MPRI
SECURE: Proofs of Security Protocols

3. Security Proofs, Authentication

Adrien Koutsos, Inria Paris
2025/2026

Example of a Security Proof

Unlinkability

Authentication Protocols
Execution Traces
Macro Terms
Local Proof System
Cryptographic Rule: Collision Resistance
Cryptographic Rule: Message Authentication Code
Authentication of the Hash-Lock Protocol

Beyond Authentication

Example of a Security Proof

Protocol Branching

We consider a more useful version of PA in which S checks whether it is
talking to | or not.

The PA Protocol, v2

1:1—=S:vn,. out(T, {(pky, ni)} o)

2:S = |:vns.in(8, x). out(S,if m1(d) = pk,)
then {(m2(d), ns)}pyy,
else {0}y

where d = dec(x, sks).

@ The encryption of O in the else branch is here to hide to the adversary
which branch was taken.

Private Authentication: Anonymity

Lets now try to prove that PA v2 provides anonymity:

e |y is the initiator with identity X;

e Sy is the server, accepting messages from X.
The adversary must not be able to distinguish Ia | Sa from Ic | Sa.

Ix :vr. vn. out(T, {(pky , nl>},r)ks)

Sx : vrp.vns.in(8, x). out(S,if m1(d) = pky)
then {(m2(d), n5>};°kx
else {0},

We assume the encryption is IND-CCA; and KP-CCA;.

Private Authentication: Anonymity

As we saw, an encryption does not hide the length of the plain-text.
Hence, since len((n;, ns)) # len(0), there is an attack:

7 {5 ns) o, ~ {03 ke

even if the encryption is IND-CCA; and KP-CCA;.

Private Authentication: Anonymity

We fix the protocol by:

e adding a length check;

e using a decoy message of the correct length.

The PA Protocol, v3
Ix :vr. vn. out(I, {(pky , n|>};ks)
Sx : vrg.vns.in(S, x). out(S, if m1(d) = pky A len(m2(d)) = len(ns))

then {(m2(d), ns)}
else {(ns, ns)}i

Private Authentication: Anonymity

Ix :vr. vn. out(I, {(pky, m)}[)ks)
Sx : vrg.vns.in(S, x). out(S, if m1(d) = pky A len(ma(d)) = len(ns))

then {(m2(d), ns)}gi
else {{ns, ns)}g

To prove Ip | Sa = Ic | Sa, we have several traces:

in(8), out(I), out(S) in(S), out(S), out(I) out(I),in(8), out(S)

Private Authentication: Anonymity

Ix :vr. vn. out(I, {(pky, m)}[)ks)
Sx : vrg.vns.in(S, x). out(S, if m1(d) = pky A len(ma(d)) = len(ns))

then {(m2(d), ns)}gi
else {{ns, ns)}g

To prove Ip | Sa = Ic | Sa, we have several traces:

in(8), out(I), out(S) in(S), out(S), out(I) out(I),in(8), out(S)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

Private Authentication: Anonymity

Ix :vr. vn. out(I, {(pky, m)}[)ks)
Sx : vrg.vns.in(S, x). out(S, if m1(d) = pky A len(ma(d)) = len(ns))

then {(m2(d), ns)}gi
else {{ns, ns)}g

To prove Ip | Sa = Ic | Sa, we have several traces:

in(S), out(I), out(S) in(S), out(S), out(I) out(I),in(8), out(S)

But there is a more general trace: its security implies the security of the
other traces.
See partial order reduction (POR) techniques [1].

Private Authentication: Anonymity

OUtirzs;C:A},Outér:A;C:A}[OUtiLr:S:C:A}]

Goal: (In [Sa =~ lc |Sa)
N Outir.S,c.C}’Outér.A,c.A}[Outir.S,C.C}]

. :recipient;c:content
where: (notation: out!™¥*<*P* N

r:S;c: X} __ r
outi™ % = Lipko, i)}

outi™ Y M| = if 1 (d[M]) = pky A len(ma(d[M])) = len(ns)
then {(m2(d[M]), ns)}ai,
else {(ns, ns)}o,

d[M] = dec(atto(M), sks)

Private Authentication: Anonymity

Outir:S;c:A}’outér:A;c:A}[Outir:S;c:A}]
Goal: (lA | SA ~ IC | SA)

