MPRI SECURE: Proofs of Security Protocols

3. Security Proofs, Authentication

Adrien Koutsos, Inria Paris 2025/2026

Outline

Example of a Security Proof

Unlinkability

Authentication Protocols

Execution Traces

Macro Terms

Local Proof System

Cryptographic Rule: Collision Resistance

Cryptographic Rule: Message Authentication Code

Authentication of the Hash-Lock Protocol

Beyond Authentication

Example of a Security Proof

Protocol Branching

We consider a more useful version of PA in which S checks whether it is talking to I or not.

where $d \equiv dec(x, sk_S)$.

 $\$ The encryption of 0 in the else branch is here to hide to the adversary which branch was taken.

Lets now try to prove that PA v2 provides anonymity:

- IX is the initiator with identity X;
- S_X is the server, accepting messages from X.

The adversary must not be able to distinguish $I_A \mid S_A$ from $I_C \mid S_A$.

```
\begin{split} \textbf{I}_{\textbf{X}} &: \nu \, \textbf{r}. \quad \nu \, \textbf{n}_{\textbf{I}}. \qquad \textbf{out}(\textbf{I}, \{\langle \mathsf{pk}_{\textbf{X}} \,, \, \textbf{n}_{\textbf{I}} \rangle\}_{\mathsf{pk}_{\textbf{S}}}^{\mathsf{r}}) \\ \textbf{S}_{\textbf{X}} &: \nu \, \textbf{r}_{\textbf{0}}. \, \nu \, \textbf{n}_{\textbf{S}}. \, \textbf{in}(\textbf{S}, \textbf{x}). \, \textbf{out}(\textbf{S}, \text{if} \, \pi_{\textbf{1}}(\textbf{d}) = \mathsf{pk}_{\textbf{X}} \\ & \quad \quad \text{then} \, \{\langle \pi_{\textbf{2}}(\textbf{d}) \,, \, \mathsf{n}_{\textbf{S}} \rangle\}_{\mathsf{pk}_{\textbf{X}}}^{\mathsf{r}_{\textbf{0}}} \\ & \quad \quad \text{else} \quad \{\textbf{0}\}_{\mathsf{pk}_{\textbf{X}}}^{\mathsf{r}_{\textbf{0}}} \end{split}
```

We assume the encryption is IND-CCA₁ and KP-CCA₁.

As we saw, an encryption does not hide the length of the plain-text. Hence, since $len(\langle n_I , n_S \rangle) \neq len(0)$, there is an attack:

$$\not\models \{\langle n_I\,,\,n_S\rangle\}_{pk_A}^{r_0} \sim \{0\}_{pk_C}^{r_0}$$

even if the encryption is $IND-CCA_1$ and $KP-CCA_1$.

We fix the protocol by:

- adding a length check;
- using a decoy message of the correct length.

The PA Protocol, v3

```
\begin{split} \textbf{I}_{\textbf{X}} &: \nu \, \textbf{r.} \quad \nu \, \textbf{n}_{\textbf{I}}. & \quad \textbf{out}(\textbf{I}, \{\langle \mathsf{pk}_{\textbf{X}} \,, \, \textbf{n}_{\textbf{I}} \rangle \}_{\mathsf{pk}_{\textbf{S}}}^{r}) \\ \textbf{S}_{\textbf{X}} &: \nu \, \textbf{r}_{\textbf{0}}. \, \nu \, \textbf{n}_{\textbf{S}}. \, \textbf{in}(\textbf{S}, \textbf{x}). \, \, \textbf{out}(\textbf{S}, \text{if} \, \pi_{\textbf{1}}(d) = \mathsf{pk}_{\textbf{X}} \wedge \mathsf{len}(\pi_{\textbf{2}}(d)) = \mathsf{len}(\textbf{n}_{\textbf{S}})) \\ & \quad \quad \mathsf{then} \, \, \{\langle \pi_{\textbf{2}}(d) \,, \, \textbf{n}_{\textbf{S}} \rangle \}_{\mathsf{pk}_{\textbf{X}}}^{r_{\textbf{0}}} \\ & \quad \quad \mathsf{else} \, \, \, \, \{\langle \textbf{n}_{\textbf{S}} \,, \, \textbf{n}_{\textbf{S}} \rangle \}_{\mathsf{pk}_{\textbf{X}}}^{r_{\textbf{0}}} \end{split}
```

```
\begin{split} \textbf{I}_{\textbf{X}} : \nu \, \textbf{r}. \quad \nu \, \textbf{n}_{\textbf{I}}. & \quad \textbf{out}(\textbf{I}, \{\langle \textbf{pk}_{\textbf{X}} \,, \, \textbf{n}_{\textbf{I}} \rangle\}_{\textbf{pk}_{\textbf{S}}}^{\textbf{r}}) \\ \textbf{S}_{\textbf{X}} : \nu \, \textbf{r}_{\textbf{0}}. \, \nu \, \textbf{n}_{\textbf{S}}. \, \textbf{in}(\textbf{S}, \textbf{x}). \, \textbf{out}(\textbf{S}, \text{if } \pi_{\textbf{1}}(d) = \textbf{pk}_{\textbf{X}} \wedge \text{len}(\pi_{\textbf{2}}(d)) = \text{len}(\textbf{n}_{\textbf{S}})) \\ & \quad \text{then } \{\langle \pi_{\textbf{2}}(d) \,, \, \textbf{n}_{\textbf{S}} \rangle\}_{\textbf{pk}_{\textbf{X}}}^{\textbf{r}_{\textbf{0}}} \\ & \quad \text{else } \{\langle \textbf{n}_{\textbf{S}} \,, \, \textbf{n}_{\textbf{S}} \rangle\}_{\textbf{pk}_{\textbf{X}}}^{\textbf{r}_{\textbf{0}}} \end{split}
```

To prove $I_A \mid S_A \approx I_C \mid S_A$, we have several traces:

$$\mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{I}), \mathsf{out}(\mathtt{S}) \qquad \mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{S}), \mathsf{out}(\mathtt{I}) \qquad \mathsf{out}(\mathtt{I}), \mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{S})$$

$$\begin{split} \textbf{I}_{\textbf{X}} &: \nu \, \textbf{r}. \quad \nu \, \textbf{n}_{\textbf{I}}. \\ \textbf{S}_{\textbf{X}} &: \nu \, \textbf{r}_{\textbf{0}}. \, \nu \, \textbf{n}_{\textbf{S}}. \, \textbf{in}(\textbf{S}, \textbf{x}). \, \, \textbf{out}(\textbf{S}, \text{if} \, \pi_{\textbf{1}}(d) = \textbf{pk}_{\textbf{X}} \wedge \text{len}(\pi_{\textbf{2}}(d)) = \text{len}(\textbf{n}_{\textbf{S}})) \\ &\quad \quad \text{then} \, \left\{ \langle \pi_{\textbf{2}}(d) \, , \, \textbf{n}_{\textbf{S}} \rangle \right\}_{\textbf{pk}_{\textbf{X}}}^{\textbf{r}_{\textbf{0}}} \\ &\quad \quad \text{else} \, \left\{ \langle \textbf{n}_{\textbf{S}} \, , \, \textbf{n}_{\textbf{S}} \rangle \right\}_{\textbf{pk}_{\textbf{X}}}^{\textbf{r}_{\textbf{0}}} \end{split}$$

To prove $I_A \mid S_A \approx I_C \mid S_A$, we have several traces:

$$\mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{I}), \mathsf{out}(\mathtt{S}) \qquad \mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{S}), \mathsf{out}(\mathtt{I}) \qquad \mathsf{out}(\mathtt{I}), \mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{S})$$

But there is a more general trace: its security implies the security of the other traces.

