P (⃗k) | S (⃗k)

)
̸≈
(
P (⃗k0) | S (⃗k0)

)
|
(
P (⃗k1) | S (⃗k1)

)
✓ ✗

23

Private Authentication: Unlinkability

Private Authentication
We parameterize the initiator and server in PA by the key material:

I(kS, kX) : ν r. ν nI. out(I, {⟨pkX , nI⟩}r
pkS

)

S(kS, kX) : ν r0. ν nS. in(S, x). out(S, if π1(d) = pkX ∧ len(π2(d)) = len(nS)

then {⟨π2(d) , nS⟩}r0
pkX

else {⟨nS , nS⟩}r0
pkX

)

where skX ≡ sk(kX), pkX ≡ pk(kX) and d ≡ dec(x , skS).

24

Private Authentication: Unlinkability

Theorem
Private Authentication, v3 satisfies the unlinkability property (with
user-specific server). I.e., for all N,M ∈ N:

ν kS. ν k0, . . . , kN . !id≤N !sid≤M

(
I (kS, kid) | S(kS, kid)

)
≈ ν kS. ν k0,0, . . . , kN,M . !id≤N !sid≤M

(
I (kS, kid,sid) | S(kS, kid,sid)

)

Proof sketch
For all N,M, for all trace of observables tr, we show that:

|= frame(PL, tr) ∼ frame(PR, tr)

by induction over tr, where PL and PR are, resp., the left and right protocols
in the theorem above.

25

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: correspondance
properties (e.g. authentication)

These are properties on a single protocol, often expressed as a temporal
property on events of the protocol. E.g.

If Alice accepts Bob at time τ then Bob must have initiated a
session with Alice at time τ ′ < τ .

To formalize the cryptographic arguments proving such properties, we
will design a specialized framework and proof system.

26

Hash-Lock

The Hash-Lock Protocol
Let I be a finite set of identities.

T(A, i) : ν nA,i. in(Ai, x). out(Ai, ⟨nA,i , H(⟨x , nA,i⟩, kA)⟩)
R(j) : ν nR,j. in(R1j,_). out(R1j, nR,j).

in(R2j, y).

out(R2j, if
∨

A∈I π2(y) = H(⟨nR,j , π1(y)⟩, kA)

then ok
else ko

)

H
as

h-
Lo

ck

We consider N sessions of each tag, and M sessions of the reader:

ν (kA)A∈I .
(
!A∈I !i<N T(A, i)

)
|
(
!j<M R(j)

)
Remark: we abuse notations and write Rij to denote the i-th usage of
channel Rj in a process. 27

Authentication

Examples of scenarios:

R1j

R2j

Ai

✓

R1j

R2j

✗

R1j

R2j

Ai

✗

• Middle scenario: impossible thanks to unforgeability of the hash.

• Right scenario: impossible thanks to freshness of R’s name nR.

28

Authentication

Examples of scenarios:

R1j

R2j

Ai

✓

R1j

R2j

✗

R1j

R2j

Ai

✗

• Middle scenario: impossible thanks to unforgeability of the hash.

• Right scenario: impossible thanks to freshness of R’s name nR.

28

Authentication

Definition(informal)
If the j-th session of R accepts believing it talked to tag A, then:

• there exists a session i of tag A properly interleaved with the j-th
session of R;

• messages have been properly forwarded between the i-th session
of tag A and the j-th session of R.

� The second condition is often relaxed to require only a partial correspondence

between messages.

Next slides: a framework to express such temporal properties.

29

Authentication

Security Property
Anticipating, authentication will be captured by a formula that roughly
looks like:

∀j. acceptA@R2j ⇒ ∃i.


R1j < Ai < R2j ∧

out@R1j = in@Ai ∧
out@Ai = in@R2j




R1j

R2j

Ai

✓

30

Proving Correspondance Security Properties

Outline

• Capturing temporal properties as logical formulas [·].
• Dedicated proof-system for [·]:

▶ Generic mathematical reasoning.
▶ Cryptographic reasoning (CR, EUF).

• Example: authentication of Basic Hash.