-~ Outir:S;c:C}’ Outér:A;c:A} [Outir:S;c:C}]

. :recipient;c:content
where: (notation: out!™¥*<*P* N

out] ¥ = {(pky, ni)}h
outs™ XM = if 71 (d[M]) = pk A len(m2(d[M])) = len(ns)
then {(ma(d[M]), ns)}5.,
else {(ns, ns) ,;okY

d[M] = dec(atto(M), sks)

Proof strategy: we only reason on the right terms:

1. Push encryption below branching 3. IND-CCA;:

{r:Cic:A}

out} tér:C;c:C}

2. KP-CCA: o
outér:A;CZA} = outér:C;C:A} 4. Conclude by a-renaming

Private Authentication: Anonymity

First, we push the branching under the encryption:

o tir S;c: A} tir:A;c:A}[outir:S;c:A}]

-~ out{r Ske8 C} ut{r:A;c:A} [outir:S;C:C}]
- ScAnL R
outir S;c: A} utér A,c.A}[Outir.S,c.A}]
. tir SEek: C} utér:A;c:A} [Outir:S;c:C}]
where:
if m1(d[M]) = pkx A len(m2(d[M])) = len(ns) N
{r:Y;c:X} .
out; [M] = § then (ma(d[M]), ns)

else {(ns, ng) ok

We let my[M] be the content of the encryption above.

Private Authentication: Anonymity

Then, we use KP-CCA; to change the encryption key:
Outirzs;C:A},Outgr:A;C:A}[OUtirzS:C:A}]

:S;c:C}’LUtEI:C;c:A}[Outir:S;c:C}

:S;C:A}, Outir:A;C:A}[Outirzs;C:A}]

~ outl”

. TRANS + KP-CCA;
outy
N Outirzs;C:C},OiUtér:A;C:A}[Outirzs;m(:}]

since:

e the encryption randomness rq is correctly used;

e the key randomness np and nc appear only in pk(-) and dec(_,sk(+))
positions.

10

Private Authentication: Anonymity

Then, we use IND-CCA; to change the encryption content:

Outir:s;C:A},Outér:A;C:A}[Outir:s;C:A}] -
1

- Outir:S;c:C}’oiutér:C;c:C}[Outir:S;C:C}]

: - - TRANS + IND-CCA;
Outir.S,c.A}7 Outér.A,c.A} [OUtirIS’C.A}]

N outir:S;c:C}7oimér:C;c:A}[Outirzs;czc}]
since:

e the encryption randomness rq is correctly used;

e the key randomness nc appear only in pk(-) and dec(,sk(-)) positions.

And where I1; must be a proof of:

[Ien(mc[outirzs;czc}]) = |en(mA[outir:S;C:C}])})

11

Private Authentication: Anonymity

Recall that:
mx[M] = if m1(d[M]) = pkx A len(m2(d[M])) = len(ns)

then (ma(d[M]), ns)
else (ns, ng)

Then:
Aw Fgex len(mefout;™ >]) = len(mafout;™ "))
r:S;c:C} {r:S;c:C} GEN
[Ien(mc[outi) = len(mafout; T)]

if A, contains the axiom?:
Vx, y.len({x, y)) = len(x) + len(y) + ¢

where ¢ is some constant left unspecified.

1This axiom must be satisfied by the protocol implementation for the proof to apply.

12

Private Authentication: Anonymity

Then, we a-rename the key randomness nc, rewrite back the encryption, and
conclude.

—~— 0-EQU + R + REFL
outir.S,c.A}’out;r.A,c.A}[Outir.S,C.A}]

-~ OUtirzs;C:C},Lmér:C;C:c}[OUtir:s;C:C}]

13

Unlinkability

We proved anonymity of the Private Authentication protocol, which we
defined as:

IA‘SA%IC’SA

But does this really guarantees that this protocol protects the privacy of
its users?

= No, because of linkability attacks

14

Linkability Attacks

Consider the following authentication protocol, called KCL, between a
reader R and a tag Tx with identity X:

R :vng. out(R, ng)

Tx : vnt.in(T, x). out(T, (X ® nt, nT & H(x, kx)))

Assuming H is a PRF (Pseudo-Random Function), and & is the
exclusive-or, we can prove that KCL provides anonymity.