See partial order reduction (POR) techniques [1].

$$\begin{split} \textbf{I}_{\textbf{X}} &: \nu \, \textbf{r}. \quad \nu \, \textbf{n}_{\textbf{I}}. \\ \textbf{S}_{\textbf{X}} &: \nu \, \textbf{r}_{\textbf{0}}. \, \nu \, \textbf{n}_{\textbf{S}}. \, \textbf{in}(\textbf{S}, \textbf{x}). \, \, \textbf{out}(\textbf{S}, \textbf{if} \, \pi_{\textbf{1}}(d) = \textbf{pk}_{\textbf{X}} \wedge \text{len}(\pi_{\textbf{2}}(d)) = \text{len}(\textbf{n}_{\textbf{S}})) \\ &\quad \quad \text{then} \, \left\{ \langle \pi_{\textbf{2}}(d) \, , \, \textbf{n}_{\textbf{S}} \rangle \right\}_{\textbf{pk}_{\textbf{X}}}^{\textbf{r}_{\textbf{0}}} \\ &\quad \quad \text{else} \, \left\{ \langle \textbf{n}_{\textbf{S}} \, , \, \textbf{n}_{\textbf{S}} \rangle \right\}_{\textbf{pk}_{\textbf{X}}}^{\textbf{r}_{\textbf{0}}} \end{split}$$

To prove $I_A \mid S_A \approx I_C \mid S_A$, we have several traces:

$$\mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{I}), \mathsf{out}(\mathtt{S}) \qquad \mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{S}), \mathsf{out}(\mathtt{I}) \qquad \mathsf{out}(\mathtt{I}), \mathsf{in}(\mathtt{S}), \mathsf{out}(\mathtt{S})$$

But there is a more general trace: its security implies the security of the other traces.

See partial order reduction (POR) techniques [1].

$$\begin{aligned} & \text{Goal:} & & \text{out}_1^{\{r:S;c:A\}}, \text{out}_2^{\{r:A;c:A\}}[\text{out}_1^{\{r:S;c:A\}}] \\ & \sim & \text{out}_1^{\{r:S;c:C\}}, \text{out}_2^{\{r:A;c:A\}}[\text{out}_1^{\{r:S;c:C\}}] \end{aligned} & & \text{(I_A | S_A \approx I_C | S_A)} \\ & \text{where:} & & \text{(notation: out}_i^{\{r:recipient;c:content\}}) \\ & & \text{out}_1^{\{r:S;c:X\}} \equiv \{\langle \mathsf{pk}_{\mathbf{X}}\,,\,\mathsf{n_I}\rangle\}_{\mathsf{pk}_{\mathbf{S}}}^r \\ & \text{out}_2^{\{r:Y;c:X\}}[\mathsf{M}] \equiv & \text{if } \pi_1(d[\mathsf{M}]) = \mathsf{pk}_{\mathbf{X}} \wedge \mathsf{len}(\pi_2(d[\mathsf{M}])) = \mathsf{len}(\mathsf{n_S}) \\ & & \text{then } \{\langle \pi_2(d[\mathsf{M}])\,,\,\mathsf{n_S}\rangle\}_{\mathsf{pk}_{\mathbf{Y}}}^{\mathsf{ro}} \\ & & \text{else } \{\langle \mathsf{n_S}\,,\,\mathsf{n_S}\rangle\}_{\mathsf{pk}_{\mathbf{Y}}}^{\mathsf{ro}} \end{aligned}$$

$$\begin{aligned} & \text{Goal:} & & \text{out}_1^{\{r:S;c:A\}}, \text{out}_2^{\{r:A;c:A\}}[\text{out}_1^{\{r:S;c:A\}}] \\ & \sim & \text{out}_1^{\{r:S;c:C\}}, \text{out}_2^{\{r:A;c:A\}}[\text{out}_1^{\{r:S;c:C\}}] \end{aligned} \qquad \begin{aligned} & \text{(I_A \mid S_A \approx I_C \mid S_A)} \\ & \sim & \text{out}_1^{\{r:S;c:C\}}, \text{out}_2^{\{r:A;c:A\}}[\text{out}_1^{\{r:S;c:C\}}] \end{aligned} \end{aligned}$$
 where:
$$\begin{aligned} & \text{(notation: out}_i^{\{r:recipient;c:content\}}) \\ & \text{out}_1^{\{r:S;c:X\}} & \equiv \{\langle \mathsf{pk_X}, \mathsf{n_I} \rangle\}_{\mathsf{pk_S}}^r \\ & \text{out}_2^{\{r:Y;c:X\}}[\mathsf{M}] & \equiv & \text{if } \pi_1(d[\mathsf{M}]) = \mathsf{pk_X} \wedge \mathsf{len}(\pi_2(d[\mathsf{M}])) = \mathsf{len}(\mathsf{n_S}) \\ & \text{then } \{\langle \pi_2(d[\mathsf{M}]), \mathsf{n_S} \rangle\}_{\mathsf{pk_Y}}^{\mathsf{r_0}} \\ & \text{else } \{\langle \mathsf{n_S}, \mathsf{n_S} \rangle\}_{\mathsf{pk_Y}}^{\mathsf{r_0}} \end{aligned}$$

Proof strategy: we only reason on the right terms:

- 1. Push encryption below branching
- 2. $\mathsf{KP\text{-}CCA}_1$: $\mathsf{out}_2^{\{r:\mathsf{A};c:\mathsf{A}\}} \Rightarrow \mathsf{out}_2^{\{r:\mathsf{C};c:\mathsf{A}\}}$

3. IND-CCA₁:
$$\operatorname{out}_{2}^{\{r:C;c:A\}} \Rightarrow \operatorname{out}_{2}^{\{r:C;c:C\}}$$

4. Conclude by α -renaming

First, we push the branching under the encryption:

$$\begin{split} & \operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}, \operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{A};\mathtt{c}:\mathsf{A}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}] \\ & \sim \operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}, \underbrace{\operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{A};\mathtt{c}:\mathsf{A}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}]}_{\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}, \operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{A};\mathtt{c}:\mathsf{A}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}]} \ R \\ & \sim \operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}, \underbrace{\operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{A};\mathtt{c}:\mathsf{A}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}]}_{} \end{split}$$

where:

$$\underline{\operatorname{out}}_{2}^{\{\mathrm{r}:\mathbf{Y};\mathrm{c}:\mathbf{X}\}}[\mathsf{M}] \;\equiv\; \left\{ \begin{aligned} &\operatorname{if}\; \pi_{1}(d[\mathsf{M}]) = \operatorname{pk}_{\mathbf{X}} \wedge \operatorname{len}(\pi_{2}(d[\mathsf{M}])) = \operatorname{len}(\mathsf{n}_{S}) \\ &\operatorname{then}\; \langle \pi_{2}(d[\mathsf{M}])\,,\,\mathsf{n}_{S} \rangle \\ &\operatorname{else}\; \langle \mathsf{n}_{S}\,,\,\mathsf{n}_{S} \rangle \end{aligned} \right\}_{\mathsf{pk}_{\mathbf{Y}}}^{\mathsf{r}_{0}}$$

We let $m_X[M]$ be the content of the encryption above.

Then, we use KP-CCA₁ to change the encryption key:

$$\begin{split} & \mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{A}\}}, \mathsf{out}_2^{\{r:\mathsf{A};\mathsf{c}:\mathsf{A}\}}[\mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{A}\}}] \\ & \sim & \mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{C}\}}, \underline{\mathsf{out}}_2^{\{r:\mathsf{C};\mathsf{c}:\mathsf{A}\}}[\mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{C}\}}] \\ & \overline{\mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{A}\}}, \mathsf{out}_2^{\{r:\mathsf{A};\mathsf{c}:\mathsf{A}\}}[\mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{A}\}}]} \end{split} \\ & \mathsf{TRANS} + \mathsf{KP\text{-}CCA}_1 \\ & \sim & \mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{C}\}}, \underline{\mathsf{out}}_2^{\{r:\mathsf{A};\mathsf{c}:\mathsf{A}\}}[\mathsf{out}_1^{\{r:\mathsf{S};\mathsf{c}:\mathsf{C}\}}] \end{split}$$

since:

- the encryption randomness r₀ is correctly used;
- the key randomness n_A and n_C appear only in $pk(\cdot)$ and $dec(_, sk(\cdot))$ positions.