31

Authentication Protocols

Execution Traces

Notations

• we let ≤ be the prefix relation over observable traces:

tr0 ≤ tr1 iff. ∃tr′. tr1 = tr0; tr′

• tr : c states that tr ends with an output on c:

tr : c iff. ∃tr′. tr = tr′; out(c)

• tr : cn means that tr : c and tr contains n outputs on c:

tr : cn iff.


true if n = 0

∃tr0, tr1. tr = tr0, tr1 ∧
tr0 : cn−1 ∧
tr1 : c1

otherwise

Notation: tr : cn ≤ tr ′ means tr : cn ∧ tr ≤ tr ′.

32

POR Result (Assumed)

We let Tio be the set of observable traces where all outputs are always
directly preceded by an input on the same channel, i.e.:

tr ∈ Tio iff. ∀tr′ : c ≤ tr. ∃tr′′. tr′ = tr′′; in(c); out(c)

Assumption: POR
We admit that to analyze the Hash-Lock protocol, it is sufficient to
consider only observables traces in Tio.

33

Authentication of the Hash-Lock Protocol

For any tr : R2j ∈ Tio, we let acceptA@tr be a term (defined later) stating
that the reader accepts the tag A at the end of the trace tr.

34

Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all tr ∈ Tio, tr1 : R1j
and tr3 : R2j such that:

tr1 < tr3 ≤ tr and acceptA@tr3

there must exists tr2 : Ai such that tr1 ≤ tr2 ≤ tr3 and:

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

Graphically:

•
tr1 : R1j

•
tr2 : Ai

•
tr3 : R2j

acceptA@tr3

out@tr1 = in@tr2 out@tr2 = in@tr3

35

Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the
Hash-Lock protocol?

• define the (generic) terms representing the output, input and
acceptance, which we need to state the property;

• have a set of rules for [·] that can capture the security proof.

36

Authentication Protocols

Macro Terms

Notations: Predecessor

For any observable trace tr and channel c, we let:

pred(tr; in(c), out(c)) def
= tr

37

Macro Terms: Graphical Representation

in(cn) out(cn)

αn

in(c1) out(c1)

α1 · · ·

out@tr1 out@trn· · · defined with

in@trn
= attn−1(frame@trn−1)

= attn−1(out@tr1, . . . , out@trn−1)

frame@tr

tr1

trn ...

38

Macro Terms

We now define some generic terms and sequences of terms by induction
of the observable trace tr ∈ Tio.

Let tr ∈ Tio with n inputs. If frame(P, tr) = t1, . . . , tn then we let:

outP@tr
def
=

{
tn if ∃c. tr : c
empty otherwise

frameP@tr
def
=

{
frameP@pred(tr), outP@tr if |tr| > 1

ϵ otherwise

inP@tr
def
=

{
attn−1(frameP@pred(tr)) if |tr| > 1

empty otherwise

Remark: we omit P when it is clear from context.

� The restriction to traces in Tio simplifies the definition of inP@tr.

� frameP@tr is an alternative name for frame(P, tr).
39

Hash-Lock: Accept

T(A, i) : ν nA,i. in(Ai, x). out(Ai, ⟨nA,i , H(⟨x , nA,i⟩, kA)⟩)

R(j) : ν nR,j. in(R1j,_). out(R1j, nR,j).

in(R2j, y).

out(R2j, if
∨

A∈I π2(y) = H(⟨nR,j , π1(y)⟩, kA)

then ok
else ko

)

H
as

h-
Lo

ck

To be able to state some authentication property of Hash-Lock, we need
an additional macro. For all tr : R2j ∈ Tio, we let:

acceptA@tr def
= π2(in@tr) = H(⟨nR,j , π1(in@tr)⟩, kA)

� We made sure that all names in the protocol are unique, so that they
don’t have to be renamed before the symbolic execution.

40

Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides authentication:

∀A ∈ I. ∀tr ∈ Tio. ∀tr1 : R1j, tr3 : R2j s.t. tr1 < tr3 ≤ tr,acceptA@tr3 →
∨

tr2:Ai
tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧
out@tr2 = in@tr3


This kind of one-sided properties are called correspondance properties.
Proving their validity will require additional rules, to allow for
propositional reasoning.

41

Authentication Protocols

Local Proof System

Local Judgements

We define a judgment dedicated to correspondance properties.

Definition
A local judgement Γ ⊢ ϕ comprises a sequence of boolean terms
Γ = ϕ1, . . . , ϕn and a boolean term ϕ.

Γ ⊢ ϕ is valid if and only if the following formula is valid:[
ϕ1 → · · · → ϕn → ϕ

]

42

Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the local and
equivalence levels!