TA‘R%TB’R

15

Linkability Attacks

But there are privacy attacks against KCL, using two sessions:
1:E > Ta:ng E —Ta:ng
2:Ta—E <AEBHT, nT@H(nR,kA» Tao—E (A@nr, nT@H(nR,kA»

3:E —Ta:nr E —Tg:nr
4:Tao—E :{A®nT,nT ®H(nr,ka)) [Te—=E :(B®nT, nT ®H(nr, ks))

Let t, and ty be the outputs of T. Then, on the left scenario:
ma(t2) ® m2(ta) = (n7 ® H(ng, ka)) ® (n7 & H(nr, ka))
=nt D n/T
= 771(t2)) 771(t4)

The same equality check will almost never hold on the right, under
reasonable assumption on H.

16

Linkability Attacks

We just saw an attack against:

(TAIR) [(TAIR) ~ (Ta|R) | (Te | R)

17

Unlinkability

To prevent such attacks, we need to prove a stronger property, called
unlinkability. It requires to prove the equivalence between:
e a real-world, where each agent can run many sessions:

—

vko,...,kn. lid<n 'sia<m Pl(kiq)
e and an ideal-world, where each agent run at most a single session:

vkoo, .-, knm- Lid<n 'sia<m P(kid sia)

Notation: !,<y P(x) is the replication of the process P, and is syntactic
sugar for P(0),...,P(N).

Remark
The processes above are parameterized by N, M € N. Unlinkability holds

if the equivalence holds for any N, M.

. .. . 18
For the sack of simplicity, we omit channel names.

Unlinkability

Example An unlinkability scenario.

19

Unlinkability: Intuition

In the ideal-world, relations between sessions cannot leak any
information on identities.
= hence no link can be efficiently found in the real word.

20

Unlinkability: Adding Servers

Our definition of unlinkability did not account for the server.

User-specific server, accepting a single identity.

The processes P(5,ky) and S(ks, ky) are parameterized by:

e global key material s;

e and user-specific key material ky.

Then, we require that:

vS. vk, kne liden 'sia<m (P(s, ka) | S(, Eid))
ki k

~ vS. vkoo, ..., knm. Lid<n lsia<m (P(S)

21

Unlinkability: Adding Servers

Generic server, accepting all identities.
No changes for the user process P(s, ky).
The server S(s, ko, ..., k) is parameterized by:

e some global key material s;

e all users key material ko, ..., k.

Then we require that:

v vkoy oo okn. (lia<n loiacm P(5 kig)) |
(' sko,...,l?))
~ V5 vkoo,- .-, Knm- ('.d<N losa<m P(5; kia, s1d)) |
(' (s, ko.o,-- lz))

22

Unlinkability: Remark

Note that user-specific unlinkability is a very strong property that does

not often hold.

Example
Assume S leaks whether it succeeded or not. This models the fact

that the adversary can distinguish success from failure:
e e.g. because a door opens, which can be observed;

e or because success is followed by further communication, while
failure is followed by a new authentication attempt.

Then the following unlinkability scenario does not hold:

(PE)15(9)) 1 (P(R) 1 5(K)) 7 (P(o) | S(K0)) | (P(k1) | S(K))

v X
23

Private Authentication: Unlinkability

Private Authentication
We parameterize the initiator and server in PA by the key material:

I(ks, kx) :vr. v out(T, {(pkx , N} }pi,)
S(ks, kx) : vro.vns.in(8, x). out(S, if m1(d) = pky A len(ma(d)) = len(ns))

then {(m2(d), ”S>}L°kx
else {(ns, ”S>}L°kx

where skx = sk(kx), pkyx = pk(kx) and d = dec(x, sks).

24

Private Authentication: Unlinkability

Theorem
Private Authentication, v3 satisfies the unlinkability property (with
user-specific server). l.e., for all N, M € N:

vks. vko,....kn. lia<wn lsia<m (I(ks, kia) | S(ks, kia))

~ vks. vkog,. .., knm- lida<n lsia<m (I(ks, kidsia) | S(ks, kid,s1a))

Proof sketch
For all N, M, for all trace of observables tr, we show that:

= frame(P., tr) ~ frame(Px, tr)

by induction over tr, where P, and Py are, resp., the left and right protocols
in the theorem above.

25

Authentication Protocols

Authentication Protocol

We now focus on another class of security properties: correspondance
properties (e.g. authentication)

These are properties on a single protocol, often expressed as a temporal
property on events of the protocol. E.g.