Then, we use $IND-CCA_1$ to change the encryption content:

$$\begin{array}{l} \operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}, \operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{A};\mathtt{c}:\mathsf{A}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}] \\ \sim \operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}, \underbrace{\operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{C};\mathtt{c}:\mathsf{C}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}]}_{\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}, \operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{A};\mathtt{c}:\mathsf{A}\}}[\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{A}\}}] \end{array} \end{array}$$

$$\operatorname{TRANS} + \operatorname{IND-CCA}_{1}$$

$$\sim \operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}, \underbrace{\operatorname{out}_{2}^{\{\mathtt{r}:\mathsf{C};\mathtt{c}:\mathsf{A}\}}}_{\operatorname{out}_{1}^{\{\mathtt{r}:\mathsf{S};\mathtt{c}:\mathsf{C}\}}]$$

since:

- the encryption randomness r_0 is correctly used;
- \bullet the key randomness n_{C} appear only in $pk(\cdot)$ and $dec(_,sk(\cdot))$ positions.

And where Π_1 must be a proof of:

$$\left[\operatorname{len}(m_{\mathsf{C}}[\operatorname{out}_{1}^{\{r:\mathsf{S};c:\mathsf{C}\}}]) = \operatorname{len}(m_{\mathsf{A}}[\operatorname{out}_{1}^{\{r:\mathsf{S};c:\mathsf{C}\}}])\right].$$

Recall that:

$$\begin{split} m_{\mathbf{X}}[\mathsf{M}] &\equiv \mathsf{if} \ \pi_1(d[\mathsf{M}]) = \mathsf{pk}_{\mathbf{X}} \wedge \mathsf{len}(\pi_2(d[\mathsf{M}])) = \mathsf{len}(\mathsf{n_S}) \\ &\quad \mathsf{then} \ \langle \pi_2(d[\mathsf{M}]) \,, \, \mathsf{n_S} \rangle \\ &\quad \mathsf{else} \ \langle \mathsf{n_S} \,, \, \mathsf{n_S} \rangle \end{split}$$

Then:

$$\frac{\mathcal{A}_{\mathsf{th}} \vdash_{\mathsf{GEN}} \mathsf{len}(m_{\mathsf{C}}[\mathsf{out}_{1}^{\{r:\mathsf{S};c:\mathsf{C}\}}]) = \mathsf{len}(m_{\mathsf{A}}[\mathsf{out}_{1}^{\{r:\mathsf{S};c:\mathsf{C}\}}])}{\left[\mathsf{len}(m_{\mathsf{C}}[\mathsf{out}_{1}^{\{r:\mathsf{S};c:\mathsf{C}\}}]) = \mathsf{len}(m_{\mathsf{A}}[\mathsf{out}_{1}^{\{r:\mathsf{S};c:\mathsf{C}\}}])\right]} \text{ GEN}$$

if A_{th} contains the axiom¹:

$$\forall x, y. \text{len}(\langle x, y \rangle) = \text{len}(x) + \text{len}(y) + c$$

where c is some constant left unspecified.

¹This axiom must be satisfied by the protocol implementation for the proof to apply.

Then, we α -rename the key randomness n_C , rewrite back the encryption, and conclude.

$$\begin{split} & \frac{}{ \quad \text{out}_1^{\{\text{r}:\textbf{S};\text{c}:\textbf{A}\}}, \text{out}_2^{\{\text{r}:\textbf{A};\text{c}:\textbf{A}\}}[\text{out}_1^{\{\text{r}:\textbf{S};\text{c}:\textbf{A}\}}]} \ \alpha\text{-EQU} + R + R\text{EFL} \\ \sim & \text{out}_1^{\{\text{r}:\textbf{S};\text{c}:\textbf{C}\}}, \underline{\text{out}}_2^{\{\text{r}:\textbf{C};\text{c}:\textbf{C}\}}[\text{out}_1^{\{\text{r}:\textbf{S};\text{c}:\textbf{C}\}}] \end{split}$$

Unlinkability

Privacy

We proved anonymity of the Private Authentication protocol, which we defined as:

$$I_A \mid S_A \approx I_C \mid S_A$$

But does this really guarantees that this protocol protects the privacy of its users?

⇒ No, because of linkability attacks

Linkability Attacks

Consider the following authentication protocol, called KCL, between a reader R and a tag T_X with identity X:

$$\begin{split} \mathsf{R} &: \nu \, \mathsf{n}_{\mathsf{R}}. \qquad \text{out}(\mathsf{R}, \mathsf{n}_{\mathsf{R}}) \\ \mathsf{T}_{\mathsf{X}} &: \nu \, \mathsf{n}_{\mathsf{T}}. \, \text{in}(\mathsf{T}, \mathsf{x}). \, \, \text{out}(\mathsf{T}, \langle \mathsf{X} \oplus \mathsf{n}_{\mathsf{T}} \, , \, \mathsf{n}_{\mathsf{T}} \oplus \mathsf{H}(\mathsf{x}, \mathsf{k}_{\mathsf{X}}) \rangle) \end{split}$$

Assuming H is a PRF (Pseudo-Random Function), and \oplus is the exclusive-or, we can prove that KCL provides anonymity.

$$T_A \mid R \approx T_B \mid R$$

Linkability Attacks

But there are privacy attacks against KCL, using two sessions:

```
\begin{array}{c|c} 1:E \to T_A:n_R \\ \\ 2:T_A \to E : \langle A \oplus n_T \,,\, n_T \oplus H(n_R,k_A) \rangle \end{array} \qquad \begin{array}{c|c} E \to T_A:n_R \\ \\ T_A \to E : \langle A \oplus n_T \,,\, n_T \oplus H(n_R,k_A) \rangle \end{array} 3:E \to T_A:n_R \\ 4:T_A \to E : \langle A \oplus n_T' \,,\, n_T' \oplus H(n_R,k_A) \rangle \end{array} \qquad \begin{array}{c|c} E \to T_B:n_R \\ \\ T_B \to E : \langle B \oplus n_T' \,,\, n_T' \oplus H(n_R,k_B) \rangle \end{array}
```

Let t_2 and t_4 be the outputs of T. Then, on the left scenario:

$$\pi_{2}(t_{2}) \oplus \pi_{2}(t_{4}) = (n_{T} \oplus \mathsf{H}(\mathsf{n}_{R}, \mathsf{k}_{\mathsf{A}})) \oplus (\mathsf{n}_{T}' \oplus \mathsf{H}(\mathsf{n}_{\mathsf{R}}, \mathsf{k}_{\mathsf{A}}))$$

$$= \mathsf{n}_{T} \oplus \mathsf{n}_{T}'$$

$$= \pi_{1}(t_{2}) \oplus \pi_{1}(t_{4})$$

The same equality check will almost never hold on the right, under reasonable assumption on H.

Linkability Attacks

We just saw an attack against:

$$\left(\mathsf{T}_\mathsf{A} \mid \mathsf{R}\right) \mid \left(\mathsf{T}_\mathsf{A} \mid \mathsf{R}\right) \approx \left(\mathsf{T}_\mathsf{A} \mid \mathsf{R}\right) \mid \left(\mathsf{T}_\mathsf{B} \mid \mathsf{R}\right)$$

Unlinkability

To prevent such attacks, we need to prove a stronger property, called **unlinkability**. It requires to prove the **equivalence** between:

• a real-world, where each agent can run many sessions:

$$\nu \, \vec{k}_0, \dots, \vec{k}_N \cdot !_{id \leq N} \, !_{sid \leq M} \, P(\vec{k}_{id})$$

• and an ideal-world, where each agent run at most a single session:

$$\nu \, \vec{k}_{0,0}, \dots, \vec{k}_{N,M}. \, !_{\mathsf{id} \leq N} \, !_{\mathtt{sid} \leq M} \, P(\vec{k}_{\mathsf{id},\mathtt{sid}})$$

Notation: $!_{x \le N} P(x)$ is the replication of the process P, and is syntactic sugar for $P(0), \ldots, P(N)$.

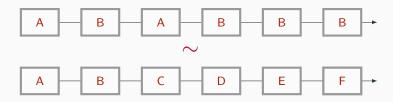
Remark

The processes above are parameterized by $N, M \in \mathbb{N}$. Unlinkability holds if the equivalence holds for any N, M.

