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Questions marked with a star (⋆) can be skipped without impacting the rest of the exercise.

1 Negligibility
Question 1. Show the following properties:

• If f ∈ negl(η) and g ∈ negl(η) then (f + g) ∈ negl(η).

• Idem, but for max(f, g) and min(f, g).

• Let P be a polynomial. If, for every 1 ≤ i ≤ P (η), fi ∈ negl(η), then
∑

1≤i≤P (η) fi is not
necessarily negligible.

• Show that
∑

1≤i≤P (η) fi is negligible if there exists f ∈ negl(η) uniformly bounding the fi’s,
i.e. s.t. fi(η) ≤ f(η) for every i, η.

2 Bi-Deduction
A n-context is a term C using distinguished variables []1, . . . , []n called holes. If C is a n-context
and t1, . . . , tn are terms, then C[t1, . . . , tn] is the term obtained by simultaneously substituting
all variables []i by ti in C, i.e.

C[t1, . . . , tn]
def
= C{[]1 7→ t1, . . . , []n 7→ tn}

Example: if C = ⟨[]1, ⟨[]1, []2⟩⟩ then C[a, b] = ⟨a, ⟨a, b⟩⟩.

Consider the following rule schema:

BiDeduce
u⃗ ∼ v⃗

C1[u⃗], . . . , Cl[u⃗] ∼ C1[v⃗], . . . , Cl[v⃗]

where l ∈ N, u⃗ and v⃗ are vectors of terms of length n, and C1, . . . , Cl are n-contexts.

Question 2. Give an unsound instance of the BiDeduce rule schemata. Argue why your
instance is unsound.

Solution. E.g. take l = 1, u = n, v = n′ (where n and n′ are two names), and C1 = ⟨[], n⟩. We
clearly have that u ∼ v is valid, but C[u] ∼ C[v] is the formula

⟨n, n⟩ ∼ ⟨n, n′⟩

which is not invalid, because the following program is a winning distinguisher with high proba-
bility:

B(x) := return π1(x) = π2(x)

(as n ̸= n′ with probability close to 1). ■

Question 3. Give sufficient conditions on C1, . . . , Cl under which an instance the BiDeduce
rule schemata is sound. Care will be taken to restrict the rule applicability as little as possible.

1



Solution. It is sufficient to require that:

• the only variables appearing in C1, . . . , Cl are the hole variables []1, . . . , []n:

st(C1, . . . , Cl) ∩ X ⊆ {[]1, . . . , []n}

• the names of u⃗ and v⃗ do not occur in the context C1, . . . , Cl, i.e. if we let names(u) =
st(u) ∩N then:

names
(
u⃗, v⃗

)
∩ st(C1, . . . , Cl) = ∅ ■

Question 4. Prove that your restricted rule is sound using the usual rules of the logic.
If your proof proceed by induction, your answer should include at least a precise statement of

the induction hypothesis, as well as the key rules used in the inductive step.

Solution. We let |t| be the size of a term t, i.e. the number of nodes in t (seeing a term as a tree).
We consider the following generalized rule:

BiDeduce-G

u⃗, n1, . . . , nn, C1[u⃗], . . . , Cl[u⃗]

∼ v⃗ , n1, . . . , nn, C1[v⃗], . . . , Cl[v⃗]

under the same conditions on C1, . . . , Cl as BiDeduce, and where n1, . . . , nn is a sequence of
distinct names containing at least all the names occurring in the contexts C1, . . . , Cl.

Assuming that the BiDeduce-G rules are sound, the BiDeduce rule schemata is sound
(using the Restr rule).

Thus, it remains to prove that any instance of the BiDeduce-G rule is sound, which we do
by induction on |C1|+ · · ·+ |Cl|.

• If l = 0, the indistinguishability is exactly the premise of the BiDeduce rule extended
with a finite sequence of distinct names that are different from the names of u⃗ and v⃗, and
thus holds (using Fresh once for each name in n1, . . . , nn).

• Take l > 0, we do a case-analysis on the root symbol of Cl:

– variable case, Cl = x where x ∈ X . Using our restriction, we know that x is one of
the hole variable []i. Then, Cl[u⃗] = ui and Cl[v⃗] = vi, where ui and vi are the i-th
term of, respectively, u⃗ and v⃗. As this is a duplicated entry, we conclude apply Dup
and then the induction hypothesis.