If Alice accepts Bob at time T then Bob must have initiated a
session with Alice at time 7/ < .

To formalize the cryptographic arguments proving such properties, we
will design a specialized framework and proof system.

26

Hash-Lock

The Hash-Lock Protocol
Let Z be a finite set of identities.

T(A,1) :vnas.in(4;,x). out(A;, (na i, H((x, na i), ka)))

R(i) :vnr;. in(R%,) out(le-, NR,j)-

in(R, y).

out(R3,if \acz ma(y) =H({nr 5, m1(y)), ka))
then ok
else ko

Hash-Lock

We consider N sessions of each tag, and M sessions of the reader:

v (ka)aez- (!AeZ Lien T(Avi)) ’ (!j<M R(j))

Remark: we abuse notations and write RJi. to denote the i-th usage of
channel Ry in a process. 27

Authentication

Examples of scenarios:
R! Rt

R2 R?

28

Authentication

Examples of scenarios:

e Middle scenario: impossible thanks to unforgeability of the hash.

e Right scenario: impossible thanks to freshness of R's name ng.

28

Authentication

Definition(informal)

If the j-th session of R accepts believing it talked to tag A, then:

e there exists a session i of tag A properly interleaved with the j-th
session of R;
e messages have been properly forwarded between the i-th session

of tag A and the j-th session of R.

@ The second condition is often relaxed to require only a partial correspondence

between messages.

Next slides: a framework to express such temporal properties.

29

Authentication

Security Property

Anticipating, authentication will be captured by a formula that roughly
looks like:

1 2 R}
V3. accept®@R? = i.| out@R! = in@A, A As
J 1 R2

 @R2
out@A; = in©ORj

30

Proving Correspondance Security Properties

Outline

e Capturing temporal properties as logical formulas [-].
e Dedicated proof-system for [|:

» Generic mathematical reasoning.
» Cryptographic reasoning (CR, EUF).

e Example: authentication of Basic Hash.

31

Authentication Protocols

Execution Traces

e we let < be the prefix relation over observable traces:
trg < trp iff. Jtr’. tr; = trg; tr’
e tr: c states that tr ends with an output on c:
tr:c iff. Jtr’. tr = tr’; out(c)

e tr:c” means that tr: c and tr contains n outputs on c:

true ifn=0
tr " iff dtrg,try. tr = trg,tr1 A otherwise
trg:c™ 1A
try: ct

Notation: tr:c” < tr’ means tr:c” Atr < tr’.

32

POR Result (Assumed)

We let T, be the set of observable traces where all outputs are always
directly preceded by an input on the same channel, i.e.:

tr € T iff. Vtr':c <tr. 3tr”. tr’ = tr”;in(c); out(c)

Assumption: POR
We admit that to analyze the Hash-Lock protocol, it is sufficient to
consider only observables traces in 7.

33

Authentication of the Hash-Lock Protocol

For any tr: R? € Tio, we let accept®@tr be a term (defined later) stating
that the reader accepts the tag A at the end of the trace tr.

34

Authentication of the Hash-Lock Protocol

Informally, Hash-Lock provides authentication if for all tr € Ty, tr; :RJl-

and trs: R? such that:
tr; < trz < tr and accept®@trs
there must exists tr, : A; such that tr; < try < trs and:

out@tr; = in@tr, A out@tr, = in@tr;

Graphically:
out@tr; = in@tr, out@tr, = in@trj
/’/’__ ‘;‘\\\‘ /’/’__ TS
try le- tra A trsy: RJZ
acceptQtrs

35

Authentication of the Hash-Lock Protocol

What do we lack to formalize and prove the authentication of the
Hash-Lock protocol?

e define the (generic) terms representing the output, input and
acceptance, which we need to state the property;

e have a set of rules for [-] that can capture the security proof.

36

Authentication Protocols

Macro Terms

Notations: Predecessor

For any observable trace tr and channel c, we let:

pred(tr;in(c), out(c)) & tr

37

Macro Terms: Graphical Representation

tr,
try
in(c;) out(c,) in(c,) out(c,)
—e : -
ap Qp
OUt?trl OUt@?tr” " defined with
frame@tr v

inQtr,
= att,_;(frame@tr, 1)
= att,_1(out@try,...,out@tr, 1)

38

Macro Terms

We now define some generic terms and sequences of terms by induction
of the observable trace tr € T,.