For the sack of simplicity, we omit channel names.

Unlinkability

Example An unlinkability scenario.



Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any information on identities.

⇒ hence no link can be efficiently found in the real word.

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.

The processes $P(\vec{s}, \vec{k}_U)$ and $S(\vec{k}_S, \vec{k}_U)$ are parameterized by:

- global key material \vec{s} ;
- ullet and user-specific key material \vec{k}_U .

Then, we require that:

$$\begin{split} \nu\,\vec{s}.\,\,\nu\,\vec{k}_0,\dots,\vec{k}_N. \quad &!_{\mathsf{id}\leq N}\,\,!_{\mathtt{sid}\leq M}\,\left(P(\vec{s},\vec{k}_{\mathsf{id}}) \quad \mid S(\vec{s},\vec{k}_{\mathsf{id}})\right) \\ \approx \,\,\nu\,\vec{s}.\,\,\nu\,\vec{k}_{0,0},\dots,\vec{k}_{N,M}.\,\,!_{\mathsf{id}\leq N}\,\,!_{\mathtt{sid}\leq M}\,\left(P(\vec{s},\vec{k}_{\mathsf{id},\mathtt{sid}}) \mid S(\vec{s},\vec{k}_{\mathsf{id},\mathtt{sid}})\right) \end{split}$$

Unlinkability: Adding Servers

Generic server, accepting all identities.

No changes for the user process $P(\vec{s}, \vec{k}_U)$.

The server $S(\vec{s}, \vec{k}_0, \dots, \vec{k}_M)$ is parameterized by:

- some **global** key material \vec{s} ;
- all users key material $\vec{k}_0, \dots, \vec{k}_M$.

Then we require that:

$$\begin{split} \nu \, \vec{s}. \, \nu \, \vec{k}_0, \dots, \vec{k}_N. & \left(!_{\mathsf{id} \leq N} \, !_{\mathsf{sid} \leq M} \, P(\vec{s}, \vec{k}_{\mathsf{id}}) \right) \mid \\ & \left(!_{\leq L} \, S(\vec{s}, \vec{k}_0, \dots, \vec{k}_N) \right) \\ \approx \nu \, \vec{s}. \, \nu \, \vec{k}_{0,0}, \dots, \vec{k}_{N,M}. \, \left(!_{\mathsf{id} \leq N} \, !_{\mathsf{sid} \leq M} \, P(\vec{s}, \vec{k}_{\mathsf{id},\mathsf{sid}}) \right) \mid \\ & \left(!_{\leq L} \, S(\vec{s}, \vec{k}_{0,0}, \dots, \vec{k}_{N,M}) \right) \end{split}$$

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property that does not often hold.

Example

Assume *S* leaks whether it succeeded or not. This models the fact that the adversary can distinguish success from failure:

- e.g. because a door opens, which can be observed;
- or because success is followed by further communication, while failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:

$$\left(\underline{P(\vec{k})} \mid S(\vec{k})\right) \mid \left(P(\vec{k}) \mid \underline{S(\vec{k})}\right) \not\approx \left(\underline{P(\vec{k}_0)} \mid S(\vec{k}_0)\right) \mid \left(P(\vec{k}_1) \mid \underline{S(\vec{k}_1)}\right)$$

Private Authentication: Unlinkability

Private Authentication

We parameterize the initiator and server in PA by the key material:

$$\begin{split} \textbf{I}(k_{S},k_{X}) : \nu \, \textbf{r}. \quad \nu \, \textbf{n}_{I}. & \quad \textbf{out}(\textbf{I}, \{\langle \mathsf{pk}_{X} \,,\, \textbf{n}_{I} \rangle\}_{\mathsf{pk}_{S}}^{\mathsf{r}}) \\ \textbf{S}(k_{S},k_{X}) : \nu \, \textbf{r}_{0}. \, \nu \, \textbf{n}_{S}. \, \textbf{in}(\textbf{S},x). \, \textbf{out}(\textbf{S}, \text{if} \, \pi_{1}(d) = \mathsf{pk}_{X} \wedge \mathsf{len}(\pi_{2}(d)) = \mathsf{len}(\textbf{n}_{S})) \\ & \quad \quad \mathsf{then} \, \, \{\langle \pi_{2}(d) \,,\, \textbf{n}_{S} \rangle\}_{\mathsf{pk}_{X}}^{\mathsf{r}_{0}} \\ & \quad \quad \mathsf{else} \, \, \, \{\langle \textbf{n}_{S} \,,\, \textbf{n}_{S} \rangle\}_{\mathsf{pk}_{X}}^{\mathsf{r}_{0}} \end{split}$$

where $sk_X \equiv sk(k_X)$, $pk_X \equiv pk(k_X)$ and $d \equiv dec(x, sk_S)$.

Private Authentication: Unlinkability

Theorem

Private Authentication, v3 satisfies the unlinkability property (with user-specific server). I.e., for all $N, M \in \mathbb{N}$:

$$\begin{split} \nu \, k_{\text{S}}. \, \nu \, k_{0}, \dots, k_{N}. \quad & !_{\text{id} \leq N} \, !_{\text{sid} \leq M} \, \left(I(k_{\text{S}}, k_{\text{id}}) \, \mid S(k_{\text{S}}, k_{\text{id}}) \right) \\ \approx \, \nu \, k_{\text{S}}. \, \nu \, k_{0,0}, \dots, k_{N,M}. \, !_{\text{id} \leq N} \, !_{\text{sid} \leq M} \, \left(I(k_{\text{S}}, k_{\text{id}, \text{sid}}) \, \mid S(k_{\text{S}}, k_{\text{id}, \text{sid}}) \right) \end{split}$$

Proof sketch

For all N, M, for all trace of observables tr, we show that:

$$\models \mathsf{frame}(\mathsf{P}_{\mathcal{L}},\mathsf{tr}) \sim \mathsf{frame}(\mathsf{P}_{\mathcal{R}},\mathsf{tr})$$

by induction over tr, where $P_{\mathcal{L}}$ and $P_{\mathcal{R}}$ are, resp., the left and right protocols in the theorem above.

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: correspondance properties (e.g. authentication)

These are properties on a **single** protocol, often expressed as a **temporal** property on **events** of the protocol. E.g.

If **Alice** accepts **Bob** at time τ then **Bob** must have initiated a session with **Alice** at time $\tau' < \tau$.

To formalize the **cryptographic arguments** proving such properties, we will design a specialized **framework** and **proof system**.

Hash-Lock

The Hash-Lock Protocol

Let \mathcal{I} be a finite set of identities.

```
 \begin{array}{c} \textbf{T}(\textbf{A}, \textbf{i}) : \nu \, \textbf{n}_{\textbf{A}, \textbf{i}}. \, \textbf{in}(\textbf{A}_{\textbf{i}}, \textbf{x}). \, \textbf{out}(\textbf{A}_{\textbf{i}}, \langle \textbf{n}_{\textbf{A}, \textbf{i}} \,, \, \textbf{H}(\langle \textbf{x} \,, \, \textbf{n}_{\textbf{A}, \textbf{i}} \rangle, \, \textbf{k}_{\textbf{A}}) \rangle) \\ \textbf{R}(\textbf{j}) : \nu \, \textbf{n}_{\textbf{R}, \textbf{j}}. \, \textbf{in}(\textbf{R}_{\textbf{j}}^1, \, \_). \, \textbf{out}(\textbf{R}_{\textbf{j}}^1, \, \textbf{n}_{\textbf{R}, \textbf{j}}). \\ \textbf{in}(\textbf{R}_{\textbf{j}}^2, \textbf{y}). \\ \textbf{out}(\textbf{R}_{\textbf{j}}^2, \textbf{if} \, \bigvee_{\textbf{A} \in \mathcal{I}} \pi_2(\textbf{y}) = \textbf{H}(\langle \textbf{n}_{\textbf{R}, \textbf{j}} \,, \, \pi_1(\textbf{y}) \rangle, \, \textbf{k}_{\textbf{A}})) \\ \text{then ok} \\ \text{else ko} \end{array}
```

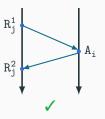
We consider N sessions of each tag, and M sessions of the reader:

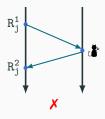
$$\nu (k_{A})_{A \in \mathcal{I}} \cdot (!_{A \in \mathcal{I}} !_{i < N} \mathsf{T}(A, i)) \mid (!_{j < M} \mathsf{R}(j))$$

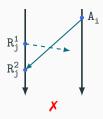
Remark: we abuse notations and write R_j^i to denote the *i*-th usage of channel R_j in a process.