– function symbol, Cl = f(D1, ..., Dk) where D1, ..., Dk are contexts. We apply the
FA rule to remove f . This yields a smaller rule (since we remove the f node), and
D1, . . . , Dk verify the same conditions as C1, . . . , Cl (the conditions are stable by sub-
terms). Thus, we conclude using the induction hypothesis.

– name symbol Cl = n where n ∈ N . Using our restrictions, we know that n occurs
among the names n1, . . . , nn. Thus, we remove n using Dup, and conclude using the
induction hypothesis. ■

3 Probabilistic Couplings
Reminder For any model M, recall that TM,η defines the randomness source used to give the
semantics of a term. More precisely, for every η, we have TM,η = T a

M,η × T h
M,η where T a

M,η and
T h
M,η are, respectively, the adversary and honest randomness. The adversary randomness T a

M,η

must be of the form {0; 1}aη , i.e. the set of bitstrings of length aη. Similarly, T a
M,η must be

of the form {0; 1}hη . Finally, the semantics of the logic JtKη,ρM evaluates t using randomness
ρ = (ρa, ρh) ∈ TM,η. Reformulating, if t has type τ, the function:{

TM,η → JτKηM
ρ 7→ JtKη,ρM

defines the semantics of t as a η-indexed family of random variables using randomness source TM,η.
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Question 5. Prove that if, for every η, there exists a bijection β : TM,η → TM,η such that for all
ρ ∈ TM,η:

JuKη,ρM = JvKη,β(ρ)M and ρa = ρ′a where ρ = (ρa, ρh) and β(ρ) = (ρ′a, ρ
′
h)

then M |= u ∼ v.

Question 6. Deduce that:
u, n ∼ u, n′

is a valid formula whenever u is a ground term and n, n′ ̸∈ st(u).

Probabilistic Couplings Let S1,S2 be two sets implicitly equipped with probability distri-
butions, resp., µ1 and µ2. For the sack of simplicity, we assume that S1 and S2 are both finite
(though this is unnecessary). In that case, we can define the distributions µ1 and µ2 as follows:

µi : Si → [0; 1] such that
∑
x∈Si

µi(x) = 1 (for any i ∈ {1; 2})

A distribution c over S1 × S2 is a probabilistic coupling of (S1, µ1) and (S2, µ2), which we write
c : (S1, µ1) ▷◁ (S2, µ2)

1, if c is such that its left and right marginals π1(c) and π2(c) follow,
respectively, the distribution µ1 and µ2, where:

∀e1 ∈ S1, π1(c)(e1) =
∑
e2∈S2

c(e1, e2)

∀e2 ∈ S2, π1(c)(e2) =
∑
e1∈S1

c(e1, e2)

Question 7 (Independent and equality couplings).

• Show that c(x, y) = µ1(x)× µ2(y) is a probabilistic couplings c : (S1, µ1) ▷◁ (S2, µ2).

• Build a coupling c : (S, µ) ▷◁ (S, µ) such that c(x, y) = 0 whenever x ̸= y.

We let supp(µ) = {x | µ(x) > 0} be the support of a discrete distribution µ.

Question 8. Let M be a model. Show that if, for every η, there exists c : TM,η × TM,η such that
∀(ρ1, ρ2) ∈ supp(c),

ρ1a = ρ2a JuKη,ρ
1

M = JvKη,ρ
2

M (where ρi = (ρia, ρ
i
h) for i ∈ {1; 2})

then M |= u ∼ v.

Question 9. Re-prove the rule of question 6 using a probabilistic couplings.

Question 10. Prove using a probabilistic coupling that

if ϕ then t1[n] else t2 ∼ if ϕ then t1[n′] else t2

is a valid formula whenever ϕ, t1 are ground terms and n, n′ ̸∈ st(ϕ, t1).
(Note that t2 is unconstrained.)

Question 11. Prove that without the condition that n, n′ ̸∈ st(ϕ, t1), the rule above is unsound.

4 Relations Among Hash Cryptographic Assumptions

4.1 Hash Functions
Let Σ = {0, 1}. A cryptographic hash function H : Σ∗ 7→ ΣL allows to compute, for every message
m, a digest H(m) – often called the hash – of fixed length L.2 Examples of such functions are
SHA-2, or the more recent SHA-3.