Exercise
Determine which directions are correct.

[ϕ ∧ ψ] ?⇔ [ϕ] ∧̃ [ψ]

[ϕ ∨ ψ] ?⇔ [ϕ] ∨̃ [ψ]

[ϕ→ ψ]
?⇔ [ϕ] →̃ [ψ]

The second relation works both ways when ϕ or ψ is a constant formula.

43

Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the local and
equivalence levels!

Exercise
Determine which directions are correct.

[ϕ ∧ ψ] ⇔ [ϕ] ∧̃ [ψ]

[ϕ ∨ ψ] ⇐ [ϕ] ∨̃ [ψ]

[ϕ→ ψ] ⇒ [ϕ] →̃ [ψ]

The second relation works both ways when ϕ or ψ is a constant formula.

43

Local Proof System

Our local judgement can be trivially equipped with a sequent calculus
that behaves as a standard FO sequent calculus.

Γ, ϕ ⊢ ϕ
Γ ⊢ ψ Γ, ψ ⊢ ϕ

Γ ⊢ ϕ

Γ ⊢ ψ Γ ⊢ ϕ
Γ ⊢ ψ ∧ ϕ

Γ, ψ, ϕ ⊢ θ
Γ, ψ ∧ ϕ ⊢ θ

Γ ⊢ ϕ
Γ ⊢ ψ ∨ ϕ

Γ ⊢ ψ
Γ ⊢ ψ ∨ ϕ

Γ, ψ ⊢ θ Γ, ϕ ⊢ θ
Γ, ψ ∨ ϕ ⊢ θ

Γ ⊢ ψ Γ, ϕ ⊢ θ
Γ, ψ→ ϕ ⊢ θ

Γ, ψ ⊢ ϕ
Γ ⊢ ψ→ ϕ

44

Local Proof System (cont.)

Γ, ϕ ⊢ ⊥
Γ ⊢ ¬ϕ Γ,⊥ ⊢ ϕ

Γ1, ϕ, ψ, Γ2 ⊢ θ
Γ1, ψ, ϕ, Γ2 ⊢ θ

Γ, ψ, ψ ⊢ ϕ
Γ, ψ ⊢ ϕ

Γ ⊢ θ
Γ, ϕ ⊢ θ

45

Local Proof System: Soundness

The local proof system is sound.

Proof
First, recall that for any Γ and θ:

Γ ⊢ θ is valid iff. Prρ
(
J(∧Γ) ∧ ¬ϕKη,ρM

)
is negligible. (†)

46

Local Proof System: Soundness

We will only detail one rule, say:

Γ, ψ ⊢ θ Γ, ϕ ⊢ θ
Γ, ψ ∨ ϕ ⊢ θ.

By the previous remark (†), since (Γ, ψ ⊢ θ) and (Γ, ϕ ⊢ θ) are valid:

• Prρ
(
J(∧Γ) ∧ ψ ∧ ¬θKη,ρM

)
is negligible.

• Prρ
(
J(∧Γ) ∧ ϕ ∧ ¬θKη,ρM

)
is negligible.

Since the union of two negligible (η-indexed families of) events is a negligible
(η-indexed families of) events,

Prρ
(
J
(
(∧Γ) ∧ ψ ∧ ¬θ

)
∨
(
(∧Γ) ∧ ϕ ∧ ¬θ

)
Kη,ρM

)
is negligible

⇔ Prρ
(
J(∧Γ) ∧ (ψ ∨ ϕ) ∧ ¬θKη,ρM

)
is negligible

Hence using (†) again, Γ, ψ ∨ ϕ ⊢ θ is valid.

47

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash H(_,_) is computationally collision
resistant if no PPTM adversary can built collisions, even when it has
access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks
(CR-HK) iff for every PPTM A, the following quantity:

Prk
(
AOH(·,k)(1η) = ⟨m1 , m2⟩,m1 ̸= m2 and H(m1, k) = H(m2, k)

)
is negligible, where k is drawn uniformly in {0, 1}η.

48

CR Rule

Collision Resistance
If H is a CR-HK function, then the ground rule:

H(m1, k) = H(m2, k) ⊢ m1 =m2
cr

is sound, when k appears only in H key positions in m1,m2.