Authentication

Examples of scenarios:

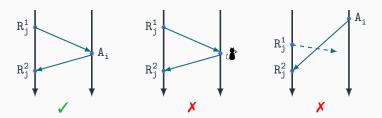






Authentication

Examples of scenarios:



- Middle scenario: impossible thanks to unforgeability of the hash.
- Right scenario: impossible thanks to freshness of R's name n_R .

Authentication

Definition(informal)

If the *j*-th session of R accepts believing it talked to tag A, then:

- there exists a session i of tag A properly interleaved with the j-th session of R;
- messages have been properly forwarded between the *i*-th session of tag A and the *j*-th session of R.

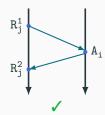
 $\cent{Picture}$ The second condition is often relaxed to require only a partial correspondence between messages.

Next slides: a framework to express such temporal properties.

Authentication

Security Property

Anticipating, authentication will be captured by a formula that roughly looks like:



Proving Correspondance Security Properties

Outline

- Capturing temporal properties as logical formulas [·].
- Dedicated proof-system for [·]:
 - ► **Generic** mathematical reasoning.
 - Cryptographic reasoning (CR, EUF).
- Example: authentication of Basic Hash.

Authentication Protocols

Execution Traces

Notations

we let ≤ be the prefix relation over observable traces:

$$\mathsf{tr}_0 \leq \mathsf{tr}_1 \quad \mathsf{iff.} \quad \exists \mathsf{tr}'. \; \mathsf{tr}_1 = \mathsf{tr}_0; \mathsf{tr}'$$

• tr:c states that tr ends with an output on c:

$$tr:c$$
 iff. $\exists tr'. tr = tr'; out(c)$

• tr:cⁿ means that tr:c and tr contains n outputs on c:

Notation: $tr: c^n \le tr'$ means $tr: c^n \wedge tr \le tr'$.

POR Result (Assumed)

We let \mathcal{T}_{io} be the set of observable traces where all outputs are always directly preceded by an input on the same channel, i.e.:

$$\mathsf{tr} \in \mathcal{T}_\mathsf{io} \quad \mathsf{iff.} \quad \forall \mathsf{tr}' : \mathsf{c} \leq \mathsf{tr.} \ \exists \mathsf{tr}''. \ \mathsf{tr}' = \mathsf{tr}''; \mathsf{in}(\mathsf{c}); \mathsf{out}(\mathsf{c})$$

Assumption: POR

We admit that to analyze the Hash-Lock protocol, it is sufficient to consider only observables traces in \mathcal{T}_{io} .

Authentication of the Hash-Lock Protocol

For any $\text{tr}: R_j^2 \in \mathcal{T}_{io}$, we let $accept^A @ \text{tr}$ be a term (defined later) stating that the reader accepts the tag A at the end of the trace tr.

Authentication of the Hash-Lock Protocol

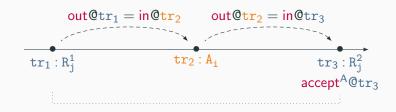
Informally, Hash-Lock provides authentication if for all $tr \in \mathcal{T}_{io}$, $tr_1 : R_j^1$ and $tr_3 : R_j^2$ such that:

$$tr_1 < tr_3 \le tr$$
 and $accept^A @ tr_3$

there must exists $\mathtt{tr_2}$: $\mathtt{A_i}$ such that $\mathtt{tr_1} \leq \mathtt{tr_2} \leq \mathtt{tr_3}$ and:

$$\mathsf{out} @ \mathsf{tr}_1 = \mathsf{in} @ \mathsf{tr}_2 \wedge \mathsf{out} @ \mathsf{tr}_2 = \mathsf{in} @ \mathsf{tr}_3$$

Graphically:



Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the Hash-Lock protocol?

- define the (generic) terms representing the output, input and acceptance, which we need to state the property;
- have a set of rules for [·] that can capture the security proof.

Authentication Protocols

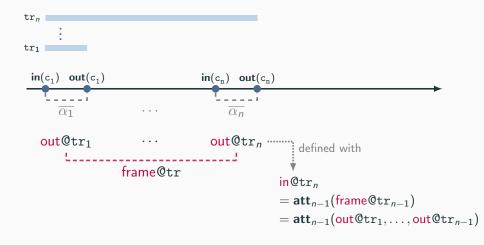
Macro Terms

Notations: Predecessor

For any observable trace tr and channel c, we let:

$$pred(tr; in(c), out(c)) \stackrel{def}{=} tr$$

Macro Terms: Graphical Representation



Macro Terms

We now define some generic terms and sequences of terms by induction of the observable trace $\mathtt{tr} \in \mathcal{T}_{io}$.

Let $tr \in \mathcal{T}_{io}$ with n inputs. If frame $(P, tr) = t_1, \dots, t_n$ then we let:

$$\begin{array}{ll} \mathsf{out}_{\mathsf{P}} @ \mathsf{tr} \overset{\mathsf{def}}{=} \begin{cases} t_n & \mathsf{if} \; \exists \mathsf{c.} \; \mathsf{tr} : \mathsf{c} \\ \mathsf{empty} & \mathsf{otherwise} \end{cases} \\ \\ \mathsf{frame}_{\mathsf{P}} @ \mathsf{tr} \overset{\mathsf{def}}{=} \begin{cases} \mathsf{frame}_{\mathsf{P}} @ \mathsf{pred}(\mathsf{tr}), \mathsf{out}_{\mathsf{P}} @ \mathsf{tr} & \mathsf{if} \; | \mathsf{tr}| > 1 \\ \epsilon & \mathsf{otherwise} \end{cases} \\ \\ \mathsf{in}_{\mathsf{P}} @ \mathsf{tr} \overset{\mathsf{def}}{=} \begin{cases} \mathsf{att}_{n-1} (\mathsf{frame}_{\mathsf{P}} @ \mathsf{pred}(\mathsf{tr})) & \mathsf{if} \; | \mathsf{tr}| > 1 \\ \mathsf{empty} & \mathsf{otherwise} \end{cases} \end{array}$$

Remark: we omit P when it is clear from context.

- $\$ The restriction to traces in \mathcal{T}_{io} simplifies the definition of $in_P@tr$.

Hash-Lock: Accept

To be able to state some authentication property of Hash-Lock, we need an additional macro. For all $\text{tr}: R_j^2 \in \mathcal{T}_{io}$, we let:

$$\operatorname{accept}^A \operatorname{@tr} \stackrel{\mathsf{def}}{=} \pi_2(\operatorname{in} \operatorname{@tr}) = \mathsf{H}(\langle \mathsf{n}_{\mathsf{R},\mathsf{j}} \,,\, \pi_1(\operatorname{in} \operatorname{@tr}) \rangle, \mathsf{k}_\mathsf{A})$$

We made sure that all names in the protocol are unique, so that they don't have to be renamed before the symbolic execution.

The following formulas encode the fact that the **Hash-Lock** protocol provides **authentication**:

$$\forall \mathsf{A} \in \mathcal{I}. \ \forall \mathtt{tr} \in \mathcal{T}_{\mathsf{io}}. \ \forall \mathtt{tr}_1 : \mathsf{R}^1_{\mathsf{j}}, \mathtt{tr}_3 : \mathsf{R}^2_{\mathsf{j}} \ \mathsf{s.t.} \ \mathsf{tr}_1 < \mathtt{tr}_3 \leq \mathtt{tr},$$

$$\begin{bmatrix} \mathsf{accept}^\mathsf{A} @ \mathtt{tr}_3 \to \bigvee_{\substack{\mathtt{tr}_2 : \mathsf{A}_{\mathsf{i}} \\ \mathtt{tr}_1 \leq \mathtt{tr}_2 \leq \mathtt{tr}_3}} \mathsf{out} @ \mathtt{tr}_2 = \mathsf{in} @ \mathtt{tr}_3 \\ \end{bmatrix}$$

This kind of one-sided properties are called **correspondance** properties. Proving their validity will require **additional rules**, to allow for **propositional reasoning**.