Let tr € Ti, with n inputs. If frame(P,tr) = t1,..., t, then we let:
t if dc. tr:c
outp@tr e)
empty otherwise

¢ orp & {framep(Qpred(tr),outp@tr if [tr| > 1
ramepQtr =

€ otherwise

_ def {attn_l(framep@pred(tr)) if [tr] > 1
inpQ@tr =

empty otherwise

Remark: we omit P when it is clear from context.

@ The restriction to traces in T, simplifies the definition of inp@tr.

O framep@tr is an alternative name for frame(P, tr).
39

Hash-Lock: Accept

T(A,i) :vnas.in(A;,x). out(As, (nas, H({x, na:),ka)))
R(3) :vnr;. in(RJi-7) out(RJl-7 nr,3)-
in(RJ?,y).
out(R, if \/acr m2(y) = H((nr 5, m1(y)), ka))
then ok
else ko

Hash-Lock

To be able to state some authentication property of Hash-Lock, we need

an additional macro. For all tr: R? € Tio, we let:

accept"@tr e mo(in@tr) = H((ng ; , m1(in@tr)), ka)

@ We made sure that all names in the protocol are unique, so that they
don’t have to be renamed before the symbolic execution.

40

Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides authentication:

VA € T.Vtr € Tip. Vtr1 :le.,tr3 : RJ? s.t. tr; < tr3 < tr,

\/ out@tr; = in@tr, A
. out@tr, =in@try
r2:Ay

tr;<tr,<trs

accept?@trs —

This kind of one-sided properties are called correspondance properties.
Proving their validity will require additional rules, to allow for
propositional reasoning.

41

Authentication Protocols

Local Proof System

Local Judgements

We define a judgment dedicated to correspondance properties.
Definition

A local judgement I F ¢ comprises a sequence of boolean terms
= ¢1,...,¢0n and a boolean term ¢.

I+ ¢ is valid if and only if the following formula is valid:

[$1 =+ = dn— ¢

42

Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the local and
equivalence levels!

Exercise

Determine which directions are correct.

BAY] & (6] Ay

vyl &[]y
b=yl & 6] > W]

43

Boolean Connectives in Local Judgements

Careful not to confuse the boolean connectives at the local and
equivalence levels!

Exercise
Determine which directions are correct.

[pAy] < [gA[Y]
[pvy] < [g]VI[Y]
[0 —=y] = [4] = [¥]

The second relation works both ways when ¢ or % is a constant formula.

43

Local Proof System

Our local judgement can be trivially equipped with a sequent calculus
that behaves as a standard FO sequent calculus.

M= Myko
Moko)
M= M=o My, o0
Fr=yYne MyYyANpt6
) M= Myk6 Moo
M=y ve Ny ve Myveto
M= Moo Myt

My—o¢k0 Ny —o¢

44

Local Proof System (cont.)

Motk L
M= —¢ MLkEo
r17¢7¢ar2}_0 rawaw'_(b M=o

r17w7¢ar2}_9 r71/)'_¢ rvgb}_e

45

Local Proof System: Soundness

The local proof system is sound.

Proof
First, recall that for any I and 6:

[+ 6 is valid iff. Pr, ([(AF) A =¢]{;?) is negligible. (1)

46

Local Proof System: Soundness

We will only detail one rule, say:
rwko Mot6o
MyVoto.
By the previous remark (1), since (', = 0) and (T', ¢ - 6) are valid:

o Pr, ([(AT) A A =0]3") is negligible.
o Pr, ([(AT) A ¢ A=0]{") is negligible.

Since the union of two negligible (7-indexed families of) events is a negligible
(n-indexed families of) events,

Pry ([[((AF) AP A=0)V ((AT)A A ﬁﬁ)ﬂ&j‘? is negligible
< Pr, ([[(AF) AWV @) m%/’) is negligible
Hence using (1) again, ', ¢ V ¢ F 0 is valid.

47

Authentication Protocols

Cryptographic Rule: Collision Resistance

Cryptographic Hash

A keyed cryptographic hash H(_,) is computationally collision
resistant if no PPTM adversary can built collisions, even when it has
access to a hashing oracle.