49

Authentication Protocols

Cryptographic Rule: Message
Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic schema
which:

• create message authentication codes using mac·(·)
• verifies mac using verify·(·, ·)

It must satisfies the functional equality:

verifyk(mack(m),m) = true

50

MAC Security

A MAC must be computationally unforgeable, even when the adversary
has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for
every PPTM A, the following quantity:

Prk

(
AOmack (·),Overifyk (·,·)(1η) = ⟨m , σ⟩, m not queried to Omack (·)

and verifyk(σ,m) = 1

)

is negligible, where k is drawn uniformly in {0, 1}η.

51

EUF-MAC Rule

Take two messages s,m and a key k ∈ N such that:

• s and m are ground;

• k ∈ N appears only in mac or verify key positions in s,m.

Key Idea
To build a rule for EUF-CMA, we proceed as follow:

• compute Js,mK bottum-up, calling Omack (·) and Overifyk (·,·) if
necessary;

• log all sub-terms Smac(s,m) sent to Omack (·).

⇒ If verifyk(s,m) then m = u for some u ∈ Smac(s,m).

� Smac(s,m) are the calls to Omack (·) needed to compute s,m.

52

EUF-MAC Rule

Smac(·) defined by induction on ground terms:

Smac(n)
def
= ∅

Smac(verifyk(u1, u2))
def
= Smac(u1) ∪ Smac(u2)

Smac(mack(u))
def
= {u} ∪ Smac(u)

Smac(f (u1, . . . , un))
def
=

⋃
1≤i≤n

Smac(ui) (for other cases)

53

EUF-MAC Rule

Message Authentication Code Unforgeability
If mac is an EUF-CMA function, then the ground rule:

verifyk(s,m) ⊢
∨

u∈S m = u
euf-mac

is sound, when:

• S = Smac(s,m);
• k ∈ N appears only in mac or verify key positions in s,m.

Example
If t1 t2 and t3 are terms which do not contain k, then:

Φ ≡ mack(t1),mack(t2),mack0(t3)[
verifyk(g(Φ), n) →

(
n = t1 ∨ n = t2

)]
54

EUF-MAC Rule: Exercise

Exercise
Assume mac is EUF-CMA. Show that the following rule is sound:

verifyk(if b then s0 else s1,m) ⊢
∨

u∈S1∪S2
m = u

when b, s0, s1,m are ground terms, and:

• Si = {u | mack(u) ∈ Smac(si ,m)}, for i ∈ {0, 1};
• k appears only in mac or verify key positions in s0, s1,m.

Remark: we do not make any assumption on b, except that it is ground.
E.g., we can have b ≡ (att(k) = mack(0)).

55

Authentication Protocols

Authentication of the Hash-Lock Protocol

Authentication: Hash-Lock

Theorem
Assuming that the hash function is EUF-CMA2, the Hash-Lock protocol
provides authentication, i.e. for any identity A ∈ I, for any tr ∈ Tio,
tr1 : R1j and tr3 : R2j s.t.:

tr1 < tr3 ≤ tr

the following formula is valid:

acceptA@tr3 ⊢
∨

tr2:Ai
tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧
out@tr2 = in@tr3

2Taking verifyk(s,m)
def
= s = H(m, k).

56

Authentication: Hash-Lock

Proof. Let a ∈ I, and let tr ∈ Tio, tr1 : R1j and tr3 : R2j be s.t.:

tr1 < tr3 ≤ tr

We let:

ϕconc
def
=

∨
tr2:Ai

tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

We must prove that the following local judgement is valid:

acceptA@tr3 ⊢ ϕconc

i.e. that:
π2(in@tr3) = H(⟨nR,j , π1(in@tr3)⟩, kA) ⊢ ϕconc

57

Authentication: Hash-Lock

We use the euf-mac rule on the equality:

π2(in@tr3) = H(⟨nR,j , π1(in@tr3)⟩, kA) (†)

The terms above are ground, and the key kA is correctly used in them.
Moreover, the set of honest hashes using key kA appearing in (†), excluding the
top-level hash, is:

Smac(π2(in@tr3), ⟨nR,j , π1(in@tr3)⟩)
= Smac(in@tr3)

= {H(⟨in@tr2 , nA,i⟩, kA) | tr2 : Ai < tr3}

� The hashes in the reader’s outputs can be seen as verify checks, and can
therefore be ignored.