Authentication Protocols

Local Proof System

Local Judgements

We define a judgment dedicated to correspondance properties.

Definition

A local judgement $\Gamma \vdash \phi$ comprises a sequence of boolean terms $\Gamma = \phi_1, \dots, \phi_n$ and a boolean term ϕ .

 $\Gamma \vdash \phi$ is valid if and only if the following formula is valid:

$$[\phi_1 \to \cdots \to \phi_n \to \phi]$$

Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the **local** and **equivalence** levels!

Exercise

Determine which directions are correct.

$$[\phi \wedge \psi] \stackrel{?}{\Leftrightarrow} [\phi] \tilde{\wedge} [\psi]$$

$$[\phi \vee \psi] \stackrel{?}{\Leftrightarrow} [\phi] \tilde{\vee} [\psi]$$

$$[\phi \to \psi] \stackrel{?}{\Leftrightarrow} [\phi] \tilde{\to} [\psi]$$

Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the **local** and **equivalence** levels!

Exercise

Determine which directions are correct.

$$\begin{aligned} [\phi \wedge \psi] &\Leftrightarrow & [\phi] \,\tilde{\wedge} \, [\psi] \\ [\phi \vee \psi] &\Leftarrow & [\phi] \,\tilde{\vee} \, [\psi] \\ [\phi \to \psi] &\Rightarrow & [\phi] \,\tilde{\to} \, [\psi] \end{aligned}$$

The second relation works both ways when ϕ or ψ is a **constant** formula.

Local Proof System

Our local judgement can be trivially equipped with a sequent calculus that behaves as a standard FO sequent calculus.

$$\frac{\Gamma \vdash \psi \qquad \Gamma, \psi \vdash \phi}{\Gamma \vdash \psi \land \phi}$$

$$\frac{\Gamma \vdash \psi \qquad \Gamma \vdash \phi}{\Gamma \vdash \psi \land \phi} \qquad \frac{\Gamma, \psi, \phi \vdash \theta}{\Gamma, \psi \land \phi \vdash \theta}$$

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \psi \lor \phi} \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash \psi \lor \phi} \qquad \frac{\Gamma, \psi \vdash \theta}{\Gamma, \psi \lor \phi \vdash \theta}$$

$$\frac{\Gamma \vdash \psi \qquad \Gamma, \phi \vdash \theta}{\Gamma, \psi \lor \phi \vdash \theta} \qquad \frac{\Gamma, \psi \vdash \phi}{\Gamma, \psi \lor \phi \vdash \theta}$$

Local Proof System (cont.)

$$\begin{array}{ccc} \frac{\Gamma,\phi\vdash\bot}{\Gamma\vdash\neg\phi} & & \overline{\Gamma,\bot\vdash\phi} \\ \\ \frac{\Gamma_1,\phi,\psi,\Gamma_2\vdash\theta}{\Gamma_1,\psi,\phi,\Gamma_2\vdash\theta} & & \frac{\Gamma,\psi,\psi\vdash\phi}{\Gamma,\psi\vdash\phi} & & \frac{\Gamma\vdash\theta}{\Gamma,\phi\vdash\theta} \end{array}$$

Local Proof System: Soundness

The local proof system is sound.

Proof

First, recall that for any Γ and θ :

$$\Gamma \vdash \theta \text{ is valid iff. } \Pr_{\rho} \left(\llbracket (\wedge \Gamma) \wedge \neg \phi \rrbracket_{\mathbb{M}}^{\eta,\rho} \right) \text{ is negligible.} \tag{\dagger}$$

Local Proof System: Soundness

We will only detail one rule, say:

$$\frac{\Gamma, \psi \vdash \theta \qquad \Gamma, \phi \vdash \theta}{\Gamma, \psi \lor \phi \vdash \theta.}$$

By the previous remark (†), since $(\Gamma, \psi \vdash \theta)$ and $(\Gamma, \phi \vdash \theta)$ are valid:

- $\Pr_{\rho} \left(\llbracket (\wedge \Gamma) \wedge \psi \wedge \neg \theta \rrbracket_{\mathbb{M}}^{\eta, \rho} \right)$ is negligible.
- $\Pr_{\rho}\left(\llbracket\left(\wedge\Gamma\right)\wedge\phi\wedge\neg\theta\rrbracket_{\mathbb{M}}^{\eta,\rho}\right)$ is negligible.

Since the union of two negligible (η -indexed families of) events is a negligible (η -indexed families of) events,

$$\Pr_{\rho}\left(\llbracket \left((\wedge \Gamma) \wedge \psi \wedge \neg \theta \right) \vee \left((\wedge \Gamma) \wedge \phi \wedge \neg \theta \right) \rrbracket_{\mathbb{M}}^{\eta, \rho} \right) \text{ is negligible}$$

$$\Leftrightarrow \Pr_{\rho}\left(\llbracket \left(\wedge \Gamma \right) \wedge \left(\psi \vee \phi \right) \wedge \neg \theta \rrbracket_{\mathbb{M}}^{\eta, \rho} \right) \text{ is negligible}$$

Hence using (†) again, $\Gamma, \psi \lor \phi \vdash \theta$ is valid.

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash H(_, _) is computationally collision resistant if no PPTM adversary can built collisions, even when it has access to a hashing oracle.

More precisely, a hash is *collision resistant under hidden key attacks* (CR-HK) iff for every PPTM \mathcal{A} , the following quantity:

$$\mathsf{Pr}_{\mathsf{k}}\left(\mathcal{A}^{\mathcal{O}_{\mathsf{H}(\cdot,\mathsf{k})}}(1^{\eta}) = \langle m_1\,,\,m_2
angle, m_1
eq m_2 \;\mathsf{and}\; \mathsf{H}(m_1,\mathsf{k}) = \mathsf{H}(m_2,\mathsf{k})
ight)$$

is negligible, where k is drawn uniformly in $\{0,1\}^{\eta}$.

CR Rule

Collision Resistance

If H is a CR-HK function, then the ground rule:

$$\overline{H(\textit{m}_1, \textit{k}) = H(\textit{m}_2, \textit{k}) \vdash \textit{m}_1 = \textit{m}_2} \ ^{\mathrm{CR}}$$

is sound, when k appears only in H key positions in m_1, m_2 .

Authentication Protocols

Cryptographic Rule: Message Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic schema which:

- create message authentication codes using mac.(·)
- ullet verifies mac using verify. (\cdot,\cdot)

It must satisfies the functional equality:

$$\mathsf{verify}_{\mathsf{k}}(\mathsf{mac}_{\mathsf{k}}(m), m) = \mathsf{true}$$

MAC Security

A MAC must be **computationally unforgeable**, even when the adversary has access to a mac and verify **oracles**.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for every PPTM \mathcal{A} , the following quantity:

$$\mathsf{Pr}_{\mathsf{k}} \left(\begin{matrix} \mathcal{A}^{\mathcal{O}_{\mathsf{mac}_{\mathsf{k}}(\cdot)}, \mathcal{O}_{\mathsf{verify}_{\mathsf{k}}(\cdot, \cdot)}}(1^{\eta}) = \langle m \,,\, \sigma \rangle, \, m \text{ not queried to } \mathcal{O}_{\mathsf{mac}_{\mathsf{k}}(\cdot)} \\ & \text{and } \mathsf{verify}_{\mathsf{k}}(\sigma, m) = 1 \end{matrix} \right)$$

is negligible, where k is drawn uniformly in $\{0,1\}^{\eta}$.

EUF-MAC Rule

Take two messages s, m and a key $k \in \mathcal{N}$ such that:

- s and m are ground;
- $k \in \mathcal{N}$ appears only in mac or verify key positions in s, m.