More precisely, a hash is collision resistant under hidden key attacks
(CR-HK) iff for every PPTM A, the following quantity:

Pr, (AOHw(ln) — (m1, ma), my # mp and H(mx, k) = H(my, k))

is negligible, where k is drawn uniformly in {0, 1}".

48

CR Rule

Collision Resistance
If His a CR-HK function, then the ground rule:

H(ml, k) = H(mg, k) H mip = moy o

is sound, when k appears only in H key positions in my, m,.

49

Authentication Protocols

Cryptographic Rule: Message
Authentication Code

Message Authentication Code

A message authentication code is a symmetric cryptographic schema
which:

e create message authentication codes using mac.(-)

e verifies mac using verify (-, -)
It must satisfies the functional equality:

verify, (mac, (m), m) = true

50

MAC Security

A MAC must be computationally unforgeable, even when the adversary
has access to a mac and verify oracles.

A MAC is unforgeable against chosen-message attacks (EUF-CMA) iff for
every PPTM A, the following quantity:

. (Aomack(')’ove”fyk("')(1”) = (m, o), m not queried to Omack(.)>
I

and verify, (o, m) =1

is negligible, where k is drawn uniformly in {0, 1}".

51

EUF-MAC Rule

Take two messages s, m and a key k € A/ such that:
e s and m are ground,;

e k € \/ appears only in mac or verify key positions in s, m.

Key Idea
To build a rule for EUF-CMA, we proceed as follow:

e compute [s, m] bottum-up, calling Onac, () and Oyerify, (..) if

necessary;

e log all sub-terms Smac(s, m) sent to Opac, (-

= If verify, (s, m) then m = u for some u € Spmac(s, m).

V Smac(s, m) are the calls to O, (. needed to compute s, m.

52

EUF-MAC Rule

Smac(+) defined by induction on ground terms

Smac(n) £ 0

Smac(verify, (u1, 1)) & Smac(1) U Smac(u2)
Smac(maci (1)) = {u} U Smac(u)

Smac(F(un,- .., up)) &

= U Smac U/

(for other cases)
1<i<n

53

EUF-MAC Rule

Message Authentication Code Unforgeability

If mac is an EUF-CMA function, then the ground rule:
EUF-MAC

verify, (s, m) = \/ ,csm=u
is sound, when:
e §= Smac(57 m);
e k €)V appears only in mac or verify key positions in s, m.
Example
If t; to and t3 are terms which do not contain k, then:

® = macy (t1), macy(t2), macy,(t3)
verify, (g(®),n) — (n=1tVn= tz)}

54

EUF-MAC Rule: Exercise

Exercise
Assume mac is EUF-CMA. Show that the following rule is sound:

verify, (if b then so else s1,m) =\ s 5, m=u

when b, s, s1, m are ground terms, and:

e S; = {u | macy(u) € Smac(si,m)}, for i € {0,1};

e k appears only in mac or verify key positions in sg, s1, m.

Remark: we do not make any assumption on b, except that it is ground.
E.g., we can have b = (att(k) = macy(0)).

55

Authentication Protocols

Authentication of the Hash-Lock Protocol

Authentication: Hash-Lock

Theorem

Assuming that the hash function is EUF-CMA?, the Hash-Lock protocol
provides authentication, i.e. for any identity A € Z, for any tr € T,
try:R] and tr3:R? st

tr; < trz3 <tr

the following formula is valid:

\/ out@tr; = in@tr, A

A
accept”Qtr3 .
¢ 3 out@tr, = in@tr3

troihy
try;<tro<trs

2Taking verify, (s, m) i H(m, k).
56

Authentication: Hash-Lock

Proof. Let a € 7, and let tr € T;,, try: RJ1- and trs :RJQ- be s.t.:
tr; < trz < tr
We let:

. def . .
beone = \/ out@tr; = in@try A out@tr, = in@trs

tra:Ay
try <tro<trs

We must prove that the following local judgement is valid:
A
accept”Otr3 F deone
i.e. that:

Wg(in@tr3) = H(<”R.j : 7r1(in©tr3)>, kA) F Pconc

57

Authentication: Hash-Lock

We use the EUF-MAC rule on the equality:

7r2(in©tr3):H(<nR_j 9 7T1(ih@tI‘3)>7kA) (T)

The terms above are ground, and the key ka is correctly used in them.
Moreover, the set of honest hashes using key ka appearing in (}), excluding the
top-level hash, is:

Smac(7r2(in@tr3)q <nR4j 5 Wl(in@tr3)>)
= Smac(in@tr3)
= {H((in@try, nai),ka) | tra: A; < trs}

Q@ The hashes in the reader’s outputs can be seen as verify checks, and can
therefore be ignored.