58

Authentication: Hash-Lock

Hence using euf-mac plus some basic reasoning, we have:

acceptA@tr3,
⟨in@tr2 , nA,i⟩ =
⟨nR,j , π1(in@tr3)⟩

⊢ ϕconc for every tr2 : Ai < tr3

acceptA@tr3,
∨

tr2:Ai<tr3

⟨in@tr2 , nA,i⟩ =
⟨nR,j , π1(in@tr3)⟩

⊢ ϕconc

acceptA@tr3 ⊢ ϕconc

59

Authentication: Hash-Lock

We only have to show that for every tr2 : Ai < tr3:

acceptA@tr3, in@tr2 = nR,j, nA,i = π1(in@tr3)︸ ︷︷ ︸
Γ

⊢ ϕconc.

After some basic equality reasoning (+ minor assumptions), we have:

Γ ⊢ out@tr1 = in@tr2 ∧ out@tr2 = in@tr3 (‡)

60

Authentication: Hash-Lock

Recall that:

ϕconc
def
=

∨
tr2:Ai

tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧ out@tr2 = in@tr3

and we must show that Γ ⊢ ϕconc. Hence, using (‡), it only remains to prove
that whenever tr2 < tr1, we have:

Γ, out@tr1 = in@tr2, out@tr2 = in@tr3 ⊢ ⊥

This follows from the independence rule:

[t ̸= n]
=-ind when t is ground and n ̸∈ st(t)

using the fact that:
out@tr1

def
= nR,j

and that if tr2 < tr1 then nR,j ̸∈ st(in@tr2).

61

Authentication: Hash-Lock

Proof of (‡)
Since tr1 : R1j < tr3 we know that:

out@tr1
def
= nR,j

Moreover:
out@tr2

def
= ⟨nA,i , H(⟨in@tr2 , nA,i⟩, kA)⟩

Hence:
Γ ⊢ π1(out@tr2) = π1(in@tr3) (⋄)

Similarly:

Γ ⊢ π2(out@tr2) = H(⟨in@tr2 , nA,i⟩, kA)

= H(⟨nR,j , π1(in@tr3)⟩, kA)

= π2(in@tr3)

Consequently:
Γ ⊢ π2(out@tr2) = π2(in@tr3) (⋆)

62

Authentication: Hash-Lock

Proof of (‡) (cont.)
Assuming that the pair and projections satisfy the property:[

(π1 x = π1 y)→ (π2 x = π2 y)→ x = y
]

We deduce from (⋆) and (⋄) that:

Γ ⊢ out@tr2 = in@tr3

Putting everything together, we get:

Γ ⊢ out@tr1 = in@tr2 ∧ out@tr2 = in@tr3 (‡)

63

Authentication Protocols

Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:
∀trR : R. ∃trT : T.

•
trT : T

•
trR : R

accept@trR

does not exclude the scenario:

•
trT : T

•
trR : cR1

accept@trR

•
tr′R : c

R
2

accept@tr′R

64

Replay Attack

This is a replay attack: the same message (or partial transcript), when
replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a door at
will once it eavesdropped one honest interaction.

Example
The following protocol, called Basic Hash, suffer from such attacks:

T(A, i) : ν nA,i. out(Ai, ⟨nA,i , H(nA,i, kA)⟩)
R(j) : in(R2j, y). out(R2j, if

∨
A∈I π2(y) = H(π1(y), kA)

then ok
else ko

)

65

Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a
stronger property, injective authentication.

66

Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides injective authentication:
∀A ∈ I. ∀tr ∈ Tio. ∀tr1 : R1j, tr3 : R2j s.t. tr1 < tr3 ≤ tracceptA@tr3 →

∨
tr2:Ai

tr1≤tr2≤tr3

out@tr1 = in@tr2 ∧
out@tr2 = in@tr3


∧̃

 ∧
tr′3:R

2
j’≤tr

acceptA@tr3 ∧ acceptA@tr′3→
π1(in@tr3) = π1(in@tr′3)→ j = j ′



67

References i

[1] D. Baelde, S. Delaune, and L. Hirschi.
Partial order reduction for security protocols.
In CONCUR, volume 42 of LIPIcs, pages 497–510. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015.

	Example of a Security Proof
	Unlinkability
	Authentication Protocols
	Execution Traces
	Macro Terms
	Local Proof System
	Cryptographic Rule: Collision Resistance
	Cryptographic Rule: Message Authentication Code
	Authentication of the Hash-Lock Protocol
	Beyond Authentication

	Appendix