Key Idea

To build a rule for EUF-CMA, we proceed as follow:

- compute $[\![s,m]\!]$ bottum-up, calling $\mathcal{O}_{\mathsf{mac}_k(\cdot)}$ and $\mathcal{O}_{\mathsf{verify}_k(\cdot,\cdot)}$ if necessary;
- log all sub-terms $\mathbb{S}_{\mathsf{mac}}(s,m)$ sent to $\mathcal{O}_{\mathsf{mac}_{\mathsf{k}}(\cdot)}$.
- \Rightarrow If verify_k(s, m) then m = u for some $u \in \mathbb{S}_{mac}(s, m)$.
- $\mathbb{S}_{mac}(s,m)$ are the **calls** to $\mathcal{O}_{mac_k(\cdot)}$ needed to compute s,m.

EUF-MAC Rule

 $\mathbb{S}_{\mathsf{mac}}(\cdot)$ defined by induction on ground terms:

$$\mathbb{S}_{\mathsf{mac}}(\mathsf{n}) \stackrel{\mathsf{def}}{=} \emptyset$$

$$\mathbb{S}_{\mathsf{mac}}(\mathsf{verify}_{\mathsf{k}}(u_1, u_2)) \stackrel{\mathsf{def}}{=} \mathbb{S}_{\mathsf{mac}}(u_1) \cup \mathbb{S}_{\mathsf{mac}}(u_2)$$

$$\mathbb{S}_{\mathsf{mac}}(\mathsf{mac}_{\mathsf{k}}(u)) \stackrel{\mathsf{def}}{=} \{u\} \cup \mathbb{S}_{\mathsf{mac}}(u)$$

$$\mathbb{S}_{\mathsf{mac}}(f(u_1, \dots, u_n)) \stackrel{\mathsf{def}}{=} \bigcup_{1 \leq i \leq n} \mathbb{S}_{\mathsf{mac}}(u_i) \qquad \text{(for other cases)}$$

EUF-MAC Rule

Message Authentication Code Unforgeability

If mac is an EUF-CMA function, then the ground rule:

$$\overline{\text{verify}_k(s,m)} \vdash \bigvee_{u \in S} m = u$$
 EUF-MAC

is sound, when:

- $S = \mathbb{S}_{mac}(s, m)$;
- $k \in \mathcal{N}$ appears only in mac or verify key positions in s, m.

Example

If t_1 t_2 and t_3 are terms which do not contain k, then:

$$\Phi \equiv \mathsf{mac}_{\mathsf{k}}(t_1), \mathsf{mac}_{\mathsf{k}}(t_2), \mathsf{mac}_{\mathsf{k}_0}(t_3)$$

$$\left[\mathsf{verify}_{\mathsf{k}}(g(\Phi),\mathsf{n}) \,
ightarrow \, \left(\mathsf{n} = t_1 \lor \mathsf{n} = t_2
ight)
ight]$$

EUF-MAC Rule: Exercise

Exercise

Assume mac is EUF-CMA. Show that the following rule is sound:

$$\overline{\text{verify}_k(\text{if } b \text{ then } s_0 \text{ else } s_1, m) \vdash \bigvee_{u \in \mathcal{S}_1 \cup \mathcal{S}_2} m = u}$$

when b, s_0, s_1, m are ground terms, and:

- $S_i = \{u \mid \mathsf{mac_k}(u) \in \mathbb{S}_{\mathsf{mac}}(s_i, m)\}, \text{ for } i \in \{0, 1\};$
- k appears only in mac or verify key positions in s_0, s_1, m .

Remark: we do not make *any* assumption on b, except that it is ground. E.g., we can have $b \equiv (att(k) = mac_k(0))$.

Authentication Protocols

Authentication of the Hash-Lock Protocol

Theorem

Assuming that the hash function is EUF-CMA², the Hash-Lock protocol provides authentication, i.e. for any identity $A \in \mathcal{I}$, for any $tr \in \mathcal{T}_{io}$, $tr_1 : R_j^1$ and $tr_3 : R_j^2$ s.t.:

$$tr_1 < tr_3 \le tr$$

the following formula is valid:

$$\mathsf{accept}^\mathsf{A} @ \mathsf{tr}_3 \vdash \bigvee_{\substack{\mathsf{tr}_2: \mathsf{A}_i \\ \mathsf{tr}_1 \leq \mathsf{tr}_2 \leq \mathsf{tr}_3}} \mathsf{out} @ \mathsf{tr}_1 = \mathsf{in} @ \mathsf{tr}_2 \land \mathsf{out} @ \mathsf{tr}_2 = \mathsf{in} @ \mathsf{tr}_3$$

²Taking verify_k $(s, m) \stackrel{\text{def}}{=} s = H(m, k)$.

Proof. Let $a \in \mathcal{I}$, and let $tr \in \mathcal{T}_{io}$, $tr_1 : R_j^1$ and $tr_3 : R_j^2$ be s.t.:

$$\mathtt{tr}_1 < \mathtt{tr}_3 \leq \mathtt{tr}$$

We let:

$$\phi_{\mathsf{conc}} \ \stackrel{\mathsf{def}}{=} \ \bigvee_{\substack{\mathtt{tr_2}: \mathtt{A}_i \\ \mathtt{tr_1} \leq \mathtt{tr_2} \leq \mathtt{tr_3}}} \mathsf{out} @ \mathtt{tr_1} = \mathsf{in} @ \mathtt{tr_2} \wedge \mathsf{out} @ \mathtt{tr_2} = \mathsf{in} @ \mathtt{tr_3}$$

We must prove that the following local judgement is valid:

$$accept^A @tr_3 \vdash \phi_{conc}$$

i.e. that:

$$\pi_2(\mathsf{in}@\mathsf{tr}_3) = \mathsf{H}(\langle \mathsf{n}_{\mathsf{R},\mathsf{j}} \,,\, \pi_1(\mathsf{in}@\mathsf{tr}_3) \rangle, \mathsf{k}_{\mathsf{A}}) \vdash \phi_{\mathsf{conc}}$$

We use the EUF-MAC rule on the equality:

$$\pi_2(\mathsf{in@tr}_3) = \mathsf{H}(\langle \mathsf{n}_{\mathsf{R},j} \,,\, \pi_1(\mathsf{in@tr}_3)\rangle, \mathsf{k}_\mathsf{A}) \tag{\dagger}$$

The terms above are ground, and the key k_A is correctly used in them. Moreover, the set of *honest* hashes using key k_A appearing in (†), excluding the top-level hash, is:

$$\begin{split} &\mathbb{S}_{\mathsf{mac}}(\pi_2(\mathsf{in@tr}_3), \langle \mathsf{n}_{\mathsf{R}, \mathsf{j}} \;, \; \pi_1(\mathsf{in@tr}_3) \rangle) \\ &= \mathbb{S}_{\mathsf{mac}}(\mathsf{in@tr}_3) \\ &= \left\{ \mathsf{H}(\langle \mathsf{in@tr}_2 \;, \; \mathsf{n}_{\mathsf{A}, \mathsf{i}} \rangle, \mathsf{k}_{\mathsf{A}}) \;|\; \mathsf{tr}_2 : \mathsf{A}_{\mathsf{i}} < \mathsf{tr}_3 \right\} \end{split}$$

 $\centsymbol{\Im}$ The hashes in the reader's outputs can be seen as verify checks, and can therefore be ignored.