58

Authentication: Hash-Lock

Hence using EUF-MAC plus some basic reasoning, we have:

(in@try, nas) =

A
t" 0t g
accep I3, (nrj, m(in@tr3))

F Gconc for every try 1 A; < trs

<in©tr2 , nA,i> =

A
accept”Otrs, \/trz:Ai<tr3 <nRJ_ , 1 (in@tr3))

'7 @COHC

acceptA©tr3 F dcone

59

Authentication: Hash-Lock

We only have to show that for every tr; : A; < trs:

acceptA@tr3, in@tr, = NR,j, NA,i = 7T1(ih@tI3) F ®conc-

r

After some basic equality reasoning (+ minor assumptions), we have:

I out@tr; = in@trs A out@tr, = in@trs (1)

60

Authentication: Hash-Lock

Recall that:

def . .
beone = V ¢, out@tr; =in@tr; Aout@tr, =in@trs
try<tr,<trs

and we must show that I F ¢conc. Hence, using (1), it only remains to prove
that whenever tr, < try, we have:

I, out@tr; = in@tr,, out@tr, =in@trz - L

This follows from the independence rule:

NP vhen tis ground and n ¢ st(t)

[t#n] —

using the fact that:
f
out@tr; - NR,

and that if try < tr; then ngj & st(in@tr,).

61

Authentication: Hash-Lock

Proof of (1)
Since tr; :RJl. < trz we know that:

def
out@tr; = NR.;

Moreover:
out@try = (na s, H((in®trs , nas), ka))
Hence:
It m(out@try) = 71 (in@trs) (e)
Similarly:

I [TI'Q(OUt@tIQ) =

I T

((in@tra, na i), ka)
((nR‘j , ﬂl(in@tr3)>, kA)
7r2(in@tr3)

Consequently:
I mo(out@try) = mo(in@trs) (%)
62

Authentication: Hash-Lock

Proof of (1) (cont.)
Assuming that the pair and projections satisfy the property:

[(mx=my)—=(m2x=m2y) = x=y]
We deduce from (x) and (¢) that:
I out@tr, =in@trs

Putting everything together, we get:

I out@tr; = in@trs A out@tr, = in@trs (1)

63

Authentication Protocols

Beyond Authentication

Beyond Authentication

Authentication, which states that we must have:
Vtrg :R. Jtrr: T.

o~ X Y
trr: T trg: ch s
accept@try accept@try

64

Replay Attack

This is a replay attack: the same message (or partial transcript), when
replayed, is accepted again by the server.

This can yield real-word attacks. E.g. an adversary can open a door at
will once it eavesdropped one honest interaction.

Example
The following protocol, called Basic Hash, suffer from such attacks:

T(A,i):vna;.out(A;, (nas, H(nai, ka)))

R(3) :in(R3,y). out(R3,if \/ sz ma(y) = H(mi(y), ka))
then ok
else ko

65

Injective Authentication

The authentication property is too weak for many real-world application.

To prevent replay attacks, we require that the protocol provides a
stronger property, injective authentication.

66

Injective Authentication: Hash-Lock

The following formulas encode the fact that the Hash-Lock protocol
provides injective authentication:
VA € Z.Vtr € Tip. Vtry : RJ1~,tr3 : R? s.t. try < trz < tr

\/ out@tr; = in@tr, A
. out@tr, = in@tr3
r2:a4

try<tro<trs

accept®@trs —

y /\ accept"@trs A accept"Q@trs—
m1(in@tr3) = m1(in@tr}) — j =

_tré:Rﬁ, <tr

67

References i

[1] D. Baelde, S. Delaune, and L. Hirschi.
Partial order reduction for security protocols.
In CONCUR, volume 42 of LIPIcs, pages 497-510. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2015.

	Example of a Security Proof
	Unlinkability
	Authentication Protocols
	Execution Traces
	Macro Terms
	Local Proof System
	Cryptographic Rule: Collision Resistance
	Cryptographic Rule: Message Authentication Code
	Authentication of the Hash-Lock Protocol
	Beyond Authentication

	Appendix