1We often let the distributions µ1 and µ2 be implicit.
2L is more or less the security parameter.
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There are many security properties that we may want from a cryptographic hash function.
A common property is to require that the hash function has no collision, where a collision is a
pair of distinct messages m0,m1 such that H(m0) = H(m1). Of course, for cardinality reasons,
this cannot be achieved.

Therefore, we are going to slightly change the setting. A keyed cryptographic hash function
H : Σ∗ × ΣK 7→ ΣL takes as input a message m of any length and a key k of length K, and
compute the hash of m under k. A keyed hash function could be implemented, for example, by
taking H(m, k)

def
= SHA-3(k||m). To simplify things, we assume K = L = η from now on.

4.2 Hardness Hypotheses on Hash Functions
We now present three different security notions for keyed hash functions.

Collision-Resistance A keyed cryptographic hash H(_,_) is computationally collision resis-
tant if no PPTM adversary can built collisions, even when it has access to a hashing oracle.

Formally, a hash is collision resistant under hidden key attacks (CR-HK) iff. for every PPTM A:

Prk
(
AOH(·,k)(1η) = ⟨m1 , m2⟩,m1 ̸= m2 and H(m1, k) = H(m2, k)

)
is negligible, where k is drawn uniformly in {0, 1}η.

Unforgeability A keyed hash function is computationally unforgeable when no adversary can
forge new hashes, even when the adversary has access to a hashing oracle.

Formally, a hash is unforgeable against chosen-message attacks (EUF-CMA) iff. for every
PPTM A:

Prk
(
AOH(·,k)(1η) = ⟨m, σ⟩, m not queried to OH(·,k) and σ = H(m, k)

)
is negligible, where k is drawn uniformly in {0, 1}η.

Pseudo-Random Function A keyed hash function H(·, k) is a PRF if its outputs are com-
putationally indistinguishable from the outputs of a random function.

Formally, a hash function is a Pseudo Random Function iff. for any PPTM A:∣∣Prk(AOH(·,k)(1η) = 1)− Prg(AOg(·)(1η) = 1)
∣∣

is negligible, where:

• k is drawn uniformly in {0, 1}η.

• g is a random function from {0, 1}∗ to {0, 1}η.

4.3 Relations Among Security Notions and Rule Schemata
Show that we have the following relations among keyed hash function security notions.

Question 12 (⋆). Show that PRF ⇒ EUF-CMA ⇒ CR-HK.

We now consider the problem of designing sound rules of the indistinguishability logic cap-
turing these different keyed hash function security notions.

Question 13. Design and prove sound a rule schemata for CR-HK.

Question 14. Design and prove sound a rule schemata for PRF. In a first time, assume that
there are at most two calls to the hash oracle. Then, generalize to any number of calls.
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4.4 EUF Rule and Variation
If H is an EUF-CMA keyed hash function, then the ground rule:

(
s= H(m, k)→

∨
u∈S m= u

)
∼ true

EUF

is sound, when:

• S = {u | H(u, k) ∈ st(s,m)};

• k appears only in H key positions in s,m, i.e. k ⊑H(_,·) s,m.

We assume that the EUF rule given above is sound. We are now going to prove an improved,
more precise, version of the rule.

Ignoring Hashes in Conditions We show that we can ignore some hashes appearing in
conditions in s or m. To simplify matter, we only do it for a single condition.

Question 15. Assume that H is EUF-CMA. Show that the following rule is sound:

(if b then s0 else s1) = H(m, k)→
∨

u∈S1∪S2
m= u ∼ true

EUFnc

when b, s0, s1,m are ground terms, and:

• Si = {u | H(u, k) ∈ st(si,m)}, for i ∈ {0, 1};

• k appears only in H key positions in s0, s1,m.

Remark that we do not make any assumption on b, except that it is ground. E.g., we can
have b ≡ (att(k) = H(0, k)).

Question 16 (⋆). What is the relation between the advantage against EUFnc and the advantage
against the EUF-CMA security assumption? How would this advantage evolve if we generalized
the EUFnc rule to N conditions b1, . . . , bn?
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