Hence using EUF-MAC plus some basic reasoning, we have:

$$\frac{\mathsf{accept}^\mathsf{A} @\mathsf{tr}_3, \langle \mathsf{in} @\mathsf{tr}_2, \, \mathsf{n}_{\mathsf{A}, \mathsf{i}} \rangle = }{ \langle \mathsf{n}_{\mathsf{R}, \mathsf{j}}, \, \pi_1(\mathsf{in} @\mathsf{tr}_3) \rangle} \vdash \phi_\mathsf{conc} \qquad \mathsf{for \ every} \ \frac{\mathsf{tr}_2 : \mathsf{A}_{\mathsf{i}} < \mathsf{tr}_3}{ \langle \mathsf{in} @\mathsf{tr}_2, \, \mathsf{n}_{\mathsf{A}, \mathsf{i}} \rangle = } }{ \langle \mathsf{in} @\mathsf{tr}_2, \, \mathsf{n}_{\mathsf{A}, \mathsf{i}} \rangle = } } \vdash \phi_\mathsf{conc} } \\ \frac{\langle \mathsf{in} @\mathsf{tr}_2, \, \mathsf{n}_{\mathsf{A}, \mathsf{i}} \rangle = }{\langle \mathsf{n}_{\mathsf{R}, \mathsf{j}}, \, \pi_1(\mathsf{in} @\mathsf{tr}_3) \rangle} \vdash \phi_\mathsf{conc}}$$

We only have to show that for every tr_2 : $A_i < tr_3$:

$$\underbrace{\mathsf{accept}^{\mathsf{A}} \mathsf{@tr}_3, \ \mathsf{in} \mathsf{@tr}_2 = \mathsf{n}_{\mathsf{R},\mathsf{j}}, \ \mathsf{n}_{\mathsf{A},\mathsf{i}} = \pi_1(\mathsf{in} \mathsf{@tr}_3)}_{\mathsf{\Gamma}} \vdash \phi_{\mathsf{conc}}.$$

After some basic equality reasoning (+ minor assumptions), we have:

$$\Gamma \vdash \mathsf{out} @ \mathsf{tr}_1 = \mathsf{in} @ \mathsf{tr}_2 \wedge \mathsf{out} @ \mathsf{tr}_2 = \mathsf{in} @ \mathsf{tr}_3 \tag{\ddagger}$$

Recall that:

$$\phi_{\mathsf{conc}} \ \stackrel{\mathsf{def}}{=} \ \bigvee_{\substack{\mathtt{tr}_2 : \mathbb{A}_i \\ \mathtt{tr}_1 \leq \mathtt{tr}_2 \leq \mathtt{tr}_3}} \mathsf{out} @ \mathsf{tr}_1 = \mathsf{in} @ \mathsf{tr}_2 \wedge \mathsf{out} @ \mathsf{tr}_2 = \mathsf{in} @ \mathsf{tr}_3$$

and we must show that $\Gamma \vdash \phi_{\text{conc}}$. Hence, using (‡), it only remains to prove that whenever $\text{tr}_2 < \text{tr}_1$, we have:

$$\Gamma$$
, out@tr₁ = in@tr₂, out@tr₂ = in@tr₃ $\vdash \bot$

This follows from the independence rule:

$$\overline{[t \neq n]}$$
 =-IND when t is ground and $n \notin st(t)$

using the fact that:

and that if $tr_2 < tr_1$ then $n_{R,j} \notin st(in@tr_2)$.

Proof of (‡)

Since $tr_1: R_j^1 < tr_3$ we know that:

$$\textcolor{red}{\textbf{out}@\texttt{tr}_1} \, \stackrel{\mathsf{def}}{=} \, n_{\mathsf{R},j}$$

Moreover:

$$\mathsf{out} @ \mathsf{tr}_2 \stackrel{\mathsf{def}}{=} \langle \mathsf{n}_{\mathsf{A},\mathtt{i}} \,,\, \mathsf{H}(\langle \mathsf{in} @ \mathsf{tr}_2 \,,\, \mathsf{n}_{\mathsf{A},\mathtt{i}} \rangle, \mathsf{k}_{\mathsf{A}}) \rangle$$

Hence:

$$\Gamma \vdash \pi_1(\mathsf{out@tr}_2) = \pi_1(\mathsf{in@tr}_3) \tag{\diamond}$$

Similarly:

$$\begin{split} \Gamma \vdash \pi_2(\mathsf{out}@\mathtt{tr}_2) &= \mathsf{H}(\langle \mathsf{in}@\mathtt{tr}_2\,,\, \mathsf{n}_{\mathsf{A},\mathtt{i}}\rangle, \mathsf{k}_{\mathsf{A}}) \\ &= \mathsf{H}(\langle \mathsf{n}_{\mathsf{R},\mathtt{j}}\,,\, \pi_1(\mathsf{in}@\mathtt{tr}_3)\rangle, \mathsf{k}_{\mathsf{A}}) \\ &= \pi_2(\mathsf{in}@\mathtt{tr}_3) \end{split}$$

Consequently:

$$\Gamma \vdash \pi_2(\mathsf{out} @ \mathsf{tr}_2) = \pi_2(\mathsf{in} @ \mathsf{tr}_3) \tag{*}$$

Proof of (‡) (cont.)

Assuming that the pair and projections satisfy the property:

$$\boxed{\left[\left(\pi_1 \ x = \pi_1 \ y\right) \rightarrow \left(\pi_2 \ x = \pi_2 \ y\right) \rightarrow x = y\right]}$$

We deduce from (*) and (\diamond) that:

$$\Gamma \vdash \mathsf{out} @ \mathsf{tr}_2 = \mathsf{in} @ \mathsf{tr}_3$$

Putting everything together, we get:

$$\Gamma \vdash \mathsf{out} @ \mathsf{tr}_1 = \mathsf{in} @ \mathsf{tr}_2 \wedge \mathsf{out} @ \mathsf{tr}_2 = \mathsf{in} @ \mathsf{tr}_3 \tag{\ddagger}$$

Authentication Protocols

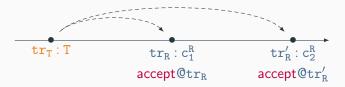
Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:

$$\forall \mathtt{tr}_{\mathtt{R}} : \mathtt{R}. \; \exists \mathtt{tr}_{\mathtt{T}} : \mathtt{T}.$$

does not exclude the scenario:



Replay Attack

This is a **replay attack**: the **same message** (or partial transcript), when replayed, is **accepted again** by the server.

This can yield real-word attacks. E.g. an adversary can open a door at will once it eavesdropped one honest interaction.

Example

The following protocol, called Basic Hash, suffer from such attacks:

```
\begin{split} \textbf{T}(\textbf{A}, \textbf{i}) &: \nu \, \textbf{n}_{\textbf{A}, \textbf{i}}. \, \textbf{out}(\textbf{A}_{\textbf{i}}, \langle \textbf{n}_{\textbf{A}, \textbf{i}} \,, \, \textbf{H}(\textbf{n}_{\textbf{A}, \textbf{i}}, \textbf{k}_{\textbf{A}}) \rangle) \\ \textbf{R}(\textbf{j}) &: \textbf{in}(\textbf{R}_{\textbf{j}}^2, \textbf{y}). \, \textbf{out}(\textbf{R}_{\textbf{j}}^2, \text{if} \, \bigvee_{\textbf{A} \in \mathcal{I}} \pi_2(\textbf{y}) = \textbf{H}(\pi_1(\textbf{y}), \textbf{k}_{\textbf{A}})) \\ &\quad \text{then ok} \end{split}
```

Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a **stronger** property, **injective authentication**.

Injective Authentication: Hash-Lock

The following formulas encode the fact that the **Hash-Lock** protocol provides **injective authentication**:

$$\forall A \in \mathcal{I}. \ \forall \texttt{tr} \in \mathcal{T}_{io}. \ \forall \texttt{tr}_1 : R^1_j, \texttt{tr}_3 : R^2_j \ \textit{s.t.} \ \texttt{tr}_1 < \texttt{tr}_3 \leq \texttt{tr}$$

$$\begin{bmatrix} \mathsf{accept^A@tr_3} \to \bigvee_{\substack{\mathtt{tr_2:A_i}\\ \mathtt{tr_1} \leq \mathtt{tr_2} \leq \mathtt{tr_3}}} & \mathsf{out@tr_1} = \mathsf{in@tr_2} \land \\ \mathsf{out@tr_2} = \mathsf{in@tr_3} \end{bmatrix} \\ \tilde{\land} \begin{bmatrix} \bigwedge_{\mathtt{tr_3':R_j^2, \leq tr}} & \pi_1(\mathsf{in@tr_3}) = \pi_1(\mathsf{in@tr_3'}) \to j = j' \end{bmatrix}$$

References i

[1] D. Baelde, S. Delaune, and L. Hirschi.

Partial order reduction for security protocols.

In *CONCUR*, volume 42 of *LIPIcs*, pages 497–510. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